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ABSTRACT 
MapReduce is an effective programming model for large-

scale data-intensive computing applications. Hadoop is an 

open-source implementation of MapReduce which has been 

widely used. The communication overhead from the big data 

sets’ transmission affects the performance of Hadoop greatly. 

In consideration of data locality, Hadoop schedules tasks to 

the nodes near the data locations preferentially to decrease 

data transmission overhead, which works well in 

homogeneous and dedicated MapReduce environments. 

However, due to practical considerations about cost and 

resource utilization, it is common to maintain heterogeneous 

clusters or share resources by multiple users. Unfortunately, 

it’s difficult to take advantage of data locality in these 

heterogeneous or shared environments [1]. To improve the 

performance of MapReduce in heterogeneous or shared 

environments, a data prefetching mechanism is proposed, In 

this paper, we can fetch the data to corresponding compute 

nodes in advance. It is proved that the proposal of this paper 

reduces data transmission overhead effectively with 

theoretical analysis. We also work on applying similar 

prefetching mechanisms to other phases in MapReduce, and 

researching on predicting the execution nodes of tasks in 

cluster computing to improve performance and the result are 

clearly shows that proposed system will takes a less 

execution time as compared to existing mapreduce job. 

Keywords 
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1. INTRODUCTION  
MapReduce is a relatively young framework - both a 

programming model and an associated run- time system - for 

large-scale data processing. Hadoop [2] is the most popular 

open-source implementation of a MapReduce framework 

that follows the design laid out in the original paper. A 

combination of features contributes to Hadoop's increasing 

popularity, including fault tolerance ,data-local scheduling, 

ability to operate in a heterogeneous environment, handling 

of straggler tasks, as well as a modular and customizable 

architecture. 

The MapReduce programming model [3] consists of a 

map(k1; v1) function and a reduce(k2; list(v2)) function. 

Users can implement their own processing logic by 

specifying a customized map() and reduce() function written 

in a general-purpose language like Java or Python. The 

map(k1; v1) function is invoked for every key-value pair 

hk1; v1i in the input data to output zero or more key-value 

pairs of the form hk2; v2i (see Figure 1). The reduce(k2; 

list(v2)) function is invoked for every unique key k2 and 

corresponding values list(v2) in the map output. reduce(k2; 

list(v2)) outputs zero or more key-value pairs of the form 

hk3; v3i. The MapReduce programming model also allows 

other functions such as (i) partition(k2), for controlling how 

the map output key-value pairs are partitioned among the 

reduce tasks, and (ii) combine(k2; list(v2)), for performing 

partial aggregation on the map side. The keys k1, k2, and k3 

as well as the values v1, v2, and v3 can be of different and 

arbitrary types. 

 

Figure 1: Execution of a MapReduce job. 

A Hadoop MapReduce cluster employs a master-slave 

architecture where one master node (called JobTracker) 

manages a number of slave nodes (called TaskTrackers). 

Figure 1 shows how a MapReduce job is executed on the 

cluster. Hadoop launches a MapReduce job by first splitting 

(logically) the input dataset into data splits. Each data split is 

then scheduled to one TaskTracker node and is processed by 

a map task. A Task Scheduler is responsible for scheduling 

the execution of map tasks while taking data locality into 

account. Each TaskTracker has a predefined number of task 

execution slots for running map (reduce) tasks. If the job will 

execute more map (reduce) tasks than there are slots, then the 

map (reduce) tasks will run in multiple waves. When map 

tasks complete, the run-time system groups all intermediate 

key-value pairs using an external sort-merge algorithm. The 

intermediate data is then shuffled (i.e., transferred) to the 

TaskTrackers scheduled to run the reduce tasks. Finally, the 

reduce tasks will process the intermediate data to produce the 

results of the job. 
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The Map task execution is divided into five phases: 

1. Read: Reading the input split from HDFS and creating 

the input key-value pairs (records). 

2. Map: Executing the user-defined map function to 

generate the map-output data. 

3. Collect: Partitioning and collecting the intermediate 

(map-output) data into a buffer before 

4. spilling. 

5. Spill: Sorting, using the combine function if any, 

performing compression if specified, and finally writing 

to local disk to create file spills. 

6. Merge: Merging the file spills into a single map output 

file. Merging might be performed in multiple rounds. 

The Reduce Task is divided into four phases: 

1. Shuffle: Transferring the intermediate data from the 

mapper nodes to a reducer's node and 

2. decompressing if needed. Partial merging may also 

occur during this phase. 

3. Merge: Merging the sorted fragments from the different 

mappers to form the input to the reduce function. 

4. Reduce: Executing the user-defined reduce function to 

produce the final output data. 

5. Write: Compressing, if specified, and writing the final 

output to HDFS. 

We model all task phases in order to accurately model the 

execution of a MapReduce job. We represent the execution 

of an arbitrary MapReduce job using a job profile, which is a 

concise statistical summary of MapReduce job execution. A 

job profile consists of dataflow and cost estimates for a 

MapReduce job j : dataflow estimates represent information 

regarding the number of bytes and key-value pairs processed 

during j's execution, while cost estimates represent resource 

usage and execution time. 

2. LITERATURE REVIEW 
One way to balancing load, Hadoop using HDFS distributed 

big size data to multiple nodes based on local disk storage 

capacity in clusters [4]. The data location is efficient in 

homogeneous environment where all nodes have identical 

both computing speed and disk capacity. In this environment 

computes same workload on all nodes representing that no 

data needs to be moved from one node to another node. All 

nodes are independent as well as can not share data between 

two nodes in cluster of homogeneous environment. In 

heterogeneous Environment or clusters have set of nodes 

where each node computing speed capacities and local disk 

capacity may be significantly different. If all nodes have 

different size workload then a faster computing ( high 

performance) nodes can complete processing local data faster 

than slow computing (low- performance)nodes. Faster node 

finished processing data then result residing into its local 

disk and handle unprocessed data of remote slow node. 

When move or transfer unprocessed data from low 

performance (remote) node to high performance node is huge 

then overhead of data transmission is occurring. If wants 

Progress the MapReduce performance in heterogeneous 

environment then reduce the amount of data moved between 

low performances nodes to high performance nodes.  

Improve The MapReduce performance in Various 

Environments:  

A. Data Placement in Heterogeneous Hadoop Clusters  

B. Heterogeneous Network Environments and Resource 

Utilization  

C. Smart Speculative Execution Strategy  

D. Longest Approximate Time to End. 

A. Improve MapReduce Performance through Data 

Placement in Heterogeneous Hadoop Clusters [5].  

We want improve the performance then minimize data 

movement between slow and fast nodes achieved by data 

placement scheme that distribute and store data across 

multiple heterogeneous nodes based on their computing 

speed.  

1) Data placement in Heterogeneous- Two algorithms are 

implemented and incorporated into Hadoop HDFS. The first 

algorithm is to initially distribute file into heterogeneous 

nodes in a cluster. When all file fragments of an input files 

are distributed to the computing nodes. The second algorithm 

is used to reorganize file fragments to solve the data skew 

problem. There two cases in which file fragments must be 

reorganized. First, new computing nodes are added to an 

existing cluster to have the cluster expanded. When, new 

data is appended to an existing input file. In both cases, file 

fragments distributed by the initial data placement algorithm 

can be disrupted. 

B. Improving MapReduce Performance in Heterogeneous 

Network Environments and Resource Utilization [6]  

1) Resource stealing- When number of map and reduce slots 

are carefully chosen to gain optimal resource usage. 

Resource utilization is inefficient when there are not some 

enough tasks to fill all task slots as the reserved resources for 

idle slots are just wasted. Then Resource stealing, which 

enables running tasks to steal the residual resources and 

return them when new tasks are assigned. There is use of 

wasted resources to improve overall resource utilization and 

reduce job execution. First-come-Most(FCM) , Shortest-

Time-Left-Most(STLM) , Longest –Time-Left-Most(LTLM) 

these are resource allocation policies. 

 2) Benefit Aware Speculative Execution –This mechanism 

predicts the benefit of launching new speculative tasks and 

greatly eliminates unnecessary runs of speculative tasks. 

Speculative execution in Hadoop was observed to be 

inefficient, which is caused by the excessive runs of useless 

speculative tasks. Benefit Aware Speculative Execution 

manages speculative tasks in a benefit-aware manner and 

expected to improve the efficiency. 

C. Improving MapReduce Performance using Smart 

Speculative Execution Strategy [7]  

Multiple speculative execution strategies are improving the 

performance in Heterogeneous as well as Homogeneous. But 

there are some Pitfalls degrade the performance. When 

existing strategies cannot work well, then they develop a new 

strategy, MCP (Maximum Cost Performance), which 

improves the effectiveness of speculative execution 

significantly.  

When a machine takes an unusually long time to complete a 

task (the so-called straggler machine), it will delay the job 

execution time (the time from job initialized to job retired) 
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and degrade the cluster throughput (the number of jobs 

completed per second in the cluster) significantly. This 

problem handled speculative execution. A new speculative 

execution strategy named MCP for Maximum Cost 

Performance. We consider the cost to be the computing 

resources occupied by tasks, while the performance to be the 

shortening of job execution time and the increase of the 

cluster throughput. MCP aims at selecting straggler tasks 

accurately and promptly and backing them up on proper 

worker nodes.MCP is quite scalable, which performs very 

well in both small clusters and large clusters. 

D. Improving MapReduce Performance in Heterogeneous 

Environments [8]  

1) LATE, for Longest Approximate Time to End. If 

nodes in cluster ran at reliable speeds and no cost 

to initiation a speculative task on an ideal node 

then LATE policy would be best. The LATE 

algorithm has various applications. First, it is 

dynamic to node heterogeneity, because it will 

relaunch only the low performance tasks and only 

a small number of fragment parts of large file with 

slow performing as tasks. LATE prioritizes 

amongst the slow tasks based on how much they 

injure job response time. LATE also capture the 

number of slow performance tasks to limit 

argument for shared resources. In contrast, 

Hadoop’s native scheduler has a fixed threshold 

[8]. 

3. RELATED WORK 
To alleviate the performance degradation caused by data 

transmission, some related work is done. Data Prefetching is 

an effective approach to diminishing the data transmission 

overhead. To avoid directly modifying the native Hadoop, a 

bi-directional processing approach is proposed in HPMR [9]: 

computing fetches and processes data from the beginning of 

the input split data while the prefetching fetches data from 

the end of the input split data. Obviously, the computing has 

to fetch data by itself before meeting the data fetched by the 

prefetching, which discounts the benefits of data prefetching. 

While the proposal in this paper fetches data from the 

beginning of input data to reduce the overhead of data 

transmission at the maximum.  

Some researchers focus on optimizing task scheduling 

algorithms or data replication policies to improve data 

locality in MapReduce [10]. These proposals only improve 

the probability of data locality in MapReduce and may 

increase the complexity of achieving load balance. The 

LATE scheduling algorithm is proposed for MapReduce in 

heterogeneous environments [11]. M. Zaharia et al., have 

proposed a delay scheduling algorithm, which addresses the 

conflict between locality and fairness in shared MapReduce 

cluster [13]. In MTSD [12], computing nodes are classified 

by computing capability and a modified task scheduling 

algorithm is studied. X. Zhang et al. have studied scheduling 

with consideration about data locality in homogeneous 

cluster [14]. DARE is a distributed adaptive data replication 

algorithm that is sensitive to the heterogeneity of computing 

nodes, and the more powerful nodes get more data 

replications [15]. 

4. PROBLEM DEFINITION 
When an analysis is being conducted on Big Data it is of 

utmost importance that the data being dealt with is accurate 

and does not have any abnormalities. There are numerous 

factors that affect the performance of Hadoop such as 

hardware and software when handling huge amounts of data. 

Both the main components of Hadoop, that is, HDFS and 

MapReduce play a major role in its performance Hadoop and 

the results that are generated. 

HDFS: The number of reading and writing operations 

performed on the nodes also affects the performance of 

Hadoop. The performance of HDFS also depends on whether 

the work is being performed on big or small dataset. 

MapReduce: Tuning the number of map tasks and reduce 

tasks for a particular job in the workload is another way that 

performance can be optimized. If the mappers are running 

only for a few seconds then fewer mappers can be used for 

longer periods. Also performance depends on the number of 

reducers used which should be slightly less than the number 

of reduce slots in the cluster to improve performance. This 

allows the reducers to finish in one wave and fully utilizes 

the cluster during the reduce phase. MapReduce job 

performance can also be affected by the number of nodes in 

the Hadoop cluster and the available resources of all the 

nodes to run map and reduce tasks. 

Shuffle tweaks: The MapReduce shuffle also helps to alter 

performance as it maintains a balance between the map and 

reduce functions. If adequate amount of memory is allocated 

to map and reduce functions then the shuffle can also be 

allocated enough memory to operate thereby improving 

performance. Therefore, a trade off needs to be carried out 

when allocating memory to tasks in MapReduce.  

5. PROPOSED WORK 
For analysis performance enhancement for MapReduce job 

we need:-  

1. Dataset 

In order to evaluate performance comparision between 

mapreduce job we need a dataset, a big or huge dataset 

through which we can evaluate performance. 

2. Hadoop 

Hadoop should be configure first because all the mapreduce 

job will work on hadoop framework, because hadoop comes 

with HDFS (hadoop distributed file system) which is used to 

stored such huge or large datasets and Mapreduce which is 

used to process this huge dataset. 

3. MapReduce Job 

MapReduce job will be developed on some IDE through 

which we can develop various mapreduce job jar file which 

is used to run on hadoop environment to compare 

performance. 

6. PROPOSED METHODOLOGY: 

Our Steps or Algorithm Steps will follow: 
Step 1:  first we collect dataset and apply these dataset into 

various mapreduce job.  

Step 2: now we develop mapreduce job without prefetching 

mechanism or with prefetching mechanism on which we can 

apply the same datasets. 

Step 3: Configure hadoop on which we can run the 

mapreduce job jar file. 

Step 4: The dataset should be store in HDFS and mapreduce 

takes input from HDFS and perform mapreduce task and 

stored the mapreduce output in HDFS. 
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Step 5: In this step we are analysing the time taken or 

performance between various mapreduce job and check 

without prefetching mechanism is better or with prefetching 

mechanism. 

 

Analysis Steps 

7. EXPERIMENTAL & RESULT 

ANALYSIS 
All the experiments were performed using an i5-2410M CPU 

@ 2.30 GHz processor and 4 GB of RAM running ubuntu 

14. After thar we can install java which is a prerequest for 

hadoop, and than after we are configuring hadoop on ubuntu 

. After we can developed a mapreduce job for performing 

operation to find a mazimum length word in a overall file, in 

that we can create two mapreduce job , existing.jar which is 

based on pre-fetching mechanism to perform a operation in 

which prefetching is done only on the reducer phase and 

second one is proposed.jar which is based on map-side 

prefetchig mechanism as well reducer side to, so we can 

developed same prefetching mechanism on map side to 

enhance the overall performance. 

After developing we can launch the existing.jar file on 

hadoop environment shown in figure 2. 

 

Figure 2. launching existing mapreduce job on 300 mb 

dataset 

After execution of existing mapreduce job the final output is 

shown in output directory and the other performance fields 

such as shuffle bytes taken and time taken for execution, the 

execution time taken are shown in figure 3. 

 

Figure 3. Time taken by existing mapreduce job 

After existing mapreduce job execution is done than we 

launch a porposed.jar mapreduce job on hadoop shown in 

figure 4. 

 

Figure 4.launching proposed mapreduce job on 300 mb 

dataset 

After completing the execution of proposed.jar mapreduce 

job on 300 mb file the total time taken by proposed job are 

shown in figure 5. 

 

Figure5. Time taken by proposed mapreduce job  

After performing operation on 300 MB file , it is clearly that 

proposed mapreduce job taken less time as compared to 

existing mapreduce job. And after performing operation on 

300 MB file we can perfrom same operation on different size 

file such as 300MB, 500MB, 1GB and total time taken in 

execution  of both existing and proposed mapreduce job are 

shown in table which is mention in figure 6. 
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Figure 6. Execution time taken by existing and proposed 

system on different dataset size 

The tabular result which is shown in figure 6 are represented 

on graph shown in figure 7, on which it is clearly show that 

proposed mapreduce  job are taking less execution time as 

compared to existing mapreduce job. 

 

Figure 7. Graph representation of execution time taken 

8. CONCLUSION 
Hadoop MapReduce is now a popular choice for performing 

large-scale data analytics. we describes a detailed set of 

mathematical performance models for describing the 

execution of a MapReduce job on Hadoop. In this paper, we 

can fetch the data to corresponding compute nodes in 

advance. It is proved that the proposal of this paper reduces 

data transmission overhead effectively with theoretical 

analysis. We also work on applying similar prefetching 

mechanisms to other phases in MapReduce, which is clearly 

shown in table and figure 7 that prefetching mechanism on 

map phase will enhanced the performace of overall hadoop 

mapreduce framework. 
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