
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

36

Enhance Performance of Mapreduce Job on Hadoop

Framework using Setup and Cleanup

Priyam Jain
Department of

Computer Science and
Engineering

Bhopal Institute of
Technology and Science

Bhopal, India

Satyaranjan Patra, PhD
Asst. Professor
Department of

Computer Science and
Engineering

Bhopal Institute of
Technology and Science

Bhopal, India

Pankaj Richhariya
Prof. and Head
Department of

Computer Science and
Engineering

Bhopal Institute of
Technology and Science

Bhopal, India

ABSTRACT
MapReduce is an effective programming model for large-

scale data-intensive computing applications. Hadoop is an

open-source implementation of MapReduce which has been

widely used. The communication overhead from the big data

sets’ transmission affects the performance of Hadoop greatly.

In consideration of data locality, Hadoop schedules tasks to

the nodes near the data locations preferentially to decrease

data transmission overhead, which works well in

homogeneous and dedicated MapReduce environments.

However, due to practical considerations about cost and

resource utilization, it is common to maintain heterogeneous

clusters or share resources by multiple users. Unfortunately,

it’s difficult to take advantage of data locality in these

heterogeneous or shared environments [1]. To improve the

performance of MapReduce in heterogeneous or shared

environments, a data prefetching mechanism is proposed, In

this paper, we can fetch the data to corresponding compute

nodes in advance. It is proved that the proposal of this paper

reduces data transmission overhead effectively with

theoretical analysis. We also work on applying similar

prefetching mechanisms to other phases in MapReduce, and

researching on predicting the execution nodes of tasks in

cluster computing to improve performance and the result are

clearly shows that proposed system will takes a less

execution time as compared to existing mapreduce job.

Keywords
Big data, Hadoop, Mapreduce, performance, prefetching

mechanism, setup & cleanup

1. INTRODUCTION
MapReduce is a relatively young framework - both a

programming model and an associated run- time system - for

large-scale data processing. Hadoop [2] is the most popular

open-source implementation of a MapReduce framework

that follows the design laid out in the original paper. A

combination of features contributes to Hadoop's increasing

popularity, including fault tolerance ,data-local scheduling,

ability to operate in a heterogeneous environment, handling

of straggler tasks, as well as a modular and customizable

architecture.

The MapReduce programming model [3] consists of a

map(k1; v1) function and a reduce(k2; list(v2)) function.

Users can implement their own processing logic by

specifying a customized map() and reduce() function written

in a general-purpose language like Java or Python. The

map(k1; v1) function is invoked for every key-value pair

hk1; v1i in the input data to output zero or more key-value

pairs of the form hk2; v2i (see Figure 1). The reduce(k2;

list(v2)) function is invoked for every unique key k2 and

corresponding values list(v2) in the map output. reduce(k2;

list(v2)) outputs zero or more key-value pairs of the form

hk3; v3i. The MapReduce programming model also allows

other functions such as (i) partition(k2), for controlling how

the map output key-value pairs are partitioned among the

reduce tasks, and (ii) combine(k2; list(v2)), for performing

partial aggregation on the map side. The keys k1, k2, and k3

as well as the values v1, v2, and v3 can be of different and

arbitrary types.

Figure 1: Execution of a MapReduce job.

A Hadoop MapReduce cluster employs a master-slave

architecture where one master node (called JobTracker)

manages a number of slave nodes (called TaskTrackers).

Figure 1 shows how a MapReduce job is executed on the

cluster. Hadoop launches a MapReduce job by first splitting

(logically) the input dataset into data splits. Each data split is

then scheduled to one TaskTracker node and is processed by

a map task. A Task Scheduler is responsible for scheduling

the execution of map tasks while taking data locality into

account. Each TaskTracker has a predefined number of task

execution slots for running map (reduce) tasks. If the job will

execute more map (reduce) tasks than there are slots, then the

map (reduce) tasks will run in multiple waves. When map

tasks complete, the run-time system groups all intermediate

key-value pairs using an external sort-merge algorithm. The

intermediate data is then shuffled (i.e., transferred) to the

TaskTrackers scheduled to run the reduce tasks. Finally, the

reduce tasks will process the intermediate data to produce the

results of the job.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

37

The Map task execution is divided into five phases:

1. Read: Reading the input split from HDFS and creating

the input key-value pairs (records).

2. Map: Executing the user-defined map function to

generate the map-output data.

3. Collect: Partitioning and collecting the intermediate

(map-output) data into a buffer before

4. spilling.

5. Spill: Sorting, using the combine function if any,

performing compression if specified, and finally writing

to local disk to create file spills.

6. Merge: Merging the file spills into a single map output

file. Merging might be performed in multiple rounds.

The Reduce Task is divided into four phases:

1. Shuffle: Transferring the intermediate data from the

mapper nodes to a reducer's node and

2. decompressing if needed. Partial merging may also

occur during this phase.

3. Merge: Merging the sorted fragments from the different

mappers to form the input to the reduce function.

4. Reduce: Executing the user-defined reduce function to

produce the final output data.

5. Write: Compressing, if specified, and writing the final

output to HDFS.

We model all task phases in order to accurately model the

execution of a MapReduce job. We represent the execution

of an arbitrary MapReduce job using a job profile, which is a

concise statistical summary of MapReduce job execution. A

job profile consists of dataflow and cost estimates for a

MapReduce job j : dataflow estimates represent information

regarding the number of bytes and key-value pairs processed

during j's execution, while cost estimates represent resource

usage and execution time.

2. LITERATURE REVIEW
One way to balancing load, Hadoop using HDFS distributed

big size data to multiple nodes based on local disk storage

capacity in clusters [4]. The data location is efficient in

homogeneous environment where all nodes have identical

both computing speed and disk capacity. In this environment

computes same workload on all nodes representing that no

data needs to be moved from one node to another node. All

nodes are independent as well as can not share data between

two nodes in cluster of homogeneous environment. In

heterogeneous Environment or clusters have set of nodes

where each node computing speed capacities and local disk

capacity may be significantly different. If all nodes have

different size workload then a faster computing (high

performance) nodes can complete processing local data faster

than slow computing (low- performance)nodes. Faster node

finished processing data then result residing into its local

disk and handle unprocessed data of remote slow node.

When move or transfer unprocessed data from low

performance (remote) node to high performance node is huge

then overhead of data transmission is occurring. If wants

Progress the MapReduce performance in heterogeneous

environment then reduce the amount of data moved between

low performances nodes to high performance nodes.

Improve The MapReduce performance in Various

Environments:

A. Data Placement in Heterogeneous Hadoop Clusters

B. Heterogeneous Network Environments and Resource

Utilization

C. Smart Speculative Execution Strategy

D. Longest Approximate Time to End.

A. Improve MapReduce Performance through Data

Placement in Heterogeneous Hadoop Clusters [5].

We want improve the performance then minimize data

movement between slow and fast nodes achieved by data

placement scheme that distribute and store data across

multiple heterogeneous nodes based on their computing

speed.

1) Data placement in Heterogeneous- Two algorithms are

implemented and incorporated into Hadoop HDFS. The first

algorithm is to initially distribute file into heterogeneous

nodes in a cluster. When all file fragments of an input files

are distributed to the computing nodes. The second algorithm

is used to reorganize file fragments to solve the data skew

problem. There two cases in which file fragments must be

reorganized. First, new computing nodes are added to an

existing cluster to have the cluster expanded. When, new

data is appended to an existing input file. In both cases, file

fragments distributed by the initial data placement algorithm

can be disrupted.

B. Improving MapReduce Performance in Heterogeneous

Network Environments and Resource Utilization [6]

1) Resource stealing- When number of map and reduce slots

are carefully chosen to gain optimal resource usage.

Resource utilization is inefficient when there are not some

enough tasks to fill all task slots as the reserved resources for

idle slots are just wasted. Then Resource stealing, which

enables running tasks to steal the residual resources and

return them when new tasks are assigned. There is use of

wasted resources to improve overall resource utilization and

reduce job execution. First-come-Most(FCM) , Shortest-

Time-Left-Most(STLM) , Longest –Time-Left-Most(LTLM)

these are resource allocation policies.

 2) Benefit Aware Speculative Execution –This mechanism

predicts the benefit of launching new speculative tasks and

greatly eliminates unnecessary runs of speculative tasks.

Speculative execution in Hadoop was observed to be

inefficient, which is caused by the excessive runs of useless

speculative tasks. Benefit Aware Speculative Execution

manages speculative tasks in a benefit-aware manner and

expected to improve the efficiency.

C. Improving MapReduce Performance using Smart

Speculative Execution Strategy [7]

Multiple speculative execution strategies are improving the

performance in Heterogeneous as well as Homogeneous. But

there are some Pitfalls degrade the performance. When

existing strategies cannot work well, then they develop a new

strategy, MCP (Maximum Cost Performance), which

improves the effectiveness of speculative execution

significantly.

When a machine takes an unusually long time to complete a

task (the so-called straggler machine), it will delay the job

execution time (the time from job initialized to job retired)

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

38

and degrade the cluster throughput (the number of jobs

completed per second in the cluster) significantly. This

problem handled speculative execution. A new speculative

execution strategy named MCP for Maximum Cost

Performance. We consider the cost to be the computing

resources occupied by tasks, while the performance to be the

shortening of job execution time and the increase of the

cluster throughput. MCP aims at selecting straggler tasks

accurately and promptly and backing them up on proper

worker nodes.MCP is quite scalable, which performs very

well in both small clusters and large clusters.

D. Improving MapReduce Performance in Heterogeneous

Environments [8]

1) LATE, for Longest Approximate Time to End. If

nodes in cluster ran at reliable speeds and no cost

to initiation a speculative task on an ideal node

then LATE policy would be best. The LATE

algorithm has various applications. First, it is

dynamic to node heterogeneity, because it will

relaunch only the low performance tasks and only

a small number of fragment parts of large file with

slow performing as tasks. LATE prioritizes

amongst the slow tasks based on how much they

injure job response time. LATE also capture the

number of slow performance tasks to limit

argument for shared resources. In contrast,

Hadoop’s native scheduler has a fixed threshold

[8].

3. RELATED WORK
To alleviate the performance degradation caused by data

transmission, some related work is done. Data Prefetching is

an effective approach to diminishing the data transmission

overhead. To avoid directly modifying the native Hadoop, a

bi-directional processing approach is proposed in HPMR [9]:

computing fetches and processes data from the beginning of

the input split data while the prefetching fetches data from

the end of the input split data. Obviously, the computing has

to fetch data by itself before meeting the data fetched by the

prefetching, which discounts the benefits of data prefetching.

While the proposal in this paper fetches data from the

beginning of input data to reduce the overhead of data

transmission at the maximum.

Some researchers focus on optimizing task scheduling

algorithms or data replication policies to improve data

locality in MapReduce [10]. These proposals only improve

the probability of data locality in MapReduce and may

increase the complexity of achieving load balance. The

LATE scheduling algorithm is proposed for MapReduce in

heterogeneous environments [11]. M. Zaharia et al., have

proposed a delay scheduling algorithm, which addresses the

conflict between locality and fairness in shared MapReduce

cluster [13]. In MTSD [12], computing nodes are classified

by computing capability and a modified task scheduling

algorithm is studied. X. Zhang et al. have studied scheduling

with consideration about data locality in homogeneous

cluster [14]. DARE is a distributed adaptive data replication

algorithm that is sensitive to the heterogeneity of computing

nodes, and the more powerful nodes get more data

replications [15].

4. PROBLEM DEFINITION
When an analysis is being conducted on Big Data it is of

utmost importance that the data being dealt with is accurate

and does not have any abnormalities. There are numerous

factors that affect the performance of Hadoop such as

hardware and software when handling huge amounts of data.

Both the main components of Hadoop, that is, HDFS and

MapReduce play a major role in its performance Hadoop and

the results that are generated.

HDFS: The number of reading and writing operations

performed on the nodes also affects the performance of

Hadoop. The performance of HDFS also depends on whether

the work is being performed on big or small dataset.

MapReduce: Tuning the number of map tasks and reduce

tasks for a particular job in the workload is another way that

performance can be optimized. If the mappers are running

only for a few seconds then fewer mappers can be used for

longer periods. Also performance depends on the number of

reducers used which should be slightly less than the number

of reduce slots in the cluster to improve performance. This

allows the reducers to finish in one wave and fully utilizes

the cluster during the reduce phase. MapReduce job

performance can also be affected by the number of nodes in

the Hadoop cluster and the available resources of all the

nodes to run map and reduce tasks.

Shuffle tweaks: The MapReduce shuffle also helps to alter

performance as it maintains a balance between the map and

reduce functions. If adequate amount of memory is allocated

to map and reduce functions then the shuffle can also be

allocated enough memory to operate thereby improving

performance. Therefore, a trade off needs to be carried out

when allocating memory to tasks in MapReduce.

5. PROPOSED WORK
For analysis performance enhancement for MapReduce job

we need:-

1. Dataset

In order to evaluate performance comparision between

mapreduce job we need a dataset, a big or huge dataset

through which we can evaluate performance.

2. Hadoop

Hadoop should be configure first because all the mapreduce

job will work on hadoop framework, because hadoop comes

with HDFS (hadoop distributed file system) which is used to

stored such huge or large datasets and Mapreduce which is

used to process this huge dataset.

3. MapReduce Job

MapReduce job will be developed on some IDE through

which we can develop various mapreduce job jar file which

is used to run on hadoop environment to compare

performance.

6. PROPOSED METHODOLOGY:

Our Steps or Algorithm Steps will follow:
Step 1: first we collect dataset and apply these dataset into

various mapreduce job.

Step 2: now we develop mapreduce job without prefetching

mechanism or with prefetching mechanism on which we can

apply the same datasets.

Step 3: Configure hadoop on which we can run the

mapreduce job jar file.

Step 4: The dataset should be store in HDFS and mapreduce

takes input from HDFS and perform mapreduce task and

stored the mapreduce output in HDFS.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

39

Step 5: In this step we are analysing the time taken or

performance between various mapreduce job and check

without prefetching mechanism is better or with prefetching

mechanism.

Analysis Steps

7. EXPERIMENTAL & RESULT

ANALYSIS
All the experiments were performed using an i5-2410M CPU

@ 2.30 GHz processor and 4 GB of RAM running ubuntu

14. After thar we can install java which is a prerequest for

hadoop, and than after we are configuring hadoop on ubuntu

. After we can developed a mapreduce job for performing

operation to find a mazimum length word in a overall file, in

that we can create two mapreduce job , existing.jar which is

based on pre-fetching mechanism to perform a operation in

which prefetching is done only on the reducer phase and

second one is proposed.jar which is based on map-side

prefetchig mechanism as well reducer side to, so we can

developed same prefetching mechanism on map side to

enhance the overall performance.

After developing we can launch the existing.jar file on

hadoop environment shown in figure 2.

Figure 2. launching existing mapreduce job on 300 mb

dataset

After execution of existing mapreduce job the final output is

shown in output directory and the other performance fields

such as shuffle bytes taken and time taken for execution, the

execution time taken are shown in figure 3.

Figure 3. Time taken by existing mapreduce job

After existing mapreduce job execution is done than we

launch a porposed.jar mapreduce job on hadoop shown in

figure 4.

Figure 4.launching proposed mapreduce job on 300 mb

dataset

After completing the execution of proposed.jar mapreduce

job on 300 mb file the total time taken by proposed job are

shown in figure 5.

Figure5. Time taken by proposed mapreduce job

After performing operation on 300 MB file , it is clearly that

proposed mapreduce job taken less time as compared to

existing mapreduce job. And after performing operation on

300 MB file we can perfrom same operation on different size

file such as 300MB, 500MB, 1GB and total time taken in

execution of both existing and proposed mapreduce job are

shown in table which is mention in figure 6.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 8, December 2016

40

Figure 6. Execution time taken by existing and proposed

system on different dataset size

The tabular result which is shown in figure 6 are represented

on graph shown in figure 7, on which it is clearly show that

proposed mapreduce job are taking less execution time as

compared to existing mapreduce job.

Figure 7. Graph representation of execution time taken

8. CONCLUSION
Hadoop MapReduce is now a popular choice for performing

large-scale data analytics. we describes a detailed set of

mathematical performance models for describing the

execution of a MapReduce job on Hadoop. In this paper, we

can fetch the data to corresponding compute nodes in

advance. It is proved that the proposal of this paper reduces

data transmission overhead effectively with theoretical

analysis. We also work on applying similar prefetching

mechanisms to other phases in MapReduce, which is clearly

shown in table and figure 7 that prefetching mechanism on

map phase will enhanced the performace of overall hadoop

mapreduce framework.

9. REFERENCES
[1] Swathi Prabhu, Anisha P Rodrigues, Guru Prasad M S &

Nagesh H R, “Performance Enhancement of Hadoop

MapReduce Framework for Analyzing BigData”, IEEE

2015, 978-1-4799-608S-9/1S

[2]Hadoop Wiki Website, Apache,

http://wiki.apache.org/hadoop

[3] Improving MapReduce Performance Using Data

Prefetching mechanism in heterogeneous or Shared

Environments Tao gu,Chuang Zuo,Qun Liao , Yulu

Yang and Tao Li, International Journal of grid and

distributed computing (2013).

[4] “Improve the MapReduce Performance through

complexity and performance based on data placement in

Heterogeneous Hadoop Cluster ” Rajashekhar M.

Arasanal, Daanish U. Rumani Department of Computer

Science University of Illinois at Urbana-Champaign.

[5] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A.

Manzanares and X. Qin, “Improving MapReduce

Performance through Data Placement in Heterogeneous

Hadoop Clusters”, IEEE International Symposium on

Parallel & Distributed Processing, Workshops and PhD

Forum (IPDPSW), (2010) April 19-23: Arlanta, USA.

[6] Improving MapReduce Performance in Heterogeneous

Network Environments and Resource Utilization,

Zhenhua Guo, Geoffrey Fox IEEE (2012)

[7] Improving MapReduce Performance Using Smart

Speculative Execution Strategy Qi Chen, Cheng Liu,

and Zhen Xiao, Senior Member, IEEE 0018-

9340/13/$26.00 © 2013 IEEE

[8] S. Khalil, S. A. Salem, S. Nassar and E. M. Saad,

“Mapreduce Performance in Heterogeneous

Environments: A Review”, International Journal of

Scientific & Engineering Research, vol. 4, no. 4, (2013).

[9] S. Seo, I. Jang, K. Woo, I. Kim, J. S. Kim and S. Maeng,

“HPMR: Prefetching and Pre-shuffling in Shared

MapReduce Computation Environment”, IEEE

International Conference on Cluster Computing and

Workshops, (2009) August 31-September 4: New

Orleans, USA.

[10] S. Khalil, S. A. Salem, S. Nassar and E. M. Saad,

“Mapreduce Performance in Heterogeneous

Environments: A Review”, International Journal of

Scientific & Engineering Research, vol. 4, no. 4, (2013).

[11] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A.

Manzanares and X. Qin, “Improving MapReduce

Performance through Data Placement in Heterogeneous

Hadoop Clusters”, IEEE International Symposium on

Parallel & Distributed Processing, Workshops and Phd

Forum (IPDPSW), (2010) April 19-23: Arlanta, USA.

[12] Z. Tang, J. Q. Zhou, K. L. Li and R. X. Li, “MTSD: A

task scheduling algorithm for MapReduce base on

deadline constraints”, IEEE International Symposium

on Parallel and Distributed Processing Workshops and

PhD Forum (IPDPSW), (2012) May 21-25: Shanghai,

China.

[13] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,

S. Shenker and I. Stoica, “Delay Scheduling: A Simple

Technique for Achieving Locality and Fairness in

Cluster Scheduling”, Proceedings of the 5th European

conference on Computer systems, (2010) April 13-16:

Paris, France.

[14] X. Zhang, Z. Zhong, S. Feng and B. Tu, “Improving

Data Locality of MapReduce by Scheduling in

Homogeneous Computing Environments”, IEEE 9th

International Symposium on Parallel and Distributed

Processing with Applications (ISPA), (2011) May 26-

28: Busan, Korea.

[15] C. Abad, Y. Lu and R. Campbell, “DARE: Adaptive

Data Replication for Efficient Cluster Scheduling”,

IEEE International Conference on Cluster Computing

(CLUSTER), (2011) September 26-30: Austin, USA.

IJCATM : www.ijcaonline.org

