
International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

24

A Proposed Algorithm for Generating the Reed-Solomon

Encoding Polynomial Coefficients over GF(256) for

RS[255,223]8,32

Frimpong Twum
Department Of Computer
Science Kwame Nkrumah

University of Science and Technology,
Kumasi, Ghana

J. B. Hayfron-Acquah
Department Of

Computer Science
Kwame Nkrumah University of

Science and Technology,
Kumasi, Ghana

W. W. Oblitey
Department Of

ComputeScience Indiana
University of Pennsylvania,USA.

R. K. Boadi
Department Of Mathematics

Kwame Nkrumah
University of

Science and Technology,
Kumasi, Ghana.

ABSTRACT
The ability to detect and correct data loss is of crucial

importance to securing and recovering data stored on any

storage facility (most importantly, the cloud). Reed-Solomon

(RS) codeword is the most used for achieving this purpose.

RS codeword is widely used for detecting and recovering data

transmission errors as well as data loss in storage. This paper

illustrates how the coefficients of the encoding polynomial

needed for the generation of the RS codeword are generated.

An efficient algorithm for generating the encoding polynomial

coefficient is proposed. The algorithm is implemented in

JAVA for Galois Field [GF(256)] with 32 parity shards –

RS[255,223]8,32 to obtain an array of 32 coefficients as

follows: {232, 29,189, 50, 142, 246, 232, 15, 43, 82, 164,

238, 1, 158, 13, 119, 158, 224, 134, 227, 210, 163, 50, 107,

40, 27, 104, 253, 24, 239, 216,45}

Keywords
Reed Solomon Codes, Galois Field, Encoding Polynomial,

Error detection and Correction

1. INTRODUCTION
The application of finite field (Galois Field) over the last few

decades has been enormous especially in the areas of data

communication and storage [1], [2]. Other usages have been

as follows: encryption, and data compression. Reed Solomon

(RS) codes which operates over Galois Fields has been used

extensively for the detection and correction of errors that

occurs during data transmission and data storage [3]. A study

by Ref. [4] outline other application areas for RS codes as

Voyager spacecraft, detecting and correcting data losses in

wireless transmission, dealing with scratches on CD‟s,

correcting scanning errors in QR codes among others. This

paper presents a concise approach for generating the encoding

polynomial used for the generation of the RS codeword that is

used for the detection and correction of data transmission

errors and data storage losses. The study also proposes an

efficient algorithm for generating the encoding polynomial for

the generation of the RS codeword based on GF(256) for

RS[255,223]8,32.

2. RELATED WORKS
WHAT IS A FIELD?

A set of numbers is a field if it satisfies the following

properties.

Field Properties

The real number system is primarily a set, for e.g. {a, b, c,

…}, on which the operations of addition and multiplication

are defined in such a way that for all pair of real numbers

there exist a unique sum and product that are also real

numbers and thus exhibit properties as follows [5], [6].

1. Cummulative Laws

 a + b = b + a -------------------- addition.

E.g. 1 + 2 = 2 + 1.

 ab = ba --------------------- multiplication.

E.g. 1 * 2 = 2 * 1.

2. Associative Laws

 (a + b) + c = a + (b + c) ---------------- addition.

E.g. (1 + 2) + 3 = 1 + (2 + 3).

 (ab) c = a (bc)----------------multiplication. E.g.

(1 * 2) * 3 = 1 * (2 * 3).

3. Distributive Laws

 a (b + c) = ab + ac

E.g. 1 (2 + 3) = (1*2) + (1*3)

There are distinct real numbers 0 and 1 such that

 and

NB: For addition, the identity is „0‟. Whereas multiplication

identity is 1.

1. For each „a‟ there is a real number „ -a „ such that

a + (-a) = 0 and if a ≠ 0 there is a real number

 a * 1 = a a + 0 = a

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

25

1

𝑎
 (or 𝑎−1) such that

a (
1

𝑎
) = 1

2. a + b ∈ R, and a*b ∈ R (closure laws),

Example

For a given set to be a field it should satisfy all the

field properties.

An a example of a field is the set of rational

numbers.

i.e.

 a + b ∈ Q and a*b ∈ Q .

 e.g. if a = 2

 a + (-a) = 0 and

 a (
1

𝑎
) = 1

What is A Finite Field?

A finite field (aka. Galois Field – GF) is a field with finitely

defined elements where upon performing the arithmetic

operations of addition, subtraction, division, or multiplication

of f(p) mod p on any two of the field elements, the result is

always an element in the set.

Fp = {0, 1, 2, …, p-1}

•, +: integer addition and multiplication in modulo p

This property of a finite field enables its usage for error

detection and data recovery in data communication and data

storage [5], [6].

A finite field is constructed using a prime number base or

powers of a prime number. This is to ensure a unique value

is obtained when addition and multiplication operations are

performed on any two of the field elements. For example,

finite field elements for GF(2) is constructed as {0, 1}, GF(3)

as {0, 1, 2}, and GF(7) as {0, 1, 2, 3, 4, 5, 6} [7].

In the case of the powers of prime, a finite field for GF(2n),

where 2 is the prime base and „n‟ is the exponent determines

the number of elements in the field.

As an example GF(23) which is the same as GF(8) has field

elements as {0, 1, 2, 3, 4, 5, 6, 7}, and GF(16) represented in

prime powers of 2 as GF(24) has elements as {0, 1, 2, 3, 4, 5,

6, 7, 8, 9,0, 11, 12, 13, 14, 15}. It follows therefore that

GF(N) = GF(2n) has field elements as {0, 1, 2, …, n-1). Hence

GF(28) = GF(256) has 256 field elements as {0, 1, 2, 3, …,

255}. This is an example of a modulus 256 field and hence

255 is the maximum value [2], [7], [8].

For computer computational operations, a base 2 prime base is

used for representing the field elements as prime powers [4].

The elements of a finite field are usually represented as

polynomials that take their coefficients from a particular field

Fp. For example, for a polynomial, Fp(x) = a0 + a1x + a2x
2 + …

+ anx
n where ai ϵ F. A deg.1 polynomial of F2(x) = a0 + a1x,

has field elements represented using alpha powers as {α, 1+

α} which are already in their irreducible form. Elements of

deg.2 polynomials in Fp(x) = a0 + a1x + a2x
2 are obtained as

{α2, α2+ α, α2+1, α2+ α+1} [2], [9].

Similarly for deg.3 polynomials in Fp(x) = a0 + a1x + a2x
2 +

a3x
3 the elements are as follows {α3, α3+ α2, α3 +α2+ α, α3+

1, α3 +α2+ 1 , α3+ α+1, α3+ α, α3+ α2 +α+1}.

Galois Field Elements Construction

Galois field represented as binary form is very convenient for

detecting and correcting errors (in transmission or storage)

and as well as for ciphering computer data. This is because it

is a finite field and adheres to properties of a field. The

elements of Galois field, GF(Pm) is defined as

Fp
m = {a0 + a1x + a2x

2 + … + am-1x
m-1} where ai ϵ Fp.

+ : addition in Fp(x) mod p

• : multiplication in Fp(x) mod π(x)

Where π(x):= deg.m irreducible polynomial in Fp(x).

Irreducible polynomials (polynomial that cannot be

factord)for example x2+1 has no roots and are used to

construct the elements of GF(2n). Reducible polynomials for

example, x2-1, has roots as -1 and +1 and hence are not used

when generating the elements of GF(2n). As an example,

given Fp = F4 = F2
2, the elements of polynomials of deg ≤ m-1

with coefficients from Fp are given as Fp
m = F2

2 = {0, 1, α, 1+

α}, p=2, and m=2 [8], [9]. For F2
3 the field elements in powers

of alpha are obtained as follows:

deg. 0 deg.1 deg. 2

a0 a0 + a1α a0 + a1α + a2α
 2

Fp
m = F2

3 = {0, 1, α, α+1, α2, α2 + α, α2+1, α2+α+1}, where

p=2, and m=3.

Galois Field (Gf) Arithmetics

Arithmetic in GF or finite field is different from standard

arithmetic. Unlike standard arithmetic, which has an infinite

number of elements, there is limited number of elements in a

finite field.

Thus, arithmetic in finite field is basically carried out on a set

of elements in which when the arithmetic operations of

addition multiplication subtraction, or division is performed

on the set the results is always found in the same set [9], [10].

Recall, a finite field of elements Pn is basically represented in

Galois field as GF(Pn), where P is a prime base and n is the

exponent of P, modulus P. For example, GF(8) = GF(23)

modulus 8 and the elements in the field are {0, 1, 2, 3, 4, 5, 6,

7}.

Addition and Subtraction In Gf(8)

The steps to performing addition and subtraction in GF(23) are

as follows:

 the polynomials of deg ≤ m-1 with coefficients from

F2
3, where m=3 and p=2 is defined to obtain the

field elements for F2
3as in section 2.3 above as:

Elements of F2
3 = {0, 1, α, α+1, α2, α2+ α, α2+1, α2+

α+1}

 the addition table is constructed using the resulting

elements of F2
3 in modulus 2 as follows:

The GF addition table of Table 1 also has the entries for the

GF subtraction operation as subtraction is performed as

addition in computer systems using the additive inverse of the

subtrahend. An element‟s additive inverse is the element that

results with zero when added to the minuend. Rule: a + (-a) =

0

Multiplication & Division In Gf(8)

 The multiplication table for GF(8) mod 2 is

constructed using the elements of F2
3 and a deg.3

irreducible primitive polynomial in F2
3 obtained as

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

26

α3+α+1 or α3+ α2+1. This resulted with the field

elements for F2
3 as shown in powers of alpha and is

used for the construction of the multiplication table,

Table 2.

F2
3 = {0, 1, α, α2, α3, α4, α5, α6}, mod 2

Using the irreducible polynomial α3+α+1 α3 = α + 1α4= α (α3)

= α (α + 1) = α2 + α

α5 = α(α4)= α(α2 + α)= α3 + α2, Now Substituting for α3 = α + 1

gives

α5 = α2 + α + 1

α6=α(α5)= α(α2 + α + 1)= α3 + α2 +α, Now Substituting for α3

gives (α + 1 +α2 +α) mod 2 ∴ α6 = α2 + 1

α7= α (α6) = α(α2 + 1)= α3+ α Substituting for α3 gives (α

+1+α) mod 2 = 1

α8 = α (α7)= α(1)= α, α9 = α2, α10 = α3, α11 = α4, α12 =

α5, α13 = α6

As can be seen, the element values for alpha repeats from α7

indicating GF(8) is a field.

Table 2 also present entry values for division in GF(8) which

is performed using multiplicative inverse of the elements in

the set. Rule: a * (a
-1

) = 1

As an example dividing α5 by α3 or (7/3) imply multiplying α5

by the multiplication inverse of α3 as follows: From Table 2,

the multiplication inverse of α3 is the corresponding element

in the matrix that when multiplied by α3 gives 1 as the result

(i.e. Rule: a * (a
-1

) = 1).

Hence the inverse of α3 is α4 = 6. Therefore α5/ α3 is obtained

(α5*α4=α2). Thus: 7/3 implies 7 * 6 = 4

[where 6 is the inverse of 3].

It can be seen from the Table 1 and Table 2 there are no

identical entry in any of the rows or columns and there are

also no repeating or negative entries in any row or column.

These characteristics of the field element set makes the use of

Galois field ideal for data recovery and/or error detection in

data communication and/or data storage. Any of the elements

in the set can be regenerated from the rest of the elements in

the event of loss or damage. This is useful particularly in

distributed data storage as cloud computing as in the event of

a system breakdown or disk drives failures, the system can

recover missing data and prevent any data loss. This system of

data recovery is much efficient and cost effective than those of

RAID technology [10].

The RS Codeword

The ability to detect and correct data loss is of crucial

importance to security and recovering data stored on any

storage facility (most importantly, the cloud). Reed-Solomon

(RS) codeword is the most used for achieving this purpose.

The following section illustrates how the RS codewords are

generated and used for the detection and correction of errors

in data transmission and storage.

According to Ref. [3], [9] the RS codeword is generated using

three (3) polynomials namely:

The “Irreducible Polynomial” (i.e. the polynomial equivalent

of a prime number) is used as the generating polynomial for

the Galois field elements generation. For the GF (8) elements

generation, the irreducible polynomial (α3
+α+1) is used.

The “Generator Polynomial” – This polynomial is required

for generating the encoding polynomial (which is the 3rd

polynomial needed for the generation of the RS codeword).

The generator polynomial is a generic polynomial of the form;

G(x) = (x-α
1
)(x-α

2
)(x-α

3
)…(x-α

2t
) , where α1, α2, α3 , etc. are

the field elements and the value 2t determines the number of

the Forward Error Correction (FEC) require.

For example, assuming an RS codeword of RS [7,5] S=3, t=2

where „S‟ is the number of bits making a symbol size (in this

case 3-Bit symbols), „t‟ is the number of the 3-Bits

symbols used for error correction (in this case 2 (3-Bits)

symbols), and 5 is the number of 3-Bits symbols used for

representing the actual data chunks, whiles 7 is the total

number of RS codewords for a GF (8). The generic expression

(a.k.a. Maximum Distance Separable-MDS) for RS codeword

is given as RS [n, k] s, t, where n is the number of codewords

given as 2s – 1 and k is the number of data chunks.

Encoding Polynomials – for the RS[7,5]3,2 specification

codeword example, 2 symbols are needed for FEC and hence

only 2 of the Generator Polynomials are required as follows:

G(x) = (x-α
1
) (x-α

2
).

Since addition and subtraction operations give the same result

in GF, G(x) = (x+α
1
) (x+α

2
). From the Table 1, α1

 = 2, and

α
2

= 4 therefore G(x) = (x+2)(x+4). Hence, G(x) = x
2
 + 4x +

2x + 8 = x
2
 + 6x + 8 8 in binary is 1000 which is bigger

than the largest field elements of 7 therefore the Generating

polynomial of 1011 is XOR.

 1000

XOR 1011

 0011 = 3.

Therefore, G(x) = x
2
 + 6x + 3 is the encoding polynomial

which is expressed also as 163 and is used for the RS

codeword generation.

3. METHODOLOGY
GENERATION OF COEFFICIENT VALUES OF THE

ENCODING POLYNOMIAL

This study is aimed at proposing an efficient algorithm for the

generation of the encoding polynomial coefficients for

GF(256) that are needed for the generation of the RS

codeword of RS[255,223]8,32. To achieve this aim require 3

polynomials as follows:

 The irreducible polynomial (also referred to as the

generating polynomial)

 The generator polynomial

 The encoding polynomial

As noted in the case of GF(8) earlier in the literature review,

for GF(256) or GF(28) (the focus of this study), the number of

RS codewords generated is obtained as n = 28-1 = 255. Hence

for the 32 (8-bits Symbols) parity shards or (32 Forward Error

Correction (FEC) codes) require by this study imply splitting

files into 223 (8-bits symbols) data shards. To achieve this,

the following are undertaken.

Step-1: A degree 8 irreducible polynomial (a polynomial

equivalent of a prime number) in F2
8 obtained as P(x) = α8+

α4+ α3+ α2+1 = 285 [2], [11], is used to generate the GF(256)

field elements of (0-255).

Step-2: The generator polynomial which is needed for the

generation of the encoding polynomial is defined for the

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

27

creation of 32 (8-bits Symbols) parity shards or (32 Forward

Error Correction (FEC) codes) as follows: G(x) = (x-α
1
) (x-

α
2
) (x-α

3
) (x-α

4
) (x-α

5
) (x-α

6
) (x-α

7
) (x-α

8
) (x-α

9
) (x-α

10
) (x-

α
11

) (x-α
12

) (x-α
13

) (x-α
14

)(x-α
15

) (x-α
16

) (x-α
17

) (x-α
18

) (x-α
19

)

(x-α
20

) (x-α
21

) (x-α
22

) (x-α
23

) (x-α
24

) (x-α
25

) (x-α
26

) (x-

α
27

)(x-α
28

) (x-α
29

) (x-α
30

) (x-α
31

) (x-α
32

) --------------------

----[expression 1]

Now substituting values of „α’ in Step-1 with their decimal

equivalent from the GF(256) elements

G(x) = (x+2) (x+4) (x+8) (x+16) (x+32) (x+64) (x+128)

(x+29) (x+58) (x+116) (x+232) (x+205) (x+135) (x+19)

(x+38) (x+76) (x+152) (x+45) (x+90) (x+180) (x+117)

(x+234)(x+201) (x+143) (x+3) (x+6) (x+12) (x+24) (x+48)

(x+96) (x+192) (x+157) -----------[expression 2]

Since the addition and subtraction arithmetic operation in GF

gives the same results, the subtraction operator in [expression

1] is replaced with addition in [expression 2].

Step-3: The generator polynomial of [expression 2] is then

expressed in the form

G(x) = a32x
32+ a31x

31+ a30x
30+ a29x

29+ a28x
28+ a27x

27+ a26x
26+

a25x
25+ a24x

24+ a23x
23+ a22x

22+ a21x
21+ a20x

20+ a19x
19+ a18x

18+

a17x
17+ a16x

16+ a15x
15 +a14x

14+ a13x
13+ a12x

12+ a11x
11+ a10x

10+

a9x
9+ a8x

8+ a7x
7+ a6x

6+ a5x
5+ a4x

4+ a3x
3+ a2x

2+ a1x
1

-------------[expression 3]

Where the coefficient values

(a32,a31,a30,a29,a28,a27,a26,a25,a24,a23,a22,a21,a20,a19,a18,a17,a16,a15,

a14,a13,a12,a11,a10,a9,a8,a7,a6,a5,a4,a3,a2,a1x
1) are used for the

generation of the encoding polynomial which is used for the

generation of the RS codeword for error detection and

recovery in the vent of data loss, damage, or alteration in

transmission or in storage. The algorithm proposed by this

study for the generation of the coefficient values is as

explained below.

ALGORITHM FOR THE GENERATION OF THE

COEFFICIENTS OF THE ENCODING POLYNOMIAL

The Generator polynomial is of the form

𝑔 𝑥 = 𝑥 + 𝛼1 𝑥 + 𝛼2 𝑥 + 𝛼3 … (𝑥 + 𝛼𝑛)

where 𝑛 is the number of parity shards

The coefficients of 𝑥 in the expansion of 𝑔(𝑥) is found using

the algorithm below

𝑓𝑜𝑟 𝑝𝑜𝑤 = 0 𝑡𝑜 𝑛

→ 𝑠𝑢𝑚 𝑎𝑙𝑙 𝑡𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡𝑒 𝑠𝑒𝑡 𝛼1,𝛼2,𝛼3 … 𝛼𝑛

𝑡𝑎𝑡 𝑎𝑣𝑒 𝑝𝑜𝑤 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

For example, to find the coefficients for 𝑛 = 4, assuming the

Galois Field elements are

 𝛼1 = 𝑎

 𝛼2 = 𝑏

 𝛼3 = 𝑐

 𝛼4 = 𝑑

Then the looping process perform the following action

 𝑝𝑜𝑤 = 0: {}

 𝑝𝑜𝑤 = 1: 𝑎 + 𝑏 + 𝑐 + 𝑑

 𝑝𝑜𝑤 = 2: 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑

 𝑝𝑜𝑤 = 3: 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑

Thus

1. 𝐿𝑜𝑜𝑝 𝑛 + 1 𝑡𝑖𝑚𝑒𝑠 𝑖 → 0 𝑡𝑜 𝑛
a. 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑙𝑙 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑡𝑒 𝑎𝑙𝑝𝑎 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠

 𝑠𝑒𝑡, 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛 − 𝑖
b. 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑡𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑒𝑎𝑐 𝑜𝑓 𝑡𝑒

𝑠𝑢𝑏𝑠𝑒𝑡𝑠

c. 𝐴𝑑𝑑 𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑜𝑓 𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

d. 𝑆𝑎𝑣𝑒 𝑡𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

 𝑎𝑟𝑟𝑎𝑦

Figure 1: Flow diagram for the algorithm

4. IMPLEMENTATION
GENERATING THE GF(256) FIELD ELEMENTS

The process of representing a finite field in a computer,

especially for arithmetic purposes has been refined.

Representing the elements of GF(8) like this {0, 1, 2, 3, 4, 5,

6, 7} for example is more difficult to implement than like this

{0, 1, 2, 4, 3, 6, 7, 5}. Doing arithmetic in GF by hand is not

much of a problem. However by using a computer the

elements of the field are best represented as exponents of 2.

An irreducible polynomial is used as a modulus to ensure the

exponents of 2 do not repeat.

Start

set limit to (pow(2, n) - 1)

input number of parity as n

for i = 1 to limit

count the bits that are on in i
as count

multiply the powers of alpha
that correspond to the bits

that are on in i
as product

add product to the coefficient
value at position count

Stop

end for

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

28

This example demonstrates the use of the irreducible

polynomial 29(i.e. 285-256) to keep the powers of 2 within

the range 0 - 255

** a^0 = 2^0 = 1

** a^1 = 1 * 2 = 2

** a^2 = 2 * 2 = 4

** a^3 = 4 * 2 = 8

** a^4 = 8 * 2 = 16

** a^5 = 16 * 2 = 32

** a^6 = 32 * 2 = 64

** a^7 = 64 * 2 = 128

** a^8 = 128 * 2 = 256

Since 256 is outside the range 0 - 255, subtract 256 from it to

put it back within range, then XOR with the irreducible

polynomial (29) to get a unique start value.

Hence a^8 = (256 - 256) ⊕ 29 = 29

** a^9 = 29 * 2 = 58

** a^10 = 58 * 2 = 116

** a^11 = 116 * 2 = 232

** a^12 = 232 * 2 = 464

Once again, 464 is outside the range so subtract 256 to put it

back within range, then add 29 to get a unique number. Hence

the calculation continues as

 ∴ a^12 = (464 - 256) ⊕ 29 = 205

 464

-256

 208 = 11010000

⊕29= 11101

 11001101 = 205

** a^13 = 205 * 2 = 410 === (410 - 256) ⊕ 29 = 135

** a^14 = 135 * 2 = 270 === (270 - 256) ⊕ 29 = 19

** a^15 = 19 * 2 = 38

** a^16 = 38 * 2 = 76

As can be seen, by repeatedly subtracting 256 from any

product value that falls outside of the range of 0-255 and XOR

with the irreducible polynomial of 29 the process keeps

generating unique numbers within the 0 -255 range resulting

with the GF(256) table (See Table 3).

IMPLEMENTING ARITHMETIC OPERATION IN GF

ADDITION AND SUBTRACTION IN GF

Additions and subtractions in a Galois Field both come down

to the bitwise XOR operation because in GF(2)

 a. 1 + 1 = 0 --> 0 - 1 = 1

 b. 1 + 0 = 1 --> 1 - 1 = 0 AND 1 - 0 = 1

 c. 0 + 0 = 0 --> 0 - 0 = 0

Per the definition of the XOR operation, the result is 0 when

the operands are alike and 1 when the operands are different.

That definition is satisfied by both addition and subtraction in

GF(2).

Thus the implementation of the addition and subtraction

functions in Java code is simply to XOR the arguments.

MULTIPLICATION AND DIVISION IN GF

Multiplication contains an element of addition in it (in fact,

multiplication is simply repeated addition) but since addition

is implemented as an XOR operation in GF(2), repeated

addition will always result in an answer of 0.

An alternative is to use this addition feature of logarithms

 A * B = log-inverse(log(A) + log(B));

Division in the Galois Field is also implemented in Java using

logarithms

 A / B = log-inverse(log(A) - log(B));

LOGARITHMS and EXPONENTS

The precondition for using the addition and subtraction

features of logarithms in the multiplication and division in

Galois Fields is that the log values for all the elements of the

field must first be known. Fortunately the method used earlier

to generate the elements of the Galois Field uses exponents of

2.

Thus the log of any element in the field is the exponent of 2

(or exponent α as in Table 1) indexed to the position

corresponding to its generated exponent value. For example,

2^3 generated 8, so log(8) = 3, and 2^7 generated 128, and

hence log(128) = 7, in GF(256).

IMPLEMENTING THE ALGORITHM FOR THE

GENERATION OF COEFFICIENTS OF THE ENCODING

POLYNOMIAL GENERATION ALGORITHM

Both the encoding and decoding processes of the Reed-

Solomon algorithm rely on a generator polynomial of the form

𝑔 𝑥 = (𝑥 − 𝛼𝑖)

𝑛

𝑖=1

where 𝑛 is the number of parity shards.

It should be noted that with Galois Field arithmetic, addition

and subtraction both result in the same 𝑋𝑂𝑅 operation. As

such, the algorithmic representation of the above formula used

the Galois Addition method.

It was determined that the coefficients resulting from the

expansion of the encoding polynomial formula

𝑔 𝑥 = 𝑐𝑖𝑥
𝑛−𝑖

𝑛

𝑖=0

followed this pattern

𝑐𝑖 = 𝑘

2𝑡
𝑗

𝑗=1

where 𝑘 is a member of one subset of the Galois Field‟s

elements that has 𝑖 members

The algorithm focused on determining the coefficients only.

This involved finding all the possible combinations of the first

2t Galois Field Elements and performing the appropriate

multiplication and addition operations on them. The process

used is described in greater detail below:

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

29

1. Obtain the first 2𝑡 values in the Galois field and

save them in an array

2. Determine the highest integer (upper limit) that has

2𝑡 bits using the formula below

𝑙𝑖𝑚𝑖𝑡 = 22𝑡 − 1

3. Create 2𝑡 masks for determining which bits are on

in any given integer that is within the range

[0, 𝑙𝑖𝑚𝑖𝑡].The masks are simply integer values

whose bit representations have only one bit on and

all other bits off. In other words, the masks are the

powers of 2 from 20 to 22𝑡 . When a bitwise 𝐴𝑁𝐷

operation is performed with a number and any of the

masks, a result of 0 means that the particular bit

which the mask has on, is off in the number.

However, a result greater than 0 indicates that that

particular bit is on. Using this approach, it is

possible both to determine which particular bits are

on in the number and also count them.

4. Create 2𝑡 accumulators, initialized to 0. These

accumulators will hold the values of the coefficients

when the program runs to a completion.

5. The combinations of the first 2t Galois Field

elements are generated as integer values from 1 to

𝑙𝑖𝑚𝑖𝑡. Thus, a loop is used which runs from 1 to

𝑙𝑖𝑚𝑖𝑡. For each integer in the range

a. The masks are applied to the integer to

determine which bits are on.

b. The Galois Field elements whose

positions corresponds to the bits that are

on in the integer, are multiplied to get the

product of all the elements in that

particular combination.

c. Concurrently, the number of bits that are

on are counted. The product from

multiplying the bits that are on, is added

to the accumulator at the position of the

count. This ensures that all the products

derived from multiplying combinations of

a particular length are accumulated in a

single accumulator.

PSEUDOCODE FOR THE COEFFICIENT GENERATION

ALGORITHM

1. 𝐼𝑖𝑚𝑖𝑡 = 2𝑛 − 1

2. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑙𝑖𝑚𝑖𝑡
a. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 1

b. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛

i. 𝑥 = 𝑖 𝑋𝑂𝑅 𝑚𝑎𝑠𝑘 𝑗
ii. 𝑖𝑓 𝑥 > 1

1. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∗ exp[𝑗]

2. 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1

c. 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡 =
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

 The array 𝑚𝑎𝑠𝑘[] contains the powers of two from

1 to 2𝑛

 The array exp[] contains the Galois field elements

 The array 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡[] holds the values of the

coefficients at the end of the program execution

5. RESULTS
This algorithm was applied to 𝐺𝐹(256, 285) with 𝑛 = 32.

The resulting values of 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡[] obtained from a Java

code implementation are as follows:

6. CONCLUSION
This research provides overview of the Galois field theory and

Reed Solomon Coding. It proposes and implements an

algorithm for the generation of the encoding polynomial

coefficients that are used for the Reed Solomon codeword

generation. The outcome of this study enables the generation

of the Reed Solomon codeword that is used for detection and

correction of data loss in transmission or storage.

7. REFERENCES
[1] Plank, J. S. (2013). Erasure Codes for Storage Systems.

Available at:

https://www.usenix.org/system/files/login/articles/10_pla

nk-online.pdf

[2] REDTITAN, (2011). Error detection and correction.

Available at: http://www.pclviewer.com/rs2/galois.html

[3] cs.cmu.edu (1998). Reed-Solomon Codes. An

introduction to Reed-Solomon codes: principles,

architecture and implementation. Available at:

https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/r

eed_solomon_codes.html

[4] Cox, R. (2012). Finite Field Arithmetic and Reed-

Solomon Coding. Available at:

http://research.swtch.com/field

[5] Trench W. F., (2003). Introduction to Real Analysis.

Library of Congress Cataloging-in-Publication Data.

Available at:

http://ramanujan.math.trinity.edu/wtrench/texts/TRENC

H_REAL_ANALYSIS.PDF

[6] Wang, J. (2009). Computer Network Security Theory and

Practice. Springer

[7] Benvenuto, C. J. (2012). Galois Field in Cryptography.

Available at:

https://www.math.washington.edu/~morrow/336_12/pap

ers/juan.pdf

https://www.usenix.org/system/files/login/articles/10_plank-online.pdf
https://www.usenix.org/system/files/login/articles/10_plank-online.pdf
http://www.pclviewer.com/rs2/galois.html
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
http://research.swtch.com/field
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
https://www.math.washington.edu/~morrow/336_12/papers/juan.pdf
https://www.math.washington.edu/~morrow/336_12/papers/juan.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

30

[8] Lynson, B. Tutorial on Reed-Solomon Error Correction

Coding. NASA Tech Brief MSC-21834. Available at:

http://jeffareid.net/misc/msc-21834.pdf

[9] Hill, T. (2013). Reed Solomon Codes Explained.

Available at: https://www.tony-

hill.info/app/download/.../Reed+Solomon+Explained+

V1-0.pdf

[10] Plank, J. S. (1997). A Tutorial on Reed-Solomon Coding

for Fault-Tolerance in RAID-like Systems. Software-

Practice and Experience. Vol.27, No.9, 995–1012.

Available at: http://cgi.di.uoa.gr/~ad/M155/Papers/RS-

Tutorial.pdf

[11] Mathematics Stack Exchange, (2011). Addition and

Multiplication in a Galois Field Available at:

http://math.stackexchange.com/questions/89805/addition

-and-multiplication-in-a-galois-field

8. APPENDIX
Table 1: Addition in GF(8) mod 2

+ 0 1 α

=2

α3

α + 1=3

α
2

=4

α4

α
2
 + α =6

α6

α
2
 + 1=5

α5

α
2
 + α + 1=7

0 0 1 2 3 4 6 5 7

1 1 0 3 2 5 7 4 6

α

=2

2 3 0 1 6 4 7 5

α3

α + 1=3

3 2 1 0 7 5 6 4

α
2

=4

4 3 6 7 0 2 1 3

α4

α
2
 + α=6

6 7 4 5 2 0 3 1

α6

α
2
 + 1=5

5 4 7 6 1 3 0 2

α5

α
2
 + α + 1=7

7 6 5 4 3 1 2 0

Table 2: Multiplication in GF(8) mod 2

* 0 α
7

= 1

α

=2

α
2

=4

α
3

= α + 1

=3

α
4

=α
2
 + α =6

α
5

= α
2
 + α + 1 =7

α
6

= α
2
 + 1

=5

0 0 0 0 0 0 0 0 0

α
7

= 1

0 α7 = 1 α=2 α2=4 α3=3 α4=6 α5=7 α6=5

α

=2

0 α=2 α2=4 α3=3 α4=6 α5=7 α6=5 α7 = 1

α
2

=4

0 α2=4 α3=3 α4=6 α5=7 α6=5 α7 = 1 α=2

α
3

= α + 1

=3

0 α3=3 α4=6 α5=7 α6=5 α7 = 1 α=2 α2=4

α
4

=α
2
 + α

=6

0 α4=6 α5=7 α6=5 α7 = 1 α=2 α2=4 α3=3

α
5

= α
2
 + α + 1 =7

0 α5=7 α6=5 α7 = 1 α=2 α2=4 α3=3 α4=6

α
6

= α
2
 + 1

=5

0 α6=5 α7 = 1 α=2 α2=4 α3=3 α4=6 α5=7

http://jeffareid.net/misc/msc-21834.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
http://cgi.di.uoa.gr/~ad/M155/Papers/RS-Tutorial.pdf
http://cgi.di.uoa.gr/~ad/M155/Papers/RS-Tutorial.pdf
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

31

Table 3 below presents the elements of GF(256)

Binary

Representation

Decimal

Representation

0 (undefined) 0 00000000 0 (undefined)

1 α0 α0 00000001 1 0

2 α1 α
1

00000010 2 1

3 α2 α
2

00000100 4 25

4 α3 α
3

00001000 8 2

5 α4 α
4

00010000 16 50

6 α5 α
5

00100000 32 26

7 α6 α
6

01000000 64 198

8 α7 α
7

10000000 128 3

9 α8 α
4
 + α

3
 + α

2
 + α

0
00011101 29 223

10 α9 α
5
 + α

4
 + α

3
 + α

1
00111010 58 51

11 α10 α
6
 + α

5
 + α

4
 + α

2
01110100 116 238

12 α11 α
7
 + α

6
 + α

5
 + α

3
11101000 232 27

13 α12 α
7
 + α

6
 + α

3
 + α

2
 + α

0
11001101 205 104

14 α13 α
7
 + α

2
 + α

1
 + α

0
10000111 135 199

15 α14 α
4
 + α

1
 + α

0
00010011 19 75

16 α15 α
5
 + α

2
 + α

1
00100110 38 4

17 α16 α
6
 + α

3
 + α

2
01001100 76 100

18 α17 α
7
 + α

4
 + α

3
10011000 152 224

19 α18 α
5
 + α

3
 + α

2
 + α

0
00101101 45 14

20 α19 α
6
 + α

4
 + α

3
 + α

1
01011010 90 52

21 α20 α
7
 + α

5
 + α

4
 + α

2
10110100 180 141

22 α21 α
6
 + α

5
 + α

4
 + α

2
 + α

0
01110101 117 239

23 α22 α
7
 + α

6
 + α

5
 + α

3
 + α

1
11101010 234 129

24 α23 α
7
 + α

6
 + α

3
 + α

0
11001001 201 28

25 α24 α
7
 + α

3
 + α

2
 + α

1
 + α

0
10001111 143 193

26 α25 α
1
 + α

0
00000011 3 105

27 α26 α
2
 + α

1
00000110 6 248

Field

Element

Alpha

Exponent Element Polynomial

Exponent Values

Log of

Element

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

32

28 α27 α
3
 + α

2
00001100 12 200

29 α28 α
4
 + α

3
00011000 24 8

30 α29 α
5
 + α

4
00110000 48 76

31 α30 α
6
 + α

5
01100000 96 113

32 α31 α
7
 + α

6
11000000 192 5

33 α32 α
7
 + α

4
 + α

3
 + α

2
 + α

0
10011101 157 138

34 α33 α
5
 + α

2
 + α

1
 + α

0
00100111 39 101

35 α34 α
6
 + α

3
 + α

2
 + α

1
01001110 78 47

36 α35 α
7
 + α

4
 + α

3
 + α

2
10011100 156 225

37 α36 α
5
 + α

2
 + α

0
00100101 37 36

38 α37 α
6
 + α

3
 + α

1
01001010 74 15

39 α38 α
7
 + α

4
 + α

2
10010100 148 33

40 α39 α
5
 + α

4
 + α

2
 + α

0
00110101 53 53

41 α40 α
6
 + α

5
 + α

3
 + α

1
01101010 106 147

42 α41 α
7
 + α

6
 + α

4
 + α

2
11010100 212 142

43 α42 α
7
 + α

5
 + α

4
 + α

2
 + α

0
10110101 181 218

44 α43 α
6
 + α

5
 + α

4
 + α

2
 + α

1
 + α

0
01110111 119 240

45 α44 α
7
 + α

6
 + α

5
 + α

3
 + α

2
 + α

1
11101110 238 18

46 α45 α
7
 + α

6
 + α

0
11000001 193 130

47 α46 α
7
 + α

4
 + α

3
 + α

2
 + α

1
 + α

0
10011111 159 69

48 α47 α
5
 + α

1
 + α

0
00100011 35 29

49 α48 α
6
 + α

2
 + α

1
01000110 70 181

50 α49 α
7
 + α

3
 + α

2
10001100 140 194

51 α50 α
2
 + α

0
00000101 5 125

52 α51 α
3
 + α

1
00001010 10 106

53 α52 α
4
 + α

2
00010100 20 39

54 α53 α
5
 + α

3
00101000 40 249

55 α54 α
6
 + α

4
01010000 80 185

56 α55 α
7
 + α

5
10100000 160 201

57 α56 α
6
 + α

4
 + α

3
 + α

2
 + α

0
01011101 93 154

58 α57 α
7
 + α

5
 + α

4
 + α

3
 + α

1
10111010 186 9

59 α58 α
6
 + α

5
 + α

3
 + α

0
01101001 105 120

60 α59 α
7
 + α

6
 + α

4
 + α

1
11010010 210 77

61 α60 α
7
 + α

5
 + α

4
 + α

3
 + α

0
10111001 185 228

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

33

62 α61 α
6
 + α

5
 + α

3
 + α

2
 + α

1
 + α

0
01101111 111 114

63 α62 α
7
 + α

6
 + α

4
 + α

3
 + α

2
 + α

1
11011110 222 166

64 α63 α
7
 + α

5
 + α

0
10100001 161 6

65 α64 α
6
 + α

4
 + α

3
 + α

2
 + α

1
 + α

0
01011111 95 191

66 α65 α
7
 + α

5
 + α

4
 + α

3
 + α

2
 + α

1
10111110 190 139

67 α66 α
6
 + α

5
 + α

0
01100001 97 98

68 α67 α
7
 + α

6
 + α

1
11000010 194 102

69 α68 α
7
 + α

4
 + α

3
 + α

0
10011001 153 221

70 α69 α
5
 + α

3
 + α

2
 + α

1
 + α

0
00101111 47 48

71 α70 α
6
 + α

4
 + α

3
 + α

2
 + α

1
01011110 94 253

72 α71 α
7
 + α

5
 + α

4
 + α

3
 + α

2
10111100 188 226

73 α72 α
6
 + α

5
 + α

2
 + α

0
01100101 101 152

74 α73 α
7
 + α

6
 + α

3
 + α

1
11001010 202 37

75 α74 α
7
 + α

3
 + α

0
10001001 137 179

76 α75 α
3
 + α

2
 + α

1
 + α

0
00001111 15 16

77 α76 α
4
 + α

3
 + α

2
 + α

1
00011110 30 145

78 α77 α
5
 + α

4
 + α

3
 + α

2
00111100 60 34

79 α78 α
6
 + α

5
 + α

4
 + α

3
01111000 120 136

80 α79 α
7
 + α

6
 + α

5
 + α

4
11110000 240 54

81 α80 α
7
 + α

6
 + α

5
 + α

4
 + α

3
 + α

2
 + α

0
11111101 253 208

82 α81 α
7
 + α

6
 + α

5
 + α

2
 + α

1
 + α

0
11100111 231 148

83 α82 α
7
 + α

6
 + α

4
 + α

1
 + α

0
11010011 211 206

84 α83 α
7
 + α

5
 + α

4
 + α

3
 + α

1
 + α

0
10111011 187 143

85 α84 α
6
 + α

5
 + α

3
 + α

1
 + α

0
01101011 107 150

86 α85 α
7
 + α

6
 + α

4
 + α

2
 + α

1
11010110 214 219

87 α86 α
7
 + α

5
 + α

4
 + α

0
10110001 177 189

88 α87 α
6
 + α

5
 + α

4
 + α

3
 + α

2
 + α

1
 + α

0
01111111 127 241

89 α88 α
7
 + α

6
 + α

5
 + α

4
 + α

3
 + α

2
 + α

1
11111110 254 210

90 α89 α
7
 + α

6
 + α

5
 + α

0
11100001 225 19

91 α90 α
7
 + α

6
 + α

4
 + α

3
 + α

2
 + α

1
 + α

0
11011111 223 92

92 α91 α
7
 + α

5
 + α

1
 + α

0
10100011 163 131

93 α92 α
6
 + α

4
 + α

3
 + α

1
 + α

0
01011011 91 56

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

34

94 α93 α
7
 + α

5
 + α

4
 + α

2
 + α

1
10110110 182 70

95 α94 α
6
 + α

5
 + α

4
 + α

0
01110001 113 64

96 α95 α
7
 + α

6
 + α

5
 + α

1
11100010 226 30

97 α96 α
7
 + α

6
 + α

4
 + α

3
 + α

0
11011001 217 66

98 α97 α
7
 + α

5
 + α

3
 + α

2
 + α

1
 + α

0
10101111 175 182

99 α98 α
6
 + α

1
 + α

0
01000011 67 163

100 α99 α
7
 + α

2
 + α

1
10000110 134 195

101 α100 α
4
 + α

0
00010001 17 72

102 α101 α
5
 + α

1
00100010 34 126

103 α102 α
6
 + α

2
01000100 68 110

104 α103 α
7
 + α

3
10001000 136 107

105 α104 α
3
 + α

2
 + α

0
00001101 13 58

106 α105 α
4
 + α

3
 + α

1
00011010 26 40

107 α106 α
5
 + α

4
 + α

2
00110100 52 84

108 α107 α
6
 + α

5
 + α

3
01101000 104 250

109 α108 α
7
 + α

6
 + α

4
11010000 208 133

110 α109 α
7
 + α

5
 + α

4
 + α

3
 + α

2
 + α

0
10111101 189 186

111 α110 α
6
 + α

5
 + α

2
 + α

1
 + α

0
01100111 103 61

112 α111 α
7
 + α

6
 + α

3
 + α

2
 + α

1
11001110 206 202

113 α112 α
7
 + α

0
10000001 129 94

114 α113 α
4
 + α

3
 + α

2
 + α

1
 + α

0
00011111 31 155

115 α114 α
5
 + α

4
 + α

3
 + α

2
 + α

1
00111110 62 159

116 α115 α
6
 + α

5
 + α

4
 + α

3
 + α

2
01111100 124 10

117 α116 α
7
 + α

6
 + α

5
 + α

4
 + α

3
11111000 248 21

118 α117 α
7
 + α

6
 + α

5
 + α

3
 + α

2
 + α

0
11101101 237 121

119 α118 α
7
 + α

6
 + α

2
 + α

1
 + α

0
11000111 199 43

120 α119 α
7
 + α

4
 + α

1
 + α

0
10010011 147 78

121 α120 α
5
 + α

4
 + α

3
 + α

1
 + α

0
00111011 59 212

122 α121 α
6
 + α

5
 + α

4
 + α

2
 + α

1
01110110 118 229

123 α122 α
7
 + α

6
 + α

5
 + α

3
 + α

2
11101100 236 172

124 α123 α
7
 + α

6
 + α

2
 + α

0
11000101 197 115

125 α124 α
7
 + α

4
 + α

2
 + α

1
 + α

0
10010111 151 243

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

35

126 α125 α
5
 + α

4
 + α

1
 + α

0
00110011 51 167

127 α126 α
6
 + α

5
 + α

2
 + α

1
01100110 102 87

128 α127 α
7
 + α

6
 + α

3
 + α

2
11001100 204 7

129 α128 α
7
 + α

2
 + α

0
10000101 133 112

130 α129 α
4
 + α

2
 + α

1
 + α

0
00010111 23 192

131 α130 α
5
 + α

3
 + α

2
 + α

1
00101110 46 247

132 α131 α
6
 + α

4
 + α

3
 + α

2
01011100 92 140

133 α132 α
7
 + α

5
 + α

4
 + α

3
10111000 184 128

134 α133 α
6
 + α

5
 + α

3
 + α

2
 + α

0
01101101 109 99

135 α134 α
7
 + α

6
 + α

4
 + α

3
 + α

1
11011010 218 13

136 α135 α
7
 + α

5
 + α

3
 + α

0
10101001 169 103

137 α136 α
6
 + α

3
 + α

2
 + α

1
 + α

0
01001111 79 74

138 α137 α
7
 + α

4
 + α

3
 + α

2
 + α

1
10011110 158 222

139 α138 α
5
 + α

0
00100001 33 237

140 α139 α
6
 + α

1
01000010 66 49

141 α140 α
7
 + α

2
10000100 132 197

142 α141 α
4
 + α

2
 + α

0
00010101 21 254

143 α142 α
5
 + α

3
 + α

1
00101010 42 24

144 α143 α
6
 + α

4
 + α

2
01010100 84 227

145 α144 α
7
 + α

5
 + α

3
10101000 168 165

146 α145 α
6
 + α

3
 + α

2
 + α

0
01001101 77 153

147 α146 α
7
 + α

4
 + α

3
 + α

1
10011010 154 119

148 α147 α
5
 + α

3
 + α

0
00101001 41 38

149 α148 α
6
 + α

4
 + α

1
01010010 82 184

150 α149 α
7
 + α

5
 + α

2
10100100 164 180

151 α150 α
6
 + α

4
 + α

2
 + α

0
01010101 85 124

152 α151 α
7
 + α

5
 + α

3
 + α

1
10101010 170 17

153 α152 α
6
 + α

3
 + α

0
01001001 73 68

154 α153 α
7
 + α

4
 + α

1
10010010 146 146

155 α154 α
5
 + α

4
 + α

3
 + α

0
00111001 57 217

156 α155 α
6
 + α

5
 + α

4
 + α

1
01110010 114 35

157 α156 α
7
 + α

6
 + α

5
 + α

2
11100100 228 32

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

36

158 α157 α
7
 + α

6
 + α

4
 + α

2
 + α

0
11010101 213 137

159 α158 α
7
 + α

5
 + α

4
 + α

2
 + α

1
 + α

0
10110111 183 46

160 α159 α
6
 + α

5
 + α

4
 + α

1
 + α

0
01110011 115 55

161 α160 α
7
 + α

6
 + α

5
 + α

2
 + α

1
11100110 230 63

162 α161 α
7
 + α

6
 + α

4
 + α

0
11010001 209 209

163 α162 α
7
 + α

5
 + α

4
 + α

3
 + α

2
 + α

1
 + α

0
10111111 191 91

164 α163 α
6
 + α

5
 + α

1
 + α

0
01100011 99 149

165 α164 α
7
 + α

6
 + α

2
 + α

1
11000110 198 188

166 α165 α
7
 + α

4
 + α

0
10010001 145 207

167 α166 α
5
 + α

4
 + α

3
 + α

2
 + α

1
 + α

0
00111111 63 205

168 α167 α
6
 + α

5
 + α

4
 + α

3
 + α

2
 + α

1
01111110 126 144

169 α168 α
7
 + α

6
 + α

5
 + α

4
 + α

3
 + α

2
11111100 252 135

170 α169 α
7
 + α

6
 + α

5
 + α

2
 + α

0
11100101 229 151

171 α170 α
7
 + α

6
 + α

4
 + α

2
 + α

1
 + α

0
11010111 215 178

172 α171 α
7
 + α

5
 + α

4
 + α

1
 + α

0
10110011 179 220

173 α172 α
6
 + α

5
 + α

4
 + α

3
 + α

1
 + α

0
01111011 123 252

174 α173 α
7
 + α

6
 + α

5
 + α

4
 + α

2
 + α

1
11110110 246 190

175 α174 α
7
 + α

6
 + α

5
 + α

4
 + α

0
11110001 241 97

176 α175 α
7
 + α

6
 + α

5
 + α

4
 + α

3
 + α

2
 + α

1
 + α

0
11111111 255 242

177 α176 α
7
 + α

6
 + α

5
 + α

1
 + α

0
11100011 227 86

178 α177 α
7
 + α

6
 + α

4
 + α

3
 + α

1
 + α

0
11011011 219 211

179 α178 α
7
 + α

5
 + α

3
 + α

1
 + α

0
10101011 171 171

180 α179 α
6
 + α

3
 + α

1
 + α

0
01001011 75 20

181 α180 α
7
 + α

4
 + α

2
 + α

1
10010110 150 42

182 α181 α
5
 + α

4
 + α

0
00110001 49 93

183 α182 α
6
 + α

5
 + α

1
01100010 98 158

184 α183 α
7
 + α

6
 + α

2
11000100 196 132

185 α184 α
7
 + α

4
 + α

2
 + α

0
10010101 149 60

186 α185 α
5
 + α

4
 + α

2
 + α

1
 + α

0
00110111 55 57

187 α186 α
6
 + α

5
 + α

3
 + α

2
 + α

1
01101110 110 83

188 α187 α
7
 + α

6
 + α

4
 + α

3
 + α

2
11011100 220 71

189 α188 α
7
 + α

5
 + α

2
 + α

0
10100101 165 109

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

37

190 α189 α
6
 + α

4
 + α

2
 + α

1
 + α

0
01010111 87 65

191 α190 α
7
 + α

5
 + α

3
 + α

2
 + α

1
10101110 174 162

192 α191 α
6
 + α

0
01000001 65 31

193 α192 α
7
 + α

1
10000010 130 45

194 α193 α
4
 + α

3
 + α

0
00011001 25 67

195 α194 α
5
 + α

4
 + α

1
00110010 50 216

196 α195 α
6
 + α

5
 + α

2
01100100 100 183

197 α196 α
7
 + α

6
 + α

3
11001000 200 123

198 α197 α
7
 + α

3
 + α

2
 + α

0
10001101 141 164

199 α198 α
2
 + α

1
 + α

0
00000111 7 118

200 α199 α
3
 + α

2
 + α

1
00001110 14 196

201 α200 α
4
 + α

3
 + α

2
00011100 28 23

202 α201 α
5
 + α

4
 + α

3
00111000 56 73

203 α202 α
6
 + α

5
 + α

4
01110000 112 236

204 α203 α
7
 + α

6
 + α

5
11100000 224 127

205 α204 α
7
 + α

6
 + α

4
 + α

3
 + α

2
 + α

0
11011101 221 12

206 α205 α
7
 + α

5
 + α

2
 + α

1
 + α

0
10100111 167 111

207 α206 α
6
 + α

4
 + α

1
 + α

0
01010011 83 246

208 α207 α
7
 + α

5
 + α

2
 + α

1
10100110 166 108

209 α208 α
6
 + α

4
 + α

0
01010001 81 161

210 α209 α
7
 + α

5
 + α

1
10100010 162 59

211 α210 α
6
 + α

4
 + α

3
 + α

0
01011001 89 82

212 α211 α
7
 + α

5
 + α

4
 + α

1
10110010 178 41

213 α212 α
6
 + α

5
 + α

4
 + α

3
 + α

0
01111001 121 157

214 α213 α
7
 + α

6
 + α

5
 + α

4
 + α

1
11110010 242 85

215 α214 α
7
 + α

6
 + α

5
 + α

4
 + α

3
 + α

0
11111001 249 170

216 α215 α
7
 + α

6
 + α

5
 + α

3
 + α

2
 + α

1
 + α

0
11101111 239 251

217 α216 α
7
 + α

6
 + α

1
 + α

0
11000011 195 96

218 α217 α
7
 + α

4
 + α

3
 + α

1
 + α

0
10011011 155 134

219 α218 α
5
 + α

3
 + α

1
 + α

0
00101011 43 177

220 α219 α
6
 + α

4
 + α

2
 + α

1
01010110 86 187

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

38

221 α220 α
7
 + α

5
 + α

3
 + α

2
10101100 172 204

222 α221 α
6
 + α

2
 + α

0
01000101 69 62

223 α222 α
7
 + α

3
 + α

1
10001010 138 90

224 α223 α
3
 + α

0
00001001 9 203

225 α224 α
4
 + α

1
00010010 18 89

226 α225 α
5
 + α

2
00100100 36 95

227 α226 α
6
 + α

3
01001000 72 176

228 α227 α
7
 + α

4
10010000 144 156

229 α228 α
5
 + α

4
 + α

3
 + α

2
 + α

0
00111101 61 169

230 α229 α
6
 + α

5
 + α

4
 + α

3
 + α

1
01111010 122 160

231 α230 α
7
 + α

6
 + α

5
 + α

4
 + α

2
11110100 244 81

232 α231 α
7
 + α

6
 + α

5
 + α

4
 + α

2
 + α

0
11110101 245 11

233 α232 α
7
 + α

6
 + α

5
 + α

4
 + α

2
 + α

1
 + α

0
11110111 247 245

234 α233 α
7
 + α

6
 + α

5
 + α

4
 + α

1
 + α

0
11110011 243 22

235 α234 α
7
 + α

6
 + α

5
 + α

4
 + α

3
 + α

1
 + α

0
11111011 251 235

236 α235 α
7
 + α

6
 + α

5
 + α

3
 + α

1
 + α

0
11101011 235 122

237 α236 α
7
 + α

6
 + α

3
 + α

1
 + α

0
11001011 203 117

238 α237 α
7
 + α

3
 + α

1
 + α

0
10001011 139 44

239 α238 α
3
 + α

1
 + α

0
00001011 11 215

240 α239 α
4
 + α

2
 + α

1
00010110 22 79

241 α240 α
5
 + α

3
 + α

2
00101100 44 174

242 α241 α
6
 + α

4
 + α

3
01011000 88 213

243 α242 α
7
 + α

5
 + α

4
10110000 176 233

244 α243 α
6
 + α

5
 + α

4
 + α

3
 + α

2
 + α

0
01111101 125 230

245 α244 α
7
 + α

6
 + α

5
 + α

4
 + α

3
 + α

1
11111010 250 231

246 α245 α
7
 + α

6
 + α

5
 + α

3
 + α

0
11101001 233 173

247 α246 α
7
 + α

6
 + α

3
 + α

2
 + α

1
 + α

0
11001111 207 232

248 α247 α
7
 + α

1
 + α

0
10000011 131 116

249 α248 α
4
 + α

3
 + α

1
 + α

0
00011011 27 214

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 1, December 2016

39

250 α249 α
5
 + α

4
 + α

2
 + α

1
00110110 54 244

251 α250 α
6
 + α

5
 + α

3
 + α

2
01101100 108 234

252 α251 α
7
 + α

6
 + α

4
 + α

3
11011000 216 168

253 α252 α
7
 + α

5
 + α

3
 + α

2
 + α

0
10101101 173 80

254 α253 α
6
 + α

2
 + α

1
 + α

0
01000111 71 88

255 α254 α
7
 + α

3
 + α

2
 + α

1
10001110 142 175

α255 α0
00000001 1

IJCATM : www.ijcaonline.org

