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ABSTRACT 

The paper presents using Differential Evolution (DE) and 

Shuffled Frog Leaping Algorithm (SFLA) to optimally tune 

parameters of a fuzzy logic controller stabilizing a rotary 

inverted pendulum system at its upright equilibrium position. 

Both the DE and SFLA are meta-heuristic search methods. 

DE belongs to the class of evolutionary algorithms while 

SFLA is inspired from the memetic evolution of a group of 

frogs when seeking for food. In this study, the rule base of the 

Fuzzy Logic Controller (FLC) is brought by expert 

experience, and the parameters of the controller, i.e. the 

membership function parameters and scaling gains, are 

optimally tuned by the DE and SFLA such that a predefined 

criterion is minimized. Simulation results show that the 

designed fuzzy controller is able to balance the rotary inverted 

pendulum system around its equilibrium state. Besides, 

convergent rate of SFLA is faster than that of DE but DE has 

ability to find optimal solutions better than SFLA does. 

General Terms 

Algorithms. 
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1. INTRODUCTION 
A fuzzy logic controller can be considered as a control expert 

system which simulates the human thinking. It consists of 

input and output variables with membership functions, a set of 

(IF…THEN) rules and an inference system. Designing fuzzy 

controllers involves choosing input and output variables of the 

controller, defining membership functions for each input and 

output variables, constructing the rule base reflecting the 

linguistic relationship between the inputs and outputs, and 

tuning the parameters of the membership functions and values 

of the scaling gains in order to achieve the required 

performance. Usually, when designing fuzzy controllers these 

parameters are chosen by trial and error. This manual design 

method is time-consuming and the control results are not 

optimal. In order to overcome this problem, optimization 

techniques are used to tune parameters of fuzzy controller to 

obtain the best possible solution according to a given criterion 

or fitness function [1]. 

Many optimization techniques have been proposed to tune 

parameters of fuzzy logic controller. In [2], authors used 

Genetic Algorithm to tune fuzzy control rules. The results 

showed that the fuzzy control rules obtained greatly improve 

the behavior of the FLC systems. In [3], authors showed that 

the PSO can simultaneously tune the premise and consequent 

parameters of the fuzzy rules for the appropriate design of 

fuzzy systems. In [4], the  Bees Algorithm  has been proved to 

be a useful tool for tuning fuzzy logic controllers to achieve 

better performance. In [5], Ant Colony Optimization (ACO) 

was applied to design a fuzzy controller, called ACO-FC. The 

proposed ACO-FC performance was shown to be better than 

other evolutionary design methods on one simulation 

example. In [6], Shuffled Frog Leaping Algorithm was used 

to optimally tune parameters of a fuzzy logic controller 

stabilizing a ball and beam system at its equilibrium position. 

Simulation results show that the designed fuzzy controller is 

able to balance the ball and beam system around its 

equilibrium state and the performance of the fuzzy controller 

is better than that of the well-known LQR controller. In [7], 

authors presented an optimized Takagi-Sugeno (TS) fuzzy 

controller using Differential Evolution (DE) technique for a 

VSC-HVDC transmission link with a parallel AC line, 

through the analysis on voltage source converter (VSC) 

equation in d-q reference frame. The DE technique is used to 

optimize the rule consequent parameters of a TS fuzzy 

controller. 

In this paper, the author introduces an application of the 

Differential Evolution and Shuffled Frog Leaping Algorithm 

in tuning parameters of a fuzzy logic controller for balancing 

a rotary inverted pendulum system in the upright position and 

compare the convergent rate as well as the ability to find 

optimal solution of two these optimization algorithms. This 

paper is organized as follows. Section 2 introduces the rotary 

inverted pendulum system and dynamics. Section 3 presents 

overview of the Differential Evolution and Shuffled Frog 

Leaping Algorithm. The description how to design and tune 

parameters of the fuzzy controller is given in section 4. 

Section 5 shows obtained results and Section 6 concludes this 

paper. 

2. DYNAMICS OF THE ROTARY 

INVERTED PENDULUM SYSTEM 
The rotary inverted pendulum is an ideal experiment when 

introducing important control concepts such as non-linear 

systems. It’s a natural unstable nonlinear system and a 

powerful tool to check the control theory and control 

algorithm. Fig 1. depicts the rotary inverted pendulum system. 

 

Fig 1: Top View (Left) and Side View (Right) of Rotary 

inverted pendulum 
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System dynamic equations: 

𝑎𝜃 − 𝑏𝑐𝑜𝑠 𝛼 𝛼 + 𝑏𝑠𝑖𝑛 𝛼 𝛼 2 + 𝐺𝜃 =
𝜂𝑚 𝜂𝑔𝐾𝑡𝐾𝑔

𝑅𝑚
𝑉𝑚  (1) 

𝑐𝛼 − 𝑏𝑐𝑜𝑠 𝛼 𝜃 − 𝑑𝑠𝑖𝑛 𝛼 = 0  (2) 

Where: 

𝑎 = 𝐽𝑒𝑞 + 𝑚𝑟2, 𝑏 = 𝑚𝐿𝑟, 𝑐 =
4

3
𝑚𝐿2,𝑑 = 𝑚𝑔𝐿, 

𝐸 = 𝑎𝑐 − 𝑏2 ,𝐺 =
𝜂𝑚𝜂𝑔𝐾𝑡𝐾𝑚𝐾𝑔

2 + 𝐵𝑒𝑞𝑅𝑚

𝑅𝑚
 

The parameters of the rotary inverted pendulum system are 

given in Table 1. 

Table 1. Rotary Inverted Pendulum System Model 

Parameters Used In Simulation 

Symbol Description Value Unit 

L Length to Pendulum's 

Center of mass 

0.335/2 m 

M Mass of Pendulum 0.125 kg 

R Length of arm that attaches 

to SRV02 

0.158 m 

G Gravitational Constant 9.81 m/s2 

Rm Motor Armature 

Resistance 

2.6 Ohm 

Kt Motor Torque Constant 0.00767 N.m/A 

Km Motor Back-EMF 

Constant 

0.00767 V.s/rd 

Kg Total Gear Ratio 70  

m Motor Efficiency 0.69  

g Gearbox Efficiency 0.90  

Beq Equivalent Viscous 

Damping Coefficient as 

seen at the Load 

4e-3 N.m.s/rd 

Jeq Equivalent Inertia as seen 

at the Load 

0.0036 kg.m2 

Vm Control Signal 0 ÷ 24 V 

 

Further information about this system, refer to [8]. 

The purpose of the paper is to design a FLC that will balance 

the inverted pendulum at the upright position when the initial 

condition is not zero. Parameters of FLC will be tuned by 

SFLA and DE methods.  

3. OVERVIEW OF DE AND SFLA 

OPTIMIZATION TECHNIQUES 

3.1 Differential Evolution 
Differential Evolution grew out of Ken Price's attempts to 

solve the Chebychev Polynomial fitting Problem that had 

been posed to him by Rainer Storn [9-10]. DE adopted for 

various optimization scenarios including constrained, large-

scale, multi-objective, multimodal and dynamic optimization, 

hybridization of DE with other optimizers, and also the multi-

faceted literature on applications of DE [11-16]. 

DE belongs to the class of evolutionary algorithms which use 

bio-inspired operations of crossover, mutation, and selection 

on a population in order to minimize an objective function. 

These operations will be briefly described in this section. 

Mutation: Mutation operator is the prime operator of DE and 

it is the implementation of this operation that makes DE 

different from other evolutionary algorithms. The mutation 

process at each generation begins by randomly selecting three 

individuals in the population. There are many mutation 

strategies implemented in the DE, however in this paper the 

following strategy is used. 

𝑉𝑖
𝑘 = 𝑋𝑟0

𝑘 + 𝐹 𝑋𝑟1
𝑘 − 𝑋𝑟2

𝑘                                                             3  

Where 𝑋𝑟0
𝑘 ,  𝑋𝑟1

𝑘  and 𝑋𝑟2
𝑘  are randomly selected and satisfy: 

𝑋𝑟0
𝑘  ≠  𝑋𝑟1

𝑘  ≠  𝑋𝑟2
𝑘  ;  

Crossover: after the mutation phase is complete, the crossover 

process is applied to target vector X and mutated vector V in 

order to generate trial vector U by using the equation (4). 

𝑈𝑖
𝑘 =  𝑈𝑖

𝑘 𝑗  

=  
 𝑉𝑖

𝑘 𝑗            𝑖𝑓  𝑟𝑎𝑛𝑑𝑗  0,1 ≤ 𝑝𝑐  𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟 𝑖 

 𝑋𝑖
𝑘 𝑗                                                            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

         4  

Selection: The population for the next generation is selected 

from the individual in current population and its 

corresponding trial vector according to the rule (5). 

𝑋𝑖
𝑘+1 =  

𝑈𝑖
𝑘          𝑖𝑓   𝑓 𝑈𝑖

𝑘  ≤  𝑓 𝑋𝑖
𝑘 

 𝑋𝑖
𝑘                            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

                                   5  

Where f(.) is the objective function. 

The flowchart of the DE is illustrated in Fig.2. Further 

information about DE, refer to [12]. 

3.2 Shuffled Frog Leaping Algorithm 
The SFLA is a meta-heuristic optimization method that 

mimics the memetic evolution of a group of frogs when 

seeking for the location that has the maximum amount of 

available food. The algorithm contains elements of local 

search and global information exchange. The SFLA involves 

a population of possible solutions defined by a set of virtual 

frogs that is partitioned into subsets referred to as 

memeplexes. Within each memeplex, the individual frog 

holds ideas that can be influenced by the ideas of other frogs, 

and the ideas can evolve through a process of memetic 

evolution. 
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Fig. 2. Flowchart of the DE 

The SFLA performs simultaneously an independent local 

search in each memeplex using a particle swarm optimization-

like method. To ensure global exploration, after a defined 

number of memeplex evolution steps (i.e. local search 

iterations), the virtual frogs are shuffled and reorganized into 

new memeplexes in a technique similar to that used in the 

shuffled complex evolution algorithm. The flowchart of the 

SFLA is illustrated in Fig. 3. 

The idea updating frog leaping rule which is expressed as : 

𝐷 = 𝑟. 𝑐 𝑋𝑏 − 𝑋𝑤                                                                          6  

𝑋𝑤 𝑛𝑒𝑤 = 𝑋𝑤 + 𝐷,  𝐷 ≤ 𝐷𝑚𝑎𝑥                                    7  

Where Xb and Xw are identified as the frogs with the best and 

the worst fitness, respectively; r is a random number between 

0 and 1; c is a constant chosen in the range between 1 and 2. 

[6] 

SFLA has been successfully applied to solve various 

optimization problems. [17-22]. 

4. DESIGN OF FUZZY LOGIC 

CONTROLLER 
This section discusses the design of a fuzzy logic controller 

for balancing the rotary inverted pendulum in the upright 

position presented in section 2. The block diagram of the 

control system is shown in Fig. 4.  

Defining 3 linguistic values denoted as NE (Negative), ZE 

(Zero), and PO  (Positive) for each input variables. 

 

Fig. 3. Flowchart of the SFLA  

The linguistic values are qualified by piece-wise membership 

functions defined in the universe of discourse of [-1, 1] as 

shown in Fig. 5. The output variable has 9 linguistic values 

denoted as ZE, Nj (Negative j), Pj (Positive j) (j=1÷4). The 

index j represents the strength of the linguistic values such 

that the higher the index, the stronger the linguistic value. 

These output’s linguistic values are qualified by singleton 

membership functions in the universe of discourse of [-1, 1] 

as illustrated in Fig. 5. Notice that the input’s membership 

functions NE and PO are symmetric about 0. Similarly, the 

output’s membership functions Nj and Pj are symmetric also. 

By defining symmetric membership functions, the number of 

adjustable parameters is reduced. As a result, the optimization 

problem to be solved later is easier. 

The Sugeno model is used as the basis of the proposed fuzzy 

logic controller. The rule base consists of 81 (IF…THEN) 

rules derived from human knowledge. The complete rule base 

presented in Table 2. Ideas of rule base system like section IV 

in [6]. 

After constructing the structure of the fuzzy controller based 

on human knowledge, the next step is to optimize its 

parameters. The parameters to be optimized consist of the 

input membership function parameters X1,X2,X3, X4 (see 

Fig. 5), the output membership function parameters X5,X6,X7 

(see Fig. 5), and the scaling gains X8, X9,X10, X11,X12 (Fig. 

6). The parameters of the fuzzy controller are optimized 

according to the quadratic criterion (8), in which the 

weighting matrices Q and R are positive definite. 

Initialize: 
- Population size (N) 
- Number of memeplexes (m) 
- Number of  evolution step within 

each memeplex (iter) 
  
  

    Generate population (P) randomly 
  
  Evaluate the fitness of (P) 
  
   Sort population in descending order 
  
  Partition (P) into m memeplexes 

  
                Local search 

      Iterative updating the worst frog 
          of each memeplex 
  
  

Determine the best solution 
  
  

              Convergence 
             criteria satisfied ? 
  
  

     Start 

End 

Shuffle the memeplexes 
  
  

   Yes 
  
  

No 
  
  

          Create trial vector             (3) 

       If  f(U) > f(X)  U = X      (5) 
  

Initialize: 
- Population size (N) 
- Mutation scale factor  (F) 
- Crossover probability (pc) 

     Generate population (P) randomly  
  

Start 

Determine the best solution 
  

                 Convergence  
              criteria satisfied ? 
  
  

End 

   Yes 
  
  

No 
  
  

    Evaluate the fitness of (P) 

    Crossover X and V   U       (4) 
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𝐽𝐿𝑄𝑅 =   𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 𝑑𝑡
∞

0
                                                 

(8) 

The DE and SFLA methods discussed in section 3 are 

employed to solve this optimization problem. 

 

 

Fig. 4. Ideas tune Parameters of Fuzzy Logic Controller 

 

Fig. 5. Input membership functions (i=1÷4) (left) and Output membership functions (right) 

Table 2. Rule Base System 

# 𝜽 𝜶 𝜽  𝜶  𝒖 # 𝜽 𝜶 𝜽  𝜶  𝒖 # 𝜽 𝜶 𝜽  𝜶  𝒖 

1 NE NE NE NE P1 28 ZE NE NE NE N1 55 PO NE NE NE N4 
2 NE NE NE ZE P2 29 ZE NE NE ZE ZE 56 PO NE NE ZE N3 
3 NE NE NE PO P3 30 ZE NE NE PO P1 57 PO NE NE PO N2 
4 NE NE ZE NE ZE 31 ZE NE ZE NE N2 58 PO NE ZE NE N4 
5 NE NE ZE ZE P1 32 ZE NE ZE ZE N1 59 PO NE ZE ZE N3 
6 NE NE ZE PO P2 33 ZE NE ZE PO ZE 60 PO NE ZE PO N2 
7 NE NE PO NE ZE 34 ZE NE PO NE N3 61 PO NE PO NE N4 
8 NE NE PO ZE P1 35 ZE NE PO ZE N2 62 PO NE PO ZE N3 
9 NE NE PO PO P2 36 ZE NE PO PO N1 63 PO NE PO PO N2 

10 NE ZE NE NE P2 37 ZE ZE NE NE ZE 64 PO ZE NE NE N2 
11 NE ZE NE ZE P3 38 ZE ZE NE ZE P1 65 PO ZE NE ZE N1 
12 NE ZE NE PO P4 39 ZE ZE NE PO P2 66 PO ZE NE PO ZE 
13 NE ZE ZE NE P1 40 ZE ZE ZE NE N1 67 PO ZE ZE NE N3 
14 NE ZE ZE ZE P2 41 ZE ZE ZE ZE ZE 68 PO ZE ZE ZE N2 
15 NE ZE ZE PO P3 42 ZE ZE ZE PO P1 69 PO ZE ZE PO N1 
16 NE ZE PO NE ZE 43 ZE ZE PO NE N2 70 PO ZE PO NE N4 
17 NE ZE PO ZE P1 44 ZE ZE PO ZE N1 71 PO ZE PO ZE N3 
18 NE ZE PO PO P2 45 ZE ZE PO PO ZE 72 PO ZE PO PO N2 
19 NE PO NE NE P2 46 ZE PO NE NE P1 73 PO PO NE NE N2 
20 NE PO NE ZE P3 47 ZE PO NE ZE P2 74 PO PO NE ZE N1 
21 NE PO NE PO P4 48 ZE PO NE PO P3 75 PO PO NE PO ZE 
22 NE PO ZE NE P2 49 ZE PO ZE NE ZE 76 PO PO ZE NE N2 
23 NE PO ZE ZE P3 50 ZE PO ZE ZE P1 77 PO PO ZE ZE N1 
24 NE PO ZE PO P4 51 ZE PO ZE PO P2 78 PO PO ZE PO ZE 
25 NE PO PO NE P2 52 ZE PO PO NE N1 79 PO PO PO NE N3 
26 NE PO PO ZE P3 53 ZE PO PO ZE ZE 80 PO PO PO ZE N2 
27 NE PO PO PO P4 54 ZE PO PO PO P1 81 PO PO PO PO N1 

 

  Pre-processing 

Algorithms – DE, SFLA 

   Fuzzy Rule Base 

   Post-processing   Fuzzifier   Defuzzifier      Fuzzy  

   Inference 

    Rotary Inverted Pendulum 
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5. SIMULATION RESULTS 

5.1 Parameter settings 
Matlab and Simulink are used to implement the DE or SFLA 

based fuzzy controller. Simulation schematic of the rotary 

inverted pendulum as in Fig. 6. 

The parameters of FLC that need to be tuned are divided into 

2 groups. Group 1 consist of  5 variables from X8 to X12 need 

to be tuned (remaining parameters have fixed value : 

X1=X2=X3=X4 = 0.5; X5 = 0.25, X6 = 0.50, X7 = 0.75). 

Group 2 consist of 12 variables from X1 to X12 are tuned 

simultaneously. Parameters of DE and SFLA is given in Table 

3. These parameters are chosen based on many simulations 

having best results. The weighting matrices in (8) reflecting 

the desired control performance are chosen to be 

Q=diag[10,1,20,1] and  R=0.1 through a “trial and error” 

process. 

Table 3. The DE and SFLA parameters 

 N G pc F, c m iter Dmax 

DE 50 500 0.5 0.8    

SFLA 50 500  2 10 10 ∞ 

 

 

Fig. 6. Simulation schematic of the rotary inverted 

pendulum  

5.2 Results and remarks 
Evolution of quadratic performance index in case of tuning 5 

and 12 parameters are presented in Fig. 7 and 8, respectively. 

Closed responses of system in case of tuning 5 and 12 

(typically chosen as using SFLA) parameters as in Fig. 9 and 

10, respectively. 

 

Fig.7. Evolution of index in case of tuning 5 variables 

 

Fig.8. Evolution of index in case of tuning 12 variables 

 

Fig.9. Closed response of system in case of tuning 5 

parameters 

 

Fig.10. Closed response of system in case of tuning 12 

parameters 

5.3 Remarks 
 In both cases, it can be observed that SFLA has 

convergent rate is faster than DE. 

 From 100th iteration onwards, performance index of 

SFLA is almost unchanged. 

 In the case of tuning 12 parameters, DE has value of 

objective function is smaller than SFLA.  

Above remarks show that SFLA is better than DE in terms of 

convergent rate. However, SFLA is easily trapped in local 

optimal solutions while DE can escape them to find better 

solutions. These remarks can be explained as follows: SFLA 

can find optimal solutions quickly because of directive 

searching and exchange of information, DE has higher 

random that make it easily escape local optima to find global 

solutions. 
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6. CONCLUSION 
DE and SFLA are techniques have proved to be effective 

solutions to optimization problems. The objective of this 

paper is to compare the convergent rate and ability to find 

optimal solution of these two optimization techniques for a 

fuzzy logic controller design. Both DE and SFLA are 

employed for tuning the parameters of  FLC in two cases: 5 

and 12 parameters of FLC are tuned. Overall, the results 

indicate that both DE and SFLA algorithms can be used in the 

optimizing the parameters of a fuzzy logic controller to 

stabilize a rotary inverted pendulum system at its upright 

equilibrium position. It can be observed that, in terms of 

convergent rate, SFLA approach is faster than DE. Besides, 

DE technique has smaller value of objective function in the 

case of tuning 12 parameters.  
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