
International Journal of Computer Applications (0975 – 8887)

Volume 156 – No.13, December 2016

10

PFIMII: Parallel Frequent Itemset Mining using Interval

Intersection

Neelam Duhan
YMCA University of Sc. &

Tech.
Faridabad

Parul Tomar
YMCA University of Sc. &

Tech.
Faridabad

Amit Siwach
YMCA University of Sc. &

Tech.
Faridabad

ABSTRACT

Data Mining techniques are helpful to uncover the hidden

predictive patterns from large masses of data. Frequent item

set mining also called Market Basket Analysis is one the most

famous and widely used data mining technique for finding

most recurrent itemsets in large sized transactional databases.

Many methods are devised by researchers in this field to carry

out this task, some of these are Apriori, Partitioning approach

and Interval Intersection etc. In this paper, a new approach is

being proposed to find the frequent item sets using Interval

Intersection and Apriori Algorithm, which produces results in

parallel on several partitions of dataset. For representing the

item sets, interval sets are used and for calculating the support

count, interval intersection operation is used. The

experimental results indicate that the proposed approach is

accurate and produces results faster than Apriori Algorithm.

Keywords

Frequent Item set mining, A-priori, Partition Algorithm,

Interval Intersection, Support count.

1. INTRODUCTION
Frequent itemset mining is one of the most important tasks in

data mining. Algorithms like Apriori [1] use breadth first

search to find k-itemsets from (k-1)-itemsets. Apriori

Algorithm takes N-scans on the dataset to generate the

frequent itemsets of N size, therefore a lot of I/O cost is

incurred.

In Apriori Algorithm, while generating frequent itemsets, care

has to be taken to ensure that no redundant frequent itemsets

are generated. Also in Apriori Algorithm, to calculate the

support count of an item, whole dataset needs to be scanned.

To ensure this, a new technique is used known as interval

intersection [3], in which items are represented using

intervals. This new technique reduces the amount of memory

required and number of scans.

Apriori like algorithms take very large execution time due to

large number of scans. To reduce the execution time, the task

is performed in parallel on several partitions of the dataset.

The results are merged in a global data structure using merge

algorithm. Thus, frequent itemsets are generated using parallel

technique in only two scans of the dataset.

In this paper, a new approach to find frequent itemsets is

proposed which takes advantage of these three approaches. It

partitions the Dataset so as to process them in parallel,

deploys Apriori to find frequent Itemsets and represents the

intermediate itemsets by using interval intersection approach.

The rest of paper is organized as follows. Section 2 presents

some background history of frequent itemset mining. Section

3 describes the proposed algorithm. Section 4 shows the

results using example and finally, Section 5 concludes the

paper.

2. LITERATURE REVIEW
In this section, some of the prevalent methods for frequent

itemset mining are discussed in detail.

2.1 Frequent Itemset Mining
Frequent item set mining was first studied by R. Agarwal [1].

He analyzed supermarket transactional dataset and proposed

an algorithm known as Apriori Algorithm. Before defining

frequent item set mining, some basic terms [2] needs to be

defined such as:

Itemset I = {I1, I2……..,Im} is a set of m items.

Transaction set T = {T1,T2………,Tn} is a set of n

transactions, where Ti is a transaction consists of items such

that Ti  I. Itemsets can be any size, such as k-itemset is a set

of k items which are different to each other and belonging to

I. Now, frequent k-itemset can be defined as the itemset

having support count greater than or equal to the user

specified minimum support count (min_sup). So, the frequent

itemset problem is to find all the frequent k-item sets from the

dataset.

2.2 Apriori Algorithm
The Apriori Algorithm [1] is the very first and most widely

used frequent item set mining algorithm. This algorithm was

proposed by R. Agarwal in 1993 after analyzing the

supermarket transactional dataset. The algorithm is used to

find the frequent itemsets from datasets. This is a two phase

algorithm. In first phase, for generating 1-itemsets the dataset

is scanned. After generating the 1-itemsets, their support

count is calculated and items are pruned on the basis of

support count value. For k>=2, k-itemsets are generated by

joining the different (k-1)-itemsets until no further itemsets

can be generated. After generating all k-itemsets, their support

count value is calculated by scanning the dataset and only

those itemsets are retained whose support count value is

greater than min_sup (minimum support) value. There are

some limitations in the Apriori Algorithm such as it takes

many scans of the dataset and a lot of time is wasted in

calculating the support count because during each iteration

dataset is need to be scanned.

2.3 Partitioning Algorithm
The main idea of this algorithm is to partition the database.

Frequent items are found on the basis of dividing the dataset

into N-parts depending upon the size of dataset. As database

size becomes huge, so while finding the frequent item sets, the

dataset does not fit into the Main Memory. Partitioning

algorithm [4, 8, 9] overcomes the memory problem for large

databases by partitioning the database in small units such that

they fit well in main memory and processing can be done

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No.13, December 2016

11

efficiently. A key objective [5] of the partitioning algorithm is

to reduce the disk I/O as much as possible. A partition p is

subset of database D. This is a two phase algorithm.

1. First phase:

The database is divided logically such that no two partitions pi

and pj overlap i.e., (pi ∩ pj =ϕ, i≠j) and local item sets for all

partitions are determined. A large local item set may not be

large with respect to global database. At the end of phase-1,

all item sets are merged.

2. Second Phase:

Global support count is calculated for each item set and large

item sets are identified. An item set can be globally frequent

only if it is locally frequent in at least one partition. The

partition size is chosen such that each partition fit in main

memory and at least those item sets that are used for

generating the new large item sets can fit in main memory.

2.4 Interval Intersection
An interval [3, 6] defines a range between two real numbers

such as [a, b]. Let x be any real number in this interval then x

can be represented by a  x  b where a is starting number and

b is ending number of the interval. Intersection is an operation

on two intervals which is mathematically expressed as given:

For intervals X = [Xa, Xb] and Y = [Ya, Yb], the intersection

operation is denoted by X ∩ Y and shown as: {Z | Z  X and

Z  Y} = {max (Xa, Yb), min (Xb, Yb)}.

Interval intersection notation is used to represent the itemsets

so that minimum memory is used and least time is consumed

for calculating the support count. Another advantage of this

technique is that using this technique for calculating the

frequent itemsets, only two scans are required, so it reduces

the number of scans and make the process faster.

3. PROPOSED APPROACH
In this section, a new parallel approach to find frequent

itemsets is discussed. The new approach is based on the

interval intersection method and divides the dataset into

various partitions to find frequent itemsets in parallel. The

proposed algorithm is discussed as follows:

3.1 PFIMII: Parallel Frequent Itemset

Mining Algorithm
Input to this algorithm is, dataset D and Global minimum

support count which is given by user, is taken. The data

structures used are, SCL i.e. Support Count List and Negative

Border. SCL is used to store support count of each item set.

Negative border is used to store those item sets, which are

having less support count than the minimum support count.

Both the data structures are initialized to null. As already

discussed, the dataset size is huge so, N-partitions of the

dataset are created using the partitioning algorithm and on

each partition Interval Intersection algorithm is applied.

Interval Intersection is used to quickly calculate the support

count.

Now, as a result local frequent item sets are generated. These

local frequent item sets are combined to generate global

frequent item sets. After generating the global frequent item

sets, a global scan is required to check the support count of

frequent item sets against the value of Global minimum

support count. Item sets having less support count than global

minimum support count value are pruned and finally frequent

item sets are generated. Algorithm executes until no further

item sets can be generated. First all 1-item sets are generated

and their support count is calculated by scanning the dataset.

All the support counts are stored in support count list. Those

items whose support count is less than that of the minimum

support count value are put into negative border so that these

items can be used at the time of merging. Pseudo code is

given in Algorithm 1.

Algorithm: PFIMII(Dataset D, Gmin_sup)

Input: Dataset ‘D’ and Gmin_sup (Global min_sup).

Output: Frequent item set list. //Stored in FIL

SCL=NULL //Initialize Support count List;

N_Border = Null //Initialize negative border;

P=Partition (Dataset D) //partition dataset D into N parts.

Min_sup=Gmin_sup/N

for each partition p= 1 to N  P

{

Repeat until no further item sets are found i.e. FILk = ϕ

//FIL(frequent item set list)

{

for i = 1 to k //k length item sets;

{

scan the dataset and store the support counts in SCL i.e.

SCL=SCL Sup_count (Itemi)

while (SCL != empty)

{

 If(min_sup > SC(Itemi))

 N_Border= N_Border {Itemi }

 SCL= SCL-{Itemi}

}

for k>=2

Interval Intersection(Interval set A, interval set B, FIL)

Return FILp

}

}

}

Merge(FIL1, FIL2,……FILN,Gmin_sup)

Return (FIL).

Algorithm 1: PFIMII Algorithm

After first iteration onwards, Interval Intersection is used to

generate the frequent item sets. After generating the frequent

item sets for each partition, merging of results of each

partition is done using the merging algorithm. Finally the

results are stored in a list called as FIL i.e. frequent item set

list. Proposed algorithm (PFIMII) executes in parallel on

several partition of the dataset and it needs only two scans of

the dataset to generate the frequent item sets, thus provides

faster results as compared to other algorithms.

3.2 Merge Algorithm
Merge algorithm is used to combine the results from all the

partitions (partition-1, partition-2,……., partition-N) and the

result is stored in FIL (frequent item set list). The results of

each partition are stored in FIL1, FIL2…..FILN,

corresponding to each partition. Merge algorithm works by

first storing the results of partition-1 in FIL, which is the final

frequent itemset list and then each item set from partition-2 to

partition-N is taken and check against FIL. If the item set is

present in the FIL, its support count is added to support of

item set being checked and thus support count gets

incremented.

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No.13, December 2016

12

Algorithm: Merge (FIL1, FIL2,……FILN, Gmin_sup)

Input: Results of all the partitions. // FIL1, FIL2……FILN;

Output: List of frequent item sets. // Final results in FIL;

FIL=NULL //Initialize frequent item set list;

if (Itemi  FIL)

{

 SC(Itemi)= SC(Itemi).FIL + SC(Itemi).FILl

 // Support count is added;

}

Else

{

 FIL= FIL {Itemi} //Item is inserted in FIL

 while (FIL != empty)

 {

 if (SC(Itemi) > Gmin_Sup) //GMin_Sup is global min_sup

 Continue;

 else if (itemi  N_Border)

 SC (itemi)=SC(itemi).FILl + SC(Itemi).N_Border

 if(SC(itemi) > Gmin_Sup)

 continue

 else

 FIL= FIL – {Itemi} ;

 //Item is removed from the FIL;

 }

}

Algorithm 2: Merge algorithm

If the value of any item set is less than the value of Global

minimum support i.e. Gmin_sup, the itemset is checked in

Negative Border N_Border, if found there, its support count is

incremented by the value of support count of itemset present

in negative border. After this, it is again checked and if it is

more than the Global support count, itemset is placed in the

list FIL, otherwise it is discarded. The pseudo–code is shown

above in Algorithm 3.2.

3.3 Comparison Study
Proposed algorithm is compared with the Apriori Algorithm

[1]. The comparison is done in terms of number of scans of

dataset to generate the frequent item sets and the results i.e.

frequent item sets generated in each of the iteration and is

shown in Table 1.

Table 1. Comparison of Apriori and PFIMII Algorithm

Parameters Apriori

Algorithm

PFIMII

Algorithm

Complexity More complex due

to many number of
scans

Less complex due to

only two scans.

Number of Scans Three scans of the

dataset

Two scans of the

dataset

Results Same results as that
of the PFIMMI

Algorithm

Same as that of
Apriori Algorithm

In each of the iteration, the proposed algorithm is producing

the same results as that of the Apriori Algorithm. So, it is

obvious that proposed algorithm works accurately to generate

the frequent itemsets. The other advantage of proposed

algorithm over the Apriori Algorithm is that, Apriori needs a

number of scans while proposed algorithm needs only two

scans of the dataset to generate frequent item sets.

4. EXAMPLE DEMONSTRATION
To check the correctness of the proposed algorithm, in this

section an example is demonstrated using Apriori Algorithm

and proposed algorithm. The results of both the algorithms are

compared and it is observed that proposed algorithm is

correct.

In this example, a dataset, with 8 transactions and 6 items, is

taken. This example simulates the real time example, in which

transactions are denoted using integers and items are denoted

using alphabets. First the example is solved using the

proposed algorithm. For this, the dataset is divided into two

partitions, p1 and p2 each having 4 transactions. The

Gmin_sup (Global Minimum support count) value is 4. Value

of local support count is taken as 2 i.e. (Gmin_sup/Number of

partitions). First of all, the dataset is scanned to calculate the

support count for 1-item set where Support count is the value

for an item appearing in a number of transactions. Table 2 and

Table 3 show the partitions of the whole Dataset having 8

transactions.

Table 2. Partition-1 of the Dataset

TID Items

1 A, C, D, F

2 A, B, E

3 B, F

4 A, C, E, F

Thus for all items the values are calculated as:

A=3, B=2, C=2, D=1, E=2, F=3

After calculating the support count, pruning is done. Items

which are having less support count than that of the given

min_siup value are pruned. Here Support_count (D) <

min_sup, so ‘D’ is kept in negative border NB = {D}. Now

represent the items in interval set representation as:

A= [1, 2] [4, 4], B= [2, 3], C= [1, 1] [4, 4], E= [2, 2] [4, 4],

F=[1, 1] [3,4]

After representing the items in interval set representation, 2-

itemsets are generated from 1-itemsets using interval

intersection operation. Here the items generated are as follows

with their interval set representations:

AB= [2, 2], BE = [2, 2], AC= [1, 1] [4, 4], BF = [3, 3],

AE=[2,2] [4, 4], CE = [4, 4], AF= [1, 1] [4, 4], CF = [1,

1][4,4],BC=[], EF = [4, 4]

Now, calculate the support count of item sets using (1)

 (1)

where Endi, Starti are the ending and starting points in the

interval set. For example support count of AB is

Support count = (2 - 2 + 1) = 1.

In this iteration, item sets AB, BE, BF, CE and EF are having

support count=1 i.e. less than min-sup, so these are placed in

negative border NB= {D, AB, BE, BF, CE, EF}. In next

iteration, 3-itemsets are generated using interval intersection

operation of 2-itemsets. The 3-iemsets are as follows:

ACE = [4, 4], ACF = [1, 1] [4, 4], AEF = [4, 4]

Support count is calculated using (1) and item sets ACE and

AEF are having less support count than min-sup, so these are

placed in negative border NB= {D, AB, BE, BF, CE,

EF,ACE, AEF}.

Now there is only one frequent itemset i.e., ACF, so no

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No.13, December 2016

13

further itemsets can be generated because to generate next

level frequent item sets, two item sets are required. So, the

largest frequent itemset for partition-1 is ‘ACF’. Now, after

calculating frequent itemsets for partition-1, frequent item sets

for partition-2 (Table III) are calculated as follows:

Table 3. Partition-2 of the Dataset

TID ITEMS

1 A, D, E, F

2 A, B, E, F

3 A, C, F

4 A, C, E, F

Frequent itemsets for Partition-2 are generated using same

procedure as used for partition-1. So, the frequent itemsets are

given as:

{ACF, AEF}

Now, after finding the frequent item sets from all the

partitions, results are merged using the merging algorithm and

a global scan of the dataset is required to check the support

count of all the frequent item sets globally. For this, a global

array is taken and all the results of partition-1 are put into this

array. After this, items from each partition are taken one by

one and are checked against global array. If any item is

present in the global array, the value of the support count is

added to value of support count of item being checked;

otherwise the item is inserted as it is. Now, after putting all

the item sets in the global array, each item set is checked for

the global support count and if support count is found to be

less, the item is discarded; otherwise it is kept in the global

array which is the final result. {AEF} is having support count

3, so it is checked against the negative border. If item set

{AEF} is found in negative border its support count is

incremented by the value of the {AEF} in negative border.

Now its value is found to be 4, so the final frequent item sets

are {ACF, AEF}. Results are shown below in Table 4.

Table 4. Final results

ITEMS SUP_COUNT

A 7

C 4

E 5

F 7

AC 4

AE 5

AF 6

CF 4

EF 4

ACF 4

AEF 4

Now, after generating the frequent item sets using the

proposed algorithm, to verify the results of the propose

algorithm, frequent item sets using the Apriori algorithm have

also been found. Apriori Algorithm [1] works in two steps.

First step is to generate the frequent item sets and the second

step is to prune the item sets which are having less support

count than minimum support count value. First of support

count of all 1-item sets is calculated by scanning the dataset.

After calculating the support count items are pruned. Now,

(k+1) item sets are generated from k-item sets. According to

Apriori algorithm, only those k-item sets can be combined

whose (k-1) items are same i.e. ABC and ABE can be

combined to generate ABCE because AB i.e. length (k-1) is

same in both item sets. After generating the (k+1)-item sets,

dataset is scanned to calculate the support count for newly

generated item sets and items sets having less support count

than that of minimum support count value are pruned. This

whole process is repeated until no further item sets can be

generated. The process is explained using the following

example (Table 5).

Table 5. Example Global dataset

TID ITEMS
1 A, C, D, F

2 A, B, E

3 B, F

4 A, C, E, F

5 A, D, E, F

6 A, B, E, F

7 A, C, F

8 A, C, E, F

There are basically two steps in Apriori, first is scanning and

pruning and second is joining. First Ck is generated by

scanning the dataset and calculating the support count for

each item. After that those items having support count less

than min_sup are pruned and result is stored in Lk.

Now L1 is self-joined to generate 2-itemsets and C2 is

returned. According to Apriori principle two item sets can

only be joined if their (k-1) items are same.

In L1, each element is having length-1, so each item is joined

every other item and C2 is generated. Now those item sets

having less support count than min_sup are pruned and result

is stored in L2. This whole process is shown below in Table 6

(a, b, c, d, e, f).

Now L2 is self-joined and C3 is generated. In self-joining

procedure, only the item sets which are having same (k-1)-

items, can be joined. For example, in L2 item AC and AE can

be joined because (k-1)-items are same i.e., A. After joining

the item sets C3 is generated and items are pruned from C3

and L3 is produced as:

Table 6. Step by Step Demonstration of Apriori

ITEMS SUP_ COUNT

A 7

B 2

C 4

D 2

 E 5

F 7

(a) C1: Candidate Generation

ITEMS SUP_ COUNT

A 7

C 4

E 5

F 7

(b) L1: Pruned Set

ITEMS SUP_COUNT

AC 4

AE 5

AF 6

CE 2

CF 4

EF 4

(c) C2: Candidate Generation

ITEMS SUP_ COUNT

AC 4

AE 5

AF 6

CF 4

EF 4

(d) L2: Pruned Set

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No.13, December 2016

14

ITEMS SUP_COUNT

ACE 2

ACF 4

AEF 4

(e) C3: Candidate Generation

ITEMS SUP_COUNT

ACF 4

AEF 4

(f) L3: Pruned Set

After generating L3, further no item sets can be generated, so

ACF and AEF are final frequent item sets. Finally the

frequent item sets which are produced using Apriori algorithm

are shown in Table 7.

Table 7. Frequent Item sets using Apriori

ITEMS SUP_ COUNT

A 7

C 4

E 5

F 7

AC 4

AE 5

AF 6

CF 4

EF 4

ACF 4

AEF 4

5. EXPERIMENTAL RESULTS
In this section, the performance of proposed algorithm is

compared with Apriori Algorithm on the basis of produced

results and execution time. The details are discussed below.

5.1 Experimental Environment
All the experiments are performed on a personal laptop with

Intel Core2Duo 1.8 GHz processor, 2GB Primary Memory

and 32-bit Windows operating System. Example Dataset is

created manually which is described in the next section.

Apriori Algorithm and Proposed algorithm are implemented

using jdk1.8.0_51 version. In the experimental study, the

effects of database size on the execution time and produced

results by both of the algorithms are analyzed.

5.2 Dataset
Dataset consists of item sets represented using binary digits 0

and 1. 1 represents the presence of an item and 0 represents

absence of an item. Numbers of rows are considered as total

number of transaction. Numbers of columns are taken as total

number of items in dataset. Numbers of transactions are taken

in corresponding to the configuration file. To calculate the

support count, numbers of ones are counted. This is a small

dataset, consisting of only thirty transactions. Large sized

datasets can be created using online data generators. Dataset is

shown in the Fig. 1.

Fig. 1: Example Dataset

5.3 Performance comparison based on

Execution Time
Performance comparison is done on the basis of execution

time which in turn depends on the size of the dataset. In this

experiment, different sized databases are taken. The value of

minimum support count is taken as 40% of the number of

transactions. The comparison is shown in the Fig. 2.

Fig. 2: Execution Time Comparison

Both the algorithms are executed on different sized datasets

and execution time and results are compared. The results

produced by both the algorithms are same as shown in section

IV using an example. Here execution time based on different

sized databases is compared. It is clearly shown that Proposed

Algorithm takes less time as compared to Apriori Algorithm.

The algorithms are compared on a very small dataset, but they

can also be executed on large sized databases.

6. CONCLUSION AND FUTURE SCOPE
In this paper, a new algorithm is proposed, which tries to

avoid identified problems and makes the process of finding

frequent item sets efficient. Proposed algorithm creates many

partitions of the dataset and performs the task of finding

frequent item sets in parallel on each partition. Many of the

previous algorithms make multiple scans of the dataset to

determine the support count and frequent item sets. This

makes the process time consuming and inefficient. But,

proposed work takes only two scans of the dataset, thus makes

the task less complex and efficient. Algorithm performs the

task of frequent item sets in parallel on various partitions of

the dataset which makes it faster. In future, the bit vector

methods can be utilized to increase the efficiency of proposed

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No.13, December 2016

15

algorithm.

7. REFERENCES
[1] Aggaraval R; Imielinski.t; Swami.A. “Mining

Association Rules between Sets of Items in Large

Databases”. ACM SIGMOD Conference. Washington

DC, USA, 2013.

[2] Jiawei Han And Micheline kamber, “Frequent item set

mining methods”, Data Mining concepts and techniques.

[3] Moore,R. E, R. Baker Kearfott and M. J. Cloud,

“Introduction to interval analysis”, Siam,2009

[4] Siddharth Shah, N. C. chauhan, S. D. Bhanderi,

“Incremental Mining of association rule: a survey”,

International journal of computer science and

information technology, vol. 3(3), 2012, 4071-4074

[5] H. Li, Yi Wang, D. Zhang. PFP: Parallel FP-Growth for

Recommendation, Proceedings of the 2008 ACM

conference on Recommender systems, October. 2008,pp.

23-2.

[6] Yungho-Leu, Vania Utami, “A new frequent item set

mining algorithm based on interval intersection” in

proceedings of Conference on machine learning and

cybernatics, guangzhou 12-15 April, 2015.

[7] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta,

“Discovering frequent patterns in sensitive data,” in

Proc. 16th ACM SIGKDD Int. Conf. Knowl.

DiscoveryData Mining, 2010, pp. 503–512.

[8] Ashok Savasere, Edward Omiecinski, Shamkant

Navathe, “An efficient algorithm

for mining association rules in large databases”, College

of computing, Georgia Institute of Technology 2010.

[9] D. Cheung, J. Han, V. Ng, and C. Y. Wong. Large

Databases: An Incremental Updating Technique.

Proceedings of the 12th International Conference on Data

Engineering, pages 106—114, February 1996.

IJCATM : www.ijcaonline.org

