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ABSTRACT 

Data Mining techniques are helpful to uncover the hidden 

predictive patterns from large masses of data. Frequent item 

set mining also called Market Basket Analysis is one the most 

famous and widely used data mining technique for finding 

most recurrent itemsets in large sized transactional databases. 

Many methods are devised by researchers in this field to carry 

out this task, some of these are Apriori, Partitioning approach 

and Interval Intersection etc. In this paper, a new approach is 

being proposed to find the frequent item sets using Interval 

Intersection and Apriori Algorithm, which produces results in 

parallel on several partitions of dataset. For representing the 

item sets, interval sets are used and for calculating the support 

count, interval intersection operation is used. The 

experimental results indicate that the proposed approach is 

accurate and produces results faster than Apriori Algorithm.  
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1. INTRODUCTION 
Frequent itemset mining is one of the most important tasks in 

data mining. Algorithms like Apriori [1] use breadth first 

search to find k-itemsets from (k-1)-itemsets. Apriori 

Algorithm takes N-scans on the dataset to generate the 

frequent itemsets of N size, therefore a lot of I/O cost is 

incurred. 

In Apriori Algorithm, while generating frequent itemsets, care 

has to be taken to ensure that no redundant frequent itemsets 

are generated. Also in Apriori Algorithm, to calculate the 

support count of an item, whole dataset needs to be scanned. 

To ensure this, a new technique is used known as interval 

intersection [3], in which items are represented using 

intervals. This new technique reduces the amount of memory 

required and number of scans. 

Apriori like algorithms take very large execution time due to 

large number of scans. To reduce the execution time, the task 

is performed in parallel on several partitions of the dataset. 

The results are merged in a global data structure using merge 

algorithm. Thus, frequent itemsets are generated using parallel 

technique in only two scans of the dataset. 

In this paper, a new approach to find frequent itemsets is 

proposed which takes advantage of these three approaches. It 

partitions the Dataset so as to process them in parallel, 

deploys Apriori to find frequent Itemsets and represents the 

intermediate itemsets by using interval intersection approach. 

The rest of paper is organized as follows. Section 2 presents 

some background history of frequent itemset mining. Section 

3 describes the proposed algorithm. Section 4 shows the 

results using example and finally, Section 5 concludes the 

paper.  

2. LITERATURE REVIEW 
In this section, some of the prevalent methods for frequent 

itemset mining are discussed in detail. 

2.1 Frequent Itemset Mining 
Frequent item set mining was first studied by R. Agarwal [1]. 

He analyzed supermarket transactional dataset and proposed 

an algorithm known as Apriori Algorithm. Before defining 

frequent item set mining, some basic terms [2] needs to be 

defined such as: 

Itemset I = {I1, I2……..,Im} is a set of m items. 

Transaction set T = {T1,T2………,Tn} is a set of n 

transactions, where Ti is a transaction consists of items such 

that Ti  I. Itemsets can be any size, such as k-itemset is a set 

of k items which are different to each other and belonging to 

I. Now, frequent k-itemset can be defined as the itemset 

having support count greater than or equal to the user 

specified minimum support count (min_sup). So, the frequent 

itemset problem is to find all the frequent k-item sets from the 

dataset. 

2.2 Apriori Algorithm 
The Apriori Algorithm [1] is the very first and most widely 

used frequent item set mining algorithm. This algorithm was 

proposed by R. Agarwal in 1993 after analyzing the 

supermarket transactional dataset. The algorithm is used to 

find the frequent itemsets from datasets. This is a two phase 

algorithm. In first phase, for generating 1-itemsets the dataset 

is scanned. After generating the 1-itemsets, their support 

count is calculated and items are pruned on the basis of 

support count value. For k>=2, k-itemsets are generated by 

joining the different (k-1)-itemsets until no further itemsets 

can be generated. After generating all k-itemsets, their support 

count value is calculated by scanning the dataset and only 

those itemsets are retained whose support count value is 

greater than min_sup (minimum support) value. There are 

some limitations in the Apriori Algorithm such as it takes 

many scans of the dataset and a lot of time is wasted in 

calculating the support count because during each iteration 

dataset is need to be scanned. 

2.3 Partitioning Algorithm 
The main idea of this algorithm is to partition the database. 

Frequent items are found on the basis of dividing the dataset 

into N-parts depending upon the size of dataset. As database 

size becomes huge, so while finding the frequent item sets, the 

dataset does not fit into the Main Memory. Partitioning 

algorithm [4, 8, 9] overcomes the memory problem for large 

databases by partitioning the database in small units such that 

they fit well in main memory and processing can be done 
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efficiently. A key objective [5] of the partitioning algorithm is 

to reduce the disk I/O as much as possible. A partition p is 

subset of database D. This is a two phase algorithm.  

1. First phase: 

The database is divided logically such that no two partitions pi 

and pj overlap i.e., (pi ∩  pj =ϕ, i≠j) and  local item sets for all 

partitions are determined. A large local item set may not be 

large with respect to global database. At the end of phase-1, 

all item sets are merged.  

2. Second Phase:  

Global support count is calculated for each item set and large 

item sets are identified. An item set can be globally frequent 

only if it is locally frequent in at least one partition. The 

partition size is chosen such that each partition fit in main 

memory and at least those item sets that are used for 

generating the new large item sets can fit in main memory. 

2.4  Interval Intersection 
An interval [3, 6] defines a range between two real numbers 

such as [a, b]. Let x be any real number in this interval then x 

can be represented by a  x  b where a is starting number and 

b is ending number of the interval. Intersection is an operation 

on two intervals which is mathematically expressed as given: 

For intervals X = [Xa, Xb] and Y = [Ya, Yb], the intersection 

operation is denoted by X ∩ Y and shown as:  {Z | Z  X and 

Z  Y} = {max (Xa, Yb), min (Xb, Yb)}.  

Interval intersection notation is used to represent the itemsets 

so that minimum memory is used and least time is consumed 

for calculating the support count. Another advantage of this 

technique is that using this technique for calculating the 

frequent itemsets, only two scans are required, so it reduces 

the number of scans and make the process faster. 

3. PROPOSED APPROACH 
In this section, a new parallel approach to find frequent 

itemsets is discussed. The new approach is based on the 

interval intersection method and divides the dataset into 

various partitions to find frequent itemsets in parallel. The 

proposed algorithm is discussed as follows: 

3.1 PFIMII: Parallel Frequent Itemset 

Mining Algorithm 
Input to this algorithm is, dataset D and Global minimum 

support count which is given by user, is taken. The data 

structures used are, SCL i.e. Support Count List and Negative 

Border. SCL is used to store support count of each item set. 

Negative border is used to store those item sets, which are 

having less support count than the minimum support count. 

Both the data structures are initialized to null. As already 

discussed, the dataset size is huge so, N-partitions of the 

dataset are created using the partitioning algorithm and on 

each partition Interval Intersection algorithm is applied. 

Interval Intersection is used to quickly calculate the support 

count.  

Now, as a result local frequent item sets are generated. These 

local frequent item sets are combined to generate global 

frequent item sets. After generating the global frequent item 

sets, a global scan is required to check the support count of 

frequent item sets against the value of Global minimum 

support count. Item sets having less support count than global 

minimum support count value are pruned and finally frequent 

item sets are generated. Algorithm executes until no further 

item sets can be generated. First all 1-item sets are generated 

and their support count is calculated by scanning the dataset. 

All the support counts are stored in support count list. Those 

items whose support count is less than that of the minimum 

support count value are put into negative border so that these 

items can be used at the time of merging. Pseudo code is 

given in Algorithm 1. 

Algorithm: PFIMII(Dataset D, Gmin_sup) 

Input: Dataset ‘D’ and Gmin_sup (Global min_sup). 

Output: Frequent item set list.                //Stored in FIL  

SCL=NULL //Initialize Support count List; 

N_Border = Null //Initialize negative border; 

P=Partition (Dataset D)      //partition dataset D into N parts. 

Min_sup=Gmin_sup/N 

for each partition p= 1 to N  P 

{ 

Repeat until no further item sets are found i.e. FILk = ϕ 

//FIL(frequent item set list) 

{ 

for i = 1 to k  //k length item sets; 

{ 

scan the dataset and store the support counts in SCL i.e. 

SCL=SCL  Sup_count (Itemi) 

while (SCL != empty) 

{ 

 If( min_sup > SC(Itemi)) 

 N_Border= N_Border    {Itemi } 

 SCL= SCL-{Itemi} 

} 

for k>=2 

Interval Intersection(Interval set A, interval set B, FIL) 

Return FILp 

} 

} 

} 

Merge(FIL1, FIL2,……FILN,Gmin_sup) 

Return (FIL). 

Algorithm 1: PFIMII Algorithm 

After first iteration onwards, Interval Intersection is used to 

generate the frequent item sets. After generating the frequent 

item sets for each partition, merging of results of each 

partition is done using the merging algorithm. Finally the 

results are stored in a list called as FIL i.e. frequent item set 

list. Proposed algorithm (PFIMII) executes in parallel on 

several partition of the dataset and it needs only two scans of 

the dataset to generate the frequent item sets, thus provides 

faster results as compared to other algorithms. 

3.2 Merge Algorithm 
Merge algorithm is used to combine the results from all the 

partitions (partition-1, partition-2,……., partition-N) and the 

result is stored in FIL (frequent item set list). The results of 

each partition are stored in FIL1, FIL2…..FILN, 

corresponding to each partition. Merge algorithm works by 

first storing the results of partition-1 in FIL, which is the final 

frequent itemset list and then each item set from partition-2 to 

partition-N is taken and check against FIL. If the item set is 

present in the FIL, its support count is added to support of 

item set being checked and thus support count gets 

incremented.
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Algorithm: Merge (FIL1, FIL2,……FILN, Gmin_sup) 

Input: Results of all the partitions.      // FIL1, FIL2……FILN; 

Output: List of frequent item sets.      // Final results in FIL; 

FIL=NULL  //Initialize frequent item set list; 

if (Itemi   FIL) 

{ 

  SC(Itemi)= SC(Itemi).FIL + SC(Itemi).FILl      

 // Support count is added; 

} 

Else 

{ 

  FIL= FIL     {Itemi}               //Item is inserted in FIL 

  while (FIL != empty) 

 { 

   if (SC(Itemi) > Gmin_Sup) //GMin_Sup is global min_sup 

     Continue; 

   else if ( itemi  N_Border) 

     SC (itemi)=SC(itemi).FILl + SC(Itemi).N_Border 

   if(SC(itemi) > Gmin_Sup) 

     continue 

   else  

     FIL= FIL – {Itemi} ;            

 //Item is removed from the FIL; 

  } 

} 

Algorithm 2: Merge algorithm 

If the value of any item set is less than the value of Global 

minimum support i.e. Gmin_sup, the itemset is checked in 

Negative Border N_Border, if found there, its support count is 

incremented by the value of support count of itemset present 

in negative border. After this, it is again checked and if it is 

more than the Global support count, itemset is placed in the 

list FIL, otherwise it is discarded.  The pseudo–code is shown 

above in Algorithm 3.2. 

3.3 Comparison Study 
Proposed algorithm is compared with the Apriori Algorithm 

[1]. The comparison is done in terms of number of scans of 

dataset to generate the frequent item sets and the results i.e. 

frequent item sets generated in each of the iteration and is 

shown in Table 1.   

Table 1. Comparison of Apriori and PFIMII Algorithm 

Parameters Apriori 

Algorithm 

PFIMII 

Algorithm 

Complexity More complex due 

to many number of 
scans 

Less complex due to 

only two scans.  

Number of Scans Three scans of the 

dataset 

Two scans of the 

dataset 

Results Same results as that 
of the PFIMMI 

Algorithm 

Same as that of 
Apriori Algorithm 

 

In each of the iteration, the proposed algorithm is producing 

the same results as that of the Apriori Algorithm. So, it is 

obvious that proposed algorithm works accurately to generate 

the frequent itemsets. The other advantage of proposed 

algorithm over the Apriori Algorithm is that, Apriori needs a 

number of scans while proposed algorithm needs only two 

scans of the dataset to generate frequent item sets. 

 

4. EXAMPLE DEMONSTRATION 
To check the correctness of the proposed algorithm, in this 

section an example is demonstrated using Apriori Algorithm 

and proposed algorithm. The results of both the algorithms are 

compared and it is observed that proposed algorithm is 

correct. 

In this example, a dataset, with 8 transactions and 6 items, is 

taken. This example simulates the real time example, in which 

transactions are denoted using integers and items are denoted 

using alphabets. First the example is solved using the 

proposed algorithm. For this, the dataset is divided into two 

partitions, p1 and p2 each having 4 transactions. The 

Gmin_sup (Global Minimum support count) value is 4. Value 

of local support count is taken as 2 i.e. (Gmin_sup/Number of 

partitions). First of all, the dataset is scanned to calculate the 

support count for 1-item set where Support count is the value 

for an item appearing in a number of transactions. Table 2 and 

Table 3 show the partitions of the whole Dataset having 8 

transactions. 

Table 2.  Partition-1 of the Dataset 

TID Items 

1 A, C, D, F 

2 A, B, E 

3 B, F 

4 A, C, E, F                                              

Thus for all items the values are calculated as:  

A=3, B=2, C=2, D=1, E=2, F=3  

After calculating the support count, pruning is done. Items 

which are having less support count than that of the given 

min_siup value are pruned. Here Support_count (D) < 

min_sup, so ‘D’ is kept in negative border NB = {D}. Now 

represent the items in interval set representation as: 

A= [1, 2] [4, 4], B= [2, 3], C= [1, 1] [4, 4], E= [2, 2] [4, 4], 

F=[1, 1] [3,4] 

After representing the items in interval set representation, 2-

itemsets are generated from 1-itemsets using interval 

intersection operation. Here the items generated are as follows 

with their interval set representations: 

AB= [2, 2], BE = [2, 2], AC= [1, 1] [4, 4], BF = [3, 3], 

AE=[2,2] [4, 4], CE = [4, 4], AF= [1, 1] [4, 4], CF = [1, 

1][4,4],BC=[], EF = [4, 4] 

Now, calculate the support count of item sets using (1) 

                          
                   (1) 

where Endi, Starti are the ending and starting points in the 

interval set. For example support count of AB is  

Support count = (2 - 2 + 1) = 1. 

In this iteration, item sets AB, BE, BF, CE and EF are having 

support count=1 i.e. less than min-sup, so these are placed in 

negative border NB= {D, AB, BE, BF, CE, EF}. In next 

iteration, 3-itemsets are generated using interval intersection 

operation of 2-itemsets. The 3-iemsets are as follows: 

ACE = [4, 4], ACF = [1, 1] [4, 4], AEF = [4, 4] 

Support count is calculated using (1) and item sets ACE and 

AEF are having less support count than min-sup, so these are 

placed in negative border NB= {D, AB, BE, BF, CE, 

EF,ACE, AEF}.  

Now there is only one frequent itemset i.e., ACF, so no 
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further itemsets can be generated because to generate next 

level frequent item sets, two item sets are required. So, the 

largest frequent itemset for partition-1 is ‘ACF’. Now, after 

calculating frequent itemsets for partition-1, frequent item sets 

for partition-2 (Table III) are calculated as follows: 

Table 3. Partition-2 of the Dataset 

TID ITEMS 

1  A, D, E, F 

2 A, B, E, F 

3 A, C, F 

4 A, C, E, F 

Frequent itemsets for Partition-2 are generated using same 

procedure as used for partition-1. So, the frequent itemsets are 

given as: 

{ACF, AEF} 

Now, after finding the frequent item sets from all the 

partitions, results are merged using the merging algorithm and 

a global scan of the dataset is required to check the support 

count of all the frequent item sets globally. For this, a global 

array is taken and all the results of partition-1 are put into this 

array. After this, items from each partition are taken one by 

one and are checked against global array. If any item is 

present in the global array, the value of the support count is 

added to value of support count of item being checked; 

otherwise the item is inserted as it is. Now, after putting all 

the item sets in the global array, each item set is checked for 

the global support count and if support count is found to be 

less, the item is discarded; otherwise it is kept in the global 

array which is the final result. {AEF} is having support count 

3, so it is checked against the negative border. If item set 

{AEF} is found in negative border its support count is 

incremented by the value of the {AEF} in negative border. 

Now its value is found to be 4, so the final frequent item sets 

are {ACF, AEF}. Results are shown below in Table 4. 

Table 4. Final results 

ITEMS SUP_COUNT 

A 7 

C 4 

E 5 

F 7 

AC 4 

AE 5 

AF 6 

CF 4 

EF 4 

ACF 4 

AEF 4 

 

Now, after generating the frequent item sets using the 

proposed algorithm, to verify the results of the propose 

algorithm, frequent item sets using the Apriori algorithm have 

also been found. Apriori Algorithm [1] works in two steps. 

First step is to generate the frequent item sets and the second 

step is to prune the item sets which are having less support 

count than minimum support count value. First of support 

count of all 1-item sets is calculated by scanning the dataset. 

After calculating the support count items are pruned. Now, 

(k+1) item sets are generated from k-item sets. According to 

Apriori algorithm, only those k-item sets can be combined 

whose (k-1) items are same i.e. ABC and ABE can be 

combined to generate ABCE because AB i.e. length (k-1) is 

same in both item sets. After generating the (k+1)-item sets, 

dataset is scanned to calculate the support count for newly 

generated item sets and items sets having less support count 

than that of minimum support count value are pruned. This 

whole process is repeated until no further item sets can be 

generated. The process is explained using the following 

example (Table 5).  

Table 5. Example Global dataset 

TID ITEMS 
1 A, C, D, F 

2 A, B, E 

3 B, F 

4 A, C, E, F                                              

5 A, D, E, F 

6 A, B, E, F 

7 A, C, F 

8 A, C, E, F 

 

There are basically two steps in Apriori, first is scanning and 

pruning and second is joining. First Ck is generated by 

scanning the dataset and calculating the support count for 

each item. After that those items having support count less 

than min_sup are pruned and result is stored in Lk.  

Now L1 is self-joined to generate 2-itemsets and C2 is 

returned. According to Apriori principle two item sets can 

only be joined if their (k-1) items are same.  

In L1, each element is having length-1, so each item is joined 

every other item and C2 is generated. Now those item sets 

having less support count than min_sup are pruned and result 

is stored in L2. This whole process is shown below in Table 6 

(a, b, c, d, e, f). 

Now L2 is self-joined and C3 is generated. In self-joining 

procedure, only the item sets which are having same (k-1)-

items, can be joined. For example, in L2 item AC and AE can 

be joined because (k-1)-items are same i.e., A. After joining 

the item sets C3 is generated and items are pruned from C3 

and L3 is produced as: 

Table 6. Step by Step Demonstration of Apriori 

ITEMS SUP_ COUNT 

A 7 

B 2 

C 4 

D 2 

 E 5 

F 7 

(a) C1: Candidate Generation 

ITEMS SUP_ COUNT 

A 7 

C 4 

E 5 

F 7 

(b) L1: Pruned Set 

ITEMS SUP_COUNT 

AC 4 

AE 5 

AF 6 

CE 2 

CF 4 

EF 4 

(c) C2: Candidate Generation 

ITEMS SUP_ COUNT 

AC 4 

AE 5 

AF 6 

CF 4 

EF 4 

(d) L2: Pruned Set 
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ITEMS SUP_COUNT 

ACE 2 

ACF 4 

AEF 4 

(e) C3: Candidate Generation 

ITEMS SUP_COUNT 

ACF 4 

AEF 4 

(f) L3: Pruned Set 

After generating L3, further no item sets can be generated, so 

ACF and AEF are final frequent item sets. Finally the 

frequent item sets which are produced using Apriori algorithm 

are shown in Table 7. 

Table 7.  Frequent Item sets using Apriori 

ITEMS SUP_ COUNT 

A 7 

C 4 

E 5 

F 7 

AC 4 

AE 5 

AF 6 

CF 4 

EF 4 

ACF 4 

AEF 4 

 

5. EXPERIMENTAL RESULTS 
In this section, the performance of proposed algorithm is 

compared with Apriori Algorithm on the basis of produced 

results and execution time. The details are discussed below. 

5.1 Experimental Environment 
All the experiments are performed on a personal laptop with 

Intel Core2Duo 1.8 GHz processor, 2GB Primary Memory 

and 32-bit Windows operating System. Example Dataset is 

created manually which is described in the next section. 

Apriori Algorithm and Proposed algorithm are implemented 

using jdk1.8.0_51 version. In the experimental study, the 

effects of database size on the execution time and produced 

results by both of the algorithms are analyzed. 

5.2 Dataset  
Dataset consists of item sets represented using binary digits 0 

and 1. 1 represents the presence of an item and 0 represents 

absence of an item. Numbers of rows are considered as total 

number of transaction. Numbers of columns are taken as total 

number of items in dataset. Numbers of transactions are taken 

in corresponding to the configuration file. To calculate the 

support count, numbers of ones are counted. This is a small 

dataset, consisting of only thirty transactions. Large sized 

datasets can be created using online data generators. Dataset is 

shown in the Fig. 1. 

 

Fig. 1: Example Dataset 

5.3 Performance comparison based on 

Execution Time 
Performance comparison is done on the basis of execution 

time which in turn depends on the size of the dataset. In this 

experiment, different sized databases are taken. The value of 

minimum support count is taken as 40% of the number of 

transactions. The comparison is shown in the Fig. 2. 

 

Fig. 2: Execution Time Comparison 

Both the algorithms are executed on different sized datasets 

and execution time and results are compared. The results 

produced by both the algorithms are same as shown in section 

IV using an example. Here execution time based on different 

sized databases is compared. It is clearly shown that Proposed 

Algorithm takes less time as compared to Apriori Algorithm. 

The algorithms are compared on a very small dataset, but they 

can also be executed on large sized databases. 

6. CONCLUSION AND FUTURE SCOPE 
In this paper, a new algorithm is proposed, which tries to 

avoid identified problems and makes the process of finding 

frequent item sets efficient. Proposed algorithm creates many 

partitions of the dataset and performs the task of finding 

frequent item sets in parallel on each partition. Many of the 

previous algorithms make multiple scans of the dataset to 

determine the support count and frequent item sets. This 

makes the process time consuming and inefficient. But, 

proposed work takes only two scans of the dataset, thus makes 

the task less complex and efficient. Algorithm performs the 

task of frequent item sets in parallel on various partitions of 

the dataset which makes it faster.  In future, the bit vector 

methods can be utilized to increase the efficiency of proposed 
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algorithm. 
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