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ABSTRACT

Multi-robot patrolling is the problem of repeatedly visiting a group
of regions of interest in an environment with a group of robots
to prevent intrusion. Early works have proposed deterministic pa-
trolling algorithms which could be learned by an adversary observ-
ing them over time. More recent works provide non-deterministic
patrolling schemes which only work for perimeter patrolling and
require coordination and synchronization. In this paper, we inves-
tigate the problem of finding robust and scalable strategies for
multi-robot patrolling under an adversarial environment. So, we
present algorithms to find different decentralized strategies for a
patroller in the form of Markov chains which use convex opti-
mization to minimize the average commute time for an environ-
ment, a subset of the environment, or a specific region of an en-
vironment when we use uniform distribution over all regions for
both patroller and adversary. Additionally, we use these strate-
gies in a game theoretical setup to form a payoff matrix to ob-
tain an optimal mixed strategy for patroller. We also propose
an algorithm to find a decentralized strategy for patroller in the
form of Markov chain which converges very fast as it is the op-
timal response from patroller against the adversary when we use
non-uniform distribution over all the regions for both patroller
and adversary. Our results show the scalability and applicability
of our approach in different types of environments. Despite the
lack of synchronization and coordination among patrollers, our
approach performs competitively compared to existing methods.
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1. INTRODUCTION

Patrolling is the problem of repeatedly visiting a group of regions
in an environment. This problem has applications in different areas
such as environmental monitoring, infrastructure surveillance, and
border security. In its multi-agent version, the action of patrolling
is carried out by multiple robots as patrollers working together to
ensure the safety of the area under surveillance. In its adversarial
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Fig. 1: An example patrolling scenario with eight different regions and
connections among the regions

setup, one or more adversaries always try to penetrate the envi-
ronment being patrolled by observing patroller?s strategies and pa-
trollers do not know where adversaries are going to attack. These
make the problem difficult and interesting to address. Patrolling
schemes can be further categorized into perimeter patrolling and
area patrolling, where perimeter patrolling is a subset of area pa-
trolling. The focus of this work is area patrolling.

An example of a patrolling scenario has been demonstrated in Fig-
ure [I] The patrolling environment is given as a undirected graph
where patrollers will have to patrol the different regions (vertices)
across the connections (edges) among the regions. In this work, we
consider both uniform and non-uniform distribution over all the re-
gions (vertices) for both patroller and adversary. This problem is
challenging to handle because if we use deterministic approaches
based on the frequencies of visits to different regions of the envi-
ronment, then it is easy for adversaries to penetrate the environ-
ment. Again, if we use multiple patrollers and we consider the syn-
chronous and coordinated movement of those patrollers then these
types of patrolling strategies are expensive in terms of computation.
However, with a non-deterministic strategy, patrolling robots would
move randomly around the graph, making it much more difficult
for the adversary to effectively choose where to penetrate in the en-
vironment. Moreover, randomized strategies do not need the syn-
chronization, communication or coordination among the patrollers
following these strategies.

Taking the inspiration from the presence of adversaries and the
need for unpredictability, Agmon et al. present perimeter patrolling
strategies based on Markov chain models that maximize the proba-
bility of detecting an adversary [1} 2 |3]. In this stream of research,



only cyclic graphs were considered, and the robots have to be syn-
chronized and coordinated, which may prevent practical deploy-
ments of these strategies. Furthermore, all robots have to be placed
in known locations and with equal distance apart in the environ-
ment. Sak et al. [4]] consider an empirical non-deterministic ap-
proach for general graphs rather than a perimeter. However, only
experimental results were presented without formalization or algo-
rithmic details.

The problem of patrolling in the presence of adversaries can also be
formulated as a Bayesian Stackelberg Game. However, this prob-
lem of choosing an optimal strategy for the patroller to commit to
in a Bayesian Stackelberg Game is NP-hard [3S]. So, we have ap-
plied an efficient method for finding optimal mixed strategies for
patroller in such games. In this game theoretical setting, the pa-
troller first commits to an optimal mixed strategy generated through
DOBSS (Decomposed Optimal Bayesian Stackelberg Solver) [6]
where each strategy is a path in a fully connected graph. Once
the patroller has decided its mixed strategy, the adversary uses the
knowledge of the mixed strategy to choose a region to attack. One
of the potential drawbacks of this approach is that the set of strate-
gies (paths) should be chosen a priori from a large set of possible
paths and the particular connectivity of the graph is not studied in
detailed.

Our work is inspired by the work of minimizing the effective re-
sistance of a graph through convex optimization. This work finds
its original motivation in electrical networks where the solution is
a measure of how well “connected” the network is [7]]. The concept
of effective resistance can be applied to Markov chains where min-
imizing the resistance between vertices on a graph corresponds to
minimizing the commute times between vertices. With this applica-
tion, robots patrolling on a graph with Markov chains would be able
to quickly travel between every pair of vertices when we consider
a uniform distribution of cost over all vertices. On the other hand,
for non-uniform distribution of cost over all vertices, this work cor-
responds to the problem of finding fastest mixing Markov chain
for any graph through convex optimization. This problem finds the
probabilities to the edges of the graph in such a way that it min-
imizes the second largest eigenvalue modulus (SLEM) [8]. The
problem of finding fastest mixing Markov chain is equivalent to the
minimization of SLEM because the rate of convergence to the nor-
mal distribution of Markov chain is the mixing rate of the Markov
chain. In the work of Boyd [9], he addresses the problem of choos-
ing the edge weights of an undirected graph so as to maximize or
minimize some function of eigenvalues of the associated Laplacian
matrix subject to some constraints on the weights, such as nonneg-
ativity or a given total value.

The purpose of our work is fourfold. First, we would like to ex-
tend current ideas into a more general class of graphs. The previ-
ous perimeter ideas can be extended to general graphs but this will
first need finding a Hamiltonian cycle which is an NP-complete
problem. Second, we would like to remove the need for commu-
nication, synchronization, and known initial placement of the ran-
domized patrolling strategies. This will allow patrolling algorithms
to be implemented with simple robots, in a decentralized fashion,
and in communication denied environments. Third, we would like
to propose patrolling algorithms for the case of both same or dif-
ferent preferences over the regions in the environment which lead
us to consider either uniform distribution of over regions in the en-
vironment for both patroller and adversary. Fourth, we would like
to adapt the game theoretical setup [6] to use Markov chains in-
stead of deterministic strategies and to be applied to different sets
of graphs.
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Randomized strategies based on Markov chains are used in our
work for several reasons: 1) These will make it harder for an ad-
versary to successfully complete an attack due to the unpredictabil-
ity of the strategies; 2) A randomized motion can be easily imple-
mented in a mobile robot, since its communication, sensing, and
computation requirements are minimal; 3) Efficient algorithms can
calculate Markov chains with desired properties [7].

The contributions of the paper are as follows:

—We present algorithms that do not require communication, are
based on convex optimization, can scale well, and can also be
applied to any type of environment represented as a graph where
distribution of cost over regions (vertices) is both uniform and
non-uniform for patroller and adversary.

—We present a game-theoretical approach to patrolling in uniform
cost distribution case where the set of strategies are Markov
chains. We also calculate the payoffs of each strategy and present
approaches to generate the optimal mixed strategy for patroller
and the optimal strategy for the adversary.

The remainder of the paper is organized as follows: Section II
presents the problem formulation; Section III introduces algorithms
to find decentralized and distributed strategies for multi-robot pa-
trolling in the cases of uniform and non-uniform distribution and a
game theoretical approach for finding optimal mixed strategies in
uniform distribution case; Section IV presents experimental results
of our approach; Section V discusses our conclusions and future
directions for research.

Parts of this work appeared in preliminary form in [10]. This ver-
sion presents new theoretical and experimental results.

2. RELATED WORKS

Multi-robot patrolling has been investigated in many different stud-
ies. Initial research [11} [12} 13} [14] proposed deterministic ap-
proaches based on the optimization of the frequency of visits to
the regions in the environment. Portugal et al. presented a multi-
level partitioning algorithm (MSP) that assigns different regions
to each patroller agent [15]. The performance of this approach is
slightly better, but still deterministic. A survey of multi-agent pa-
trolling strategies can be found in [16]. where strategies are evalu-
ated based on robot perception, communication, coordination, and
decision-making capabilities. A basic approach to creating a pa-
trolling strategy is a deterministic approach which generates patrol
paths in the environment for multiple robots as patrollers. How-
ever, an adversary can easily penetrate the perimeter or area if a
deterministic patrolling is used. For example, if a patrolling strat-
egy ensures that a region around a perimeter is visited every 20
seconds and it takes an adversary 15 seconds to break in, then the
adversary is guaranteed success if it attacks just after the region
is visited [1]. Nevertheless, with a non-deterministic strategy, pa-
trolling robots would move more randomly around the graph, mak-
ing it much more difficult for the adversary to effectively choose
where to penetrate the perimeter environment.

In more recent works, Nicola et al. proposed the optimal strat-
egy for patroller for patrolling the arbitrary environment like a
set of connected cells, using single patroller or the smallest no.
of patrollers required and based on several coordination dimen-
sions among the robots [17, 18l [19]. They have considered differ-
ent penetration time for different cells of the environment and dif-
ferent target preferences among those cells for an intruder. They
have formulated bilinear mathematical programming problem to
find the optimal patroller’s strategy. They have used Markovian



property that maximizes the expected intruder-capture utility for
patrollers. Nicola and Carpin again proposed probabilistic intru-
sions and a variable resolution sensing model that naturally applies
to the domain of UAVs [20]. However, they have not used inher-
ent Markov chain property to patrol the environment with optimal
mixed strategy or fastest mixing strategy which is the best response
from patroller against an intruder. Vorobaychik et al. presented a
general model of infinite-horizon discounted adversarial patrolling
games [21]. Here they assume payoffs for target regions are static
over time.

3. PROBLEM FORMULATION

We define the patrolling environment as an undirected graph, G =
(V, E) with |V| = n, |E| = m. Each vertex (v € V) corresponds
to a region, and each edge (e € E) corresponds to a connection
between two regions in the environment. Let M be a discrete time
Markov chain on the graph with M;;, the probability of transition-
ing between vertex ¢ and vertex j.

The worst case scenario for patrollers is when they do not know
where an adversary is going to attack and they are not certain about
their initial positions in the graph. Also, we consider a uniform
distribution of cost over all vertices in the graph for both patroller
and adversary. In this case, it is better to find a strategy for patrollers
that minimizes the average commute or hitting time between every
pair of vertices. The hitting time, H;;, is the (random) time taken
to reach vertex j starting from vertex ¢ using the Markov chain.
The commute time, C;j;, is the time it takes to travel from ¢ to j
and back using the Markov chain, C;; = H;; + H;. The average
hitting time, H, and average commute time, C, for a Markov chain
in a graph are the times averaged over all pairs of vertices. In this
context, the patrolling problem will be defined as:

Problem 1: Finding decentralized patrolling strategies in case
of uniform distribution over all vertices

Given the graph, G = (V, E), find distributed strategies that mini-
mize average commute time (C) or average hitting time (H): 1) for
all vertices in 'V ; 2) for a clique v...vq € V, d <=n; and 3) to a
particular vertexv € V.

We also explicitly model an adversary who (1) knows all possible
strategies that a patroller can choose, (2) has full knowledge of the
environment, and (3) is able to optimally choose the vertex to at-
tack in graph G. This scenario is known as a Bayesian Stackelberg
Game where the two players of the game are the patroller and the
adversary. In our proposed game theoretical setup, each patroller’s
strategy is a Markov Chain. The adversary also has a set of strate-
gies to attack in any of the n vertices. The game is formulated as
follows:

—A nonempty, finite set called the set of patrolling strategies M =
{Ma, ..., M}, } where k is the number of Markov chains.

—A nonempty, finite set called the set of adversary strategies V.
Each v € V is a vertex in the graph.

—A function P : M x V — R* U {oco} called the payoff matrix
for the patroller.

—A function Q : M x V — R* U {00} called the payoff matrix
for the adversary.

In order to calculate both payoff matrices, we need the following
values:

—dP*" : cost in region 4 to the patroller.

—d%? : cost in region i to the adversary.

International Journal of Computer Applications (0975 - 8887)
Volume 156 - No.2, December 2016

—? “* . reward to the patroller of catching the adversary in the i-th

region.
—c24 : cost to the adversary of getting caught in the i-th region.

—p; : the probability that the patroller will catch the adversary at
the ¢-th region of the environment.

A patroller’s reward must consider the factor cf“t for capturing the
adversary (with probability p;) and the reward value gets reduced
when the adversary is not captured (probability 1 —p,). Conversely,
the adversary pays cost c¢?” (with probability p;) but gains ¢
(with probability 1 — p;). Additionally, p; also depends on the i-th
hitting time of the Markov chain for each patrolling strategy. Given

these definitions, we are interested in the following problem:

Problem 2: Generating the optimal strategies in case of uniform
distribution over all vertices
Given the payoff matrices, P and Q, the set of patroller strategies,
M, the set of strategies for adversary, V, find the optimal mixed
strategy for the patroller and the optimal strategy for the adversary.
Again we consider non-uniform distribution of cost over all vertices
at
in the graph. The distribution of cost at vertex ¢ is m; = %
i=1%
We also define the non-uniform equilibrium distribution of Markov
chain M, is m = (7, .....,m,). Here we consider the best response
for patrollers when an adversary uses the non-uniform equilibrium
distribution of Markov chain and they are not certain about their
initial positions in the graph. In this case, it is better to find a strat-
egy for patrollers that converges Markov chain very fast using the
non-uniform distribution of the cost of vertices in the graph. In this
context, the patrolling problem will be defined as:

Problem 3: Finding decentralized patrolling strategies in case
of uniform distribution over all vertices

Given the graph, G = (V, E), find fastest mixing or convergence
Markov chain (M) that converges very fast for the graph G with
non-uniform distribution,m over all vertices in G.

4. METHOD

In this section, we present algorithms to generate patrolling strategy
which is an optimal response for a patroller against an adversary
when patroller and adversary use both uniform and non-uniform
distribution over all regions in the environment.

4.1 Decentralized Patrolling Strategy for Uniform
Distribution Case

As mentioned before, we consider patrolling strategies in a graph
as Markov chains M. Gosh et al. [7]] define the effective resistance
between two vertices ¢ and j in a graph as R,;. They also define
the nonnegative conductance on edge [ as g; which is a weight that
can be assigned to an edge of a graph. R;; is small when there are
many paths between vertices ¢ and 7 with high edge weights and is
large when there are fewer paths between vertices ¢ and j with low
edge weights. In [7], the fotal effective resistance, R is the sum
of the effective resistances between all pairs of vertices,

Rigr = % > Ri=> R M

i,j=1 i<j

where Ry, is related to the average commute time (C) of the
Markov chain.

In this work, an environment with small total effective resistance
corresponds to a Markov chain with small hitting or commute times
between vertices, and a large total effective resistance corresponds



to a Markov chain with large hitting or commute times between at
least some pairs of vertices. In [7]], a convex optimization method is
proposed for minimizing the total effective resistance of the graph
by allocating a fixed total conductance among the edges:

minimize Ry

2)
subjectto 17g=1, ¢g>0

The optimization variable is g € R™, the vector of edge con-
ductances. In our patrolling strategies, the total effective resistance
minimization problem (ERMP) is equivalent to the problem of se-
lecting weights on edges to minimize the commute (or hitting) time
between vertices. Once R;; is considered as distances among the
vertices, the ERMP is the problem of allocating the edge weights
to a graph to make the graph small in terms of average distance
between vertices.

The relationship between commute time, C;;, and effective resis-
tance, I2;;, between vertex ¢ and j is the following [7]:

Cij = (1"g)Ry;

Using this relationship, we present our first patrolling strategy of
minimization of average commute time (MACT) on a graph follow-
ing equation[2}

In the second patrolling strategy, we have also extended the MACT
problem for a subset of vertices or clique. This extension ensures
a higher probability of traveling along the edges within the subset
of vertices while still allowing for travel to the remaining vertices
of the graph. For example, the edges e = {shortestPath(i, ),
shortestPath(j, k), shortestPath(k,i)}, where e € E, are
given priority. This means that the edges along this shortest cycle
will be optimized such that the edge weights will consist of the ma-
jority of the sum of all edge weights. We have extended the ERMP
as follows:

minimize Ry,
subject to 17g =1, g>0
e = shortestCycle(s), (3)

Zw(e) >t

e

In this problem, the variable e represents an edge along the shortest
cycle between the vertices in the subset, s, of V. The condition
>~ . w(e) > t ensures that the sum of the edge weights of w(e) €
g will be greater than or equal to a threshold that represents the
percentage of edge weights allocated to the cycle.

Let A be an n X m incidence matrix of a graph G = (V, E') where
n = |V| and m = |E|. Suppose edge ! connects vertices ¢ and
j. We define A;; = 1, A;; = —1, and all other elements 0. Let
b : E — R* denotes the distance associated with each edge in
graph G. We present an algorithm for MACT towards each vertex.
Algorithm 1 generates a set of n Markov chains, M, that minimizes
the commute time towards every vertex v € V for the graph G. For
every Markov chain, the £ shortest paths from v, to the target vertex
v; are found (line 11). The & shortest paths are found using Yen’s
algorithm [22]], which has a worst-case runtime of O(n?). After the
k shortest paths are found, every edge transition found within the
k paths is incremented in the Markov chain that is being generated
(lines 12-14). When v; = wv;, all possible edge transitions from
the target vertex v; to adjacent vertices are incremented (lines 5-
8). Once all paths have been explored for a Markov chain, M is
normalized and is added to the set of Markov chains M.
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Algorithm 1 MACTtowardsVertices(A, b)

Input: A, b(.) {Incidence and edge costs of graph}
Output: M = {M;, .., M, }{A set of Markov chains}
I M<«+0
2: fori =1tondo

33 M(nxn)«0

4. forj=1tondo

5: if j == i then

6: for all edges e;, € A do
7: Mjb < Mjb +1

8: end for

9: continue

10: end if

11: k < KSHORTESTPATHS (b(.), j, )
12: for all edges e,;, € k do
13: Myp < My, + 1

14: end for

15:  end for

16:  normalize M
17 M+ MUM
18: end for

19: return M

4.2 Game Theoretical Optimal Strategies for Uniform
Distribution Case

The game theoretical approach has two stages; the first stage is pay-
off matrices calculation and the second stage is optimal strategies
generation.

4.2.1 Payoff Matrices Calculation. The payoff matrices for pa-
troller and adversary, P and (), are calculated from the set of
Markov chains, M. We calculate n Markov chains from Algorithm
1 and we also have two other Markov chains from MACT for all
vertices and MACT for a subset of vertices or clique. Now we have
n + 2 Markov chains in the set of Markov chains, M.

In Algorithm 2, we present a procedure to calculate the payoff ma-
trices. As this is the uniform cost distribution case, the algorithm
assigns uniform costs (d?**, d??") in each vertex for both the pa-
troller and the adversary. It calculates the hitting time matrix, H,
(line 5) for each Markov chain. The mean hitting time vector (lines
7-9), mht, is calculated using the function HTOFPREFERRED-
VERTICES. This function takes the vertices involved in the Markov
chain optimization as follows: 1) In the case of MACT strategy, it
calculates the mean of the hitting times for all vertices; 2) In the
case of MACT for a subset of vertices or clique, it takes the mean
hitting time for the subset of vertices; 3) In the case of MACT to-
ward each vertex, it takes the hitting time towards that particular
vertex. In lines 13-21, it assigns the values to the variables needed
to calculate the payoff matrices. In lines 22-25, it calculates the
payoff matrices using these variables.

4.2.2 Optimal Strategies Generation. The probability distribu-
tion of choosing the strategies for the patroller can be represented
as an m-dimensional vector,

w = (W1, Wa, ..., Wy,) 4)

Equation [4] should satisfy: 1) w; > 0 for all ¢ € 1...m, and 2)
wy + wa + ..... + w,,, = 1. The value w; is the proportion of the
patroller choosing strategy w;.



Algorithm 2 PayoffMatrixCalculation(M)

Input: M = {M;,.., M, 2} {Markov chains for all patrolling
strategies }

Output: P, Q) {Payoff matrix for patroller and adversary}

1: fori =1tondo

2: df‘” +—1/n

3: end for

4: fori=1to |[M|do

5:  H <« HITTINGTIMES (M)
6: mht<+ 0
7.
8

di® —1/n

for j = 1ton do
: mht; < HTOFPREFERREDVERTICES(H)
9:  end for
10:  asc < SORTASCENDING(mht)
11:  desc < SORTDESCENDING(mht)

12: Pt 1 1 hh —n
13:  for k= 1tondo

14: chat < chit hh

15: cgg;’% — cggg’% hh

16: hh <+ hh —1

17:  end for

18: p<+1

19: for k =2tondo

20: pr + 1/2F2

21:  end for

22: for k=1tondo

23: P + pkciat + (1 - pk)dzat
24: sz < pkczdv —+ (1 — pk)dzdv
25:  end for

26: end for

27: return P, Q

Similarly, z represents all the possible strategies for the adversary
as an n-dimensional vector,

z = (217227"'7271) (5)

Equation [5| should satisfy: 1) z; € {0,1} forall ¢ € 1...n, and
2) z1 + 29 + ... + z, = 1. Since the adversary can attack any
region n € |V in the environment, the adversary’s strategies, z;,
are strategies for attacking each region separately, and only one
strategy can be chosen.

When we have few heterogeneous patrolling strategies preferenc-
ing some part of the graph or subset of vertices of the graph then
we can also recover the homogeneous patrolling strategy from these
different types of patrolling strategies.

PROPOSITION 1. There exists an optimal homogeneous pa-
trolling strategy for some heterogeneous patrolling strategies.

PROOF. Assume there exist some heterogeneous patrolling
strategies modeled as k different Markov chains My, ..., My, then
we can construct from these strategies a single homogeneous
Markov chain M} which will be executed by the patrollers, is no
worse. Suppose we have two heterogeneous patrolling strategies
as Markov chain M, and M, with more vulnerabilities in left and
right side of dumbbell graph respectively. These two strategies have
a high probability of traveling between edges of vertices in left and
right part of dumbbell graph. However, the homogeneous patrolling
strategy is the first of our patrolling strategies which uniformly trav-
els every vertex of the dumbbell graph optimally. O
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4.3 Decentralized Patrolling Strategy for Non-Uniform
Distribution Case

Again we define edge weights of the graph G as (wy, ....w,,) € RT
and edge [ ~ (i, ) is defined as [ connects vertices 4,j. We define
incidence matrix A as:

1 edge [ connects vertex ¢
Ay =4 —1 edge!l connects vertex j
0 otherwise

From the incidence matrix A, we define weighted laplacian matrix,
L = Adiag(w)AT which is in turn defined as

—wy 1~ (i,5)
Lij=quw i=j
0 otherwise

From the definition of Markov chain, Markov chain, M on vertex of
G, with transition probabilities on edges P;; = Prob (X (¢t + 1) =
j | X(t) = 7). Here we focus on symmetric transition probabil-
ity matrices P (everything extends to a reversible case, with non-
uniform equilibrium distribution) and Identifying P;; with w; for
l ~ (i,7), we have P = I — L where [ is identity matrix and
L is weighted laplacian matrix. Again the non-uniform equilib-
rium distribution of Markov chain, M, is 7 = (7, ..... 7,) and let
IT = diag(m). So, the balanced condition for transition probabil-
ity matrix P of Markov chain M for non-uniform distribution 7 is
m; P;; = m; Pj; where 4, j = 1,...n. Since IIP = PTTI and P1=1
which means I12 PIT"2 matrix is a symmetric and same eigen-

value as P. The eigenvector of I1% PIT"% is ¢ = (V71 /T
The second largest eigenvalue modulus (SLEM) [§8] of M is
w(P) =|| Iz PTI-2 — qq” ||. Also, the associated mixing time
isT = —1~.
log( %)

From the above definition, fastest mixing reversible Markov chain

(FMRMC) is formulated as:
minimize p =| T2 (I — L) — qq” || ©
subjectto  w > 0,diag(L) <1

Here optimization variable is w and problem data is graph G. The
two other existing common suboptimal sequences are:

Max-degree Chain: w = (
max;d;
Metropolis-Hastings Chain: w; = (m) where l ~ (i,7)
ey
which comes from Metropolis-Hastings method [23| 24] for gen-
erating reversible MC with non-uniform stationary distribution and

d;, d; are the degree of vertices i, j respectively.

5. EXPERIMENTAL RESULTS

This section illustrates the simulation results of our method for both
uniform and nonuniform distributions over all the regions in the
environment.

5.1 Decentralized Patrolling Results for Uniform
Distribution Case

We have compared our MACT method with the three patrolling
methods proposed by Agmon et al. [1]. In our approach, we place
patrollers on the graph either randomly or at an equal distance from
each other (uniformly) around the graph; Agmon et al.’s three meth-
ods, BMP, DCP, DNCP, all require that patrollers are placed an



equal distance from each other on the graph. The patrollers are mo-
bile robots such as UAVs or wheeled robots. In Figure 2] we show
the mean first hitting time of MACT with both uniform and random
placement of patrollers compared to their three methods on a graph
of 64 vertices and 2016 edges, (/g4 : 2016). Since their methods
require a cycle graph to be tested on, we have tested their meth-
ods on a cycle graph of 64 vertices, (Cs4), Which is assumed to be
equivalent to the Hamiltonian cycle of our original graph, Kg4. In
our test, we have simulated four patrollers so the distance between
two consecutive robots, d, is 16. We also consider the number of
state transitions it takes to penetrate the environment, ¢, as 12 units.
Though our approach does not use synchronization and communi-
cation among robots, it still surpasses the mean hitting time of one
of their methods and performance does not degrade much com-
pared to other two.

+
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Fig. 2: Comparison result of our MACT method with uniform and ran-
dom robot placement as well as three existing methods (e.g. BMP, DCP,
DNCP) [1] for patrolling. Each line represents the maximum, minimum
first hitting time and each box represents the median along with the
mean hitting time in the middle.

We compare more closely our MACT method with DCP and DNCP
methods using varying number of patrollers on the graphs men-
tioned above (K4 and Cg4). The result of this comparison is shown
in Table[T] It shows that the more the patrollers are present on the
graph, the closer the first hitting times of DCP and DNCP’s meth-
ods approach the data from our approach.

Table 1. Comparison of average first hitting time of our approach,
MACT with uniform and random robot placement and two methods
(DCP, DNCP) for 30 experiments

No. of Patrollers Uniform Random DCP DNCP
MACT MACT

2 (d=32, t=24) 30.35 30.58 17.29 20.85

4 (d=16, t=12) 14.22 14.70 9.26 11.74

8 (d=8, t=06) 7.11 7.30 5.90 6.90

16 (d=4, t=3) 3.21 3.40 3.1 3.16

We have also tested our methods on different types of graphs, in-
cluding line, tree, mesh, complete, and randomly generated graphs.
Figure 3| shows the edge weight allocation on different graphs [23]]
for our MACT method. In each graph, the thickness of each edge
corresponds to the optimal edge weight value, or the probability of
that edge being chosen by a patroller. For example, a wider edge
connection between two vertices represents a high probability of
that edge being chosen for travel, and vice versa.
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5.2 Game Theoretical Optimal Strategies Result for
Uniform Distribution Case

We have tested DOBSS with a small graph [25] consisting of eight
vertices and thirteen edges. The patroller has ten patrolling strate-
gies available: eight which minimize the average commute time to-
wards each of eight vertices, one that minimizes the average com-
mute time towards a subset of vertices or clique, and one that min-
imizes the average commute time over all vertices. The resulting
graphs for all ten patrolling strategies are shown in Figure ]

As an illustration, payoff matrices of a small graph are shown in
Table 2] where the values of the payoff matrices for patroller and
adversary, P and @, for ten patrolling strategies are calculated us-
ing Algorithm 2.

Table 2. Payoff matrices for small graph

v1 V2 U3 V4 U5 Vg v7 vg
P 3.000| 1.594] 0.154] 0.132] 3.563| 0.367| 0.734| 0.215
Q1 1.000| 0.844| 0.232] 0.187| 1.063| 0.430| 0.609] 0.309
P, 0.215] 8.000| 1.594] 0.734] 0.154| 0.132] 0.367| 3.563
Q2 0.309] 1.000| 0.844| 0.609| 0.232| 0.187| 0.430| 1.063
Py 0.215] 1.594] 8.000| 3.563| 0.154| 0.132] 0.734| 0.367
Qs 0.309| 0.844| 1.000| 1.063| 0.232] 0.183] 0.609| 0.430
Py 0.367| 0.734| 3.563| 8.000| 0.154] 0.132] 0.215| 1.594
Q4 0.430] 0.609| 1.063| 1.000| 0.232] 0.187| 0.309| 0.844
Py 0.734] 0.367| 0.154| 0.132] 8.000| 3.563| 1.594| 0.215
Qs 0.609| 0.430] 0.232] 0.187| 1.000| 1.062| 0.844] 0.309
Ps 0.367] 0.154| 0.734] 0.132] 3.563| 8.000| 1.594| 0.215
Qs 0.430] 0.232] 0.609| 0.187| 1.063| 1.000| 0.844] 0.309
Py 0.132] 1.594| 0.734| 0.154| 0.215| 0.367| 8.000| 3.563
Q7 0.187] 0.844| 0.609| 0.232] 0.309| 0.430| 1.000| 1.063
Py 0.215] 1.594] 0.367| 3.563| 0.132] 0.154] 0.734| 8.000
Qs 0.309| 0.844| 0.430| 1.063| 0.187| 0.232] 0.609| 1.000
Prract 0215 3.563| 0.734] 0.154| 1.594] 0.132] 8.000| 0.367
Qnriact 0309 1.063| 0.609] 0.232| 0.844] 0.187] 1.000| 0.430
Plligue| 0.734] 3.563| 0.132] 0.215| 1.594] 0.154| 0.367| 8.000
QCligud 0.609] 1.063| 0.187] 0.309| 0.844] 0.232| 0.430] 1.000

DOBSS produces the optimal mixed strategy as shown in Table [3]
The patroller will patrol the graph with an optimal mixed strategy
consisting of strategies 7 and 9. Here the cost-minimizing strategy
for the adversary generates an optimal response for attacking vertex
7 (e zr=1,2,=0,i# Tforalli € 1..n).

Table 3. Optimal mixed strategy result

Patrolling Strategy No., M; | Proportion of using Strategy w;
1 0
2 0
3 0
4 0
5 0
6 0
7 0.9012
8 0
9 0.0988
10 0
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Fig. 3: Different types of graph for MACT method: a) Edge weight allocation on a line graph of 20 vertices; b) Edge weight allocation on a tree with
30 vertices; ¢) Edge weight allocation on a complete graph, Kg; d) Edge weight allocation on a randomly generated graph with 50 vertices and 200

edges.
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Fig. 4: Edge weight allocation for ten patrolling strategies of a small graph: a)-h) Edge weight allocation for minimizing average commute time
towards vertex 1 to vertex 8 respectively; i) Edge weight allocation for minimizing average commute time preferring a clique or subset of vertices,
{2,5,8}; j) Edge weight allocation for minimizing average commute time over all vertices.

5.3 Decentralized Patrolling Results for Non-Uniform
Distribution Case

We have tested our FMRMC method with a small graph [25] con-
sisting of eight vertices and thirteen edges.

We compare more closely our FMRMC method with two heuristic
methods such as Max-degree and Metropolis-Hastings (M.-H.) on
the small graph mentioned above. The result of this comparison
is shown in Table E} It shows that the second largest eigenvalue
modulus (SLEM) and mixing rate for FMRMC are less compared
to the other two methods.

Table 4. Comparison of Max-degree and Metropolis-Hasting(M.-H.)
and FMRMC method

Max-degree | M.-H. | FMRMC
SLEM p 0.779 0.774 0.643
mixing rate 7 4.01 391 2.27

We have also tested our methods on different types of graphs, in-
cluding line, tree, mesh, complete, and randomly generated graphs.
Figure[5] shows the edge weight allocation on different graphs [25]]
for our FMRMC method. In each graph, the thickness of each edge
corresponds to the optimal edge weight value, or the probability of
that edge being chosen by a patroller. For example, a wider edge
connection between two vertices represents a high probability of
that edge being chosen for travel, and vice versa. The importance
of the vertices in the graph is proportional to width of edges be-
tween vertices in the graph.

6. CONCLUSION AND FUTURE WORK

In this paper, we have introduced algorithms for finding decentral-
ized patrolling strategies in case of uniform distribution over all

S

(a) (b)
Fig. 5: Different types of graph for FMRMC method: a) Edge weight
allocation on a small graph of 8 vertices; b) Edge weight allocation on
a cycle graph with 11 vertices;

vertices in the graph, for multiple robots, based on Markov chains
which minimize the average commute time towards (1) a specific
vertex, (2) a subset of the vertices and (3) the average commute time
for all pairs of vertices in the graph. Methods (1) and (2) use con-
vex optimization and method (3) seeks the shortest path in graphs.
Also, we have also proposed an algorithm for finding decentral-
ized patrolling strategy for multiple robots based on Markov chains
which converges very fast for the graph with non-uniform distribu-
tion over vertices. Several interesting directions are left for future
work as described in further detail below.

One of the goals of our work was to remove the communication and
localization requirements in [[1] and extend the class of graphs to
which Markov chain based strategies can be applied. Even though



we have used simple Markov chain based strategies for patrollers,
one surprising result of our work seems to indicate that the per-
formance does not degrade despite the lack of communication and
synchronization. Further experimental tests and analytical tools are
going to be used to quantify the differences in performance between
our approach and existing methods.

The most promising line of future work is to incorporate a game
theoretic framework so that patroller can patrol the environment
optimally even the adversary uses the non-uniform distribution of
costs over different regions of the environment. We also have to
model the adversary so that the adversary can see the patroller an
attack instantaneously or the adversary can collect statistics and
attack after some time as well as what will be the optimal time to
attack after statistics collection.

Another immediate line of future work is the implementation of
our ideas in physical deployments. Since our approaches do not re-
quire that we solve localization, communication, or synchroniza-
tion problems, and the motions of the patrollers follow simple
Markov chains, so they can be implemented in inexpensive robotic
platforms. In order to apply our methods, we can take a 2D or
3D workspace with obstacles, create a grid where each element of
the grid is a state in the Markov chain, and choose the appropriate
neighborhoods for transitions.

We have the plan to incorporate a less rational adversary in our
framework. In our current setup, the adversary has complete knowl-
edge of the environment and is assumed to be perfectly rational.
However, real world situations will involve adversaries that are less
knowledgeable and rational and more unpredictable. Because of
this, we wish to extend our ideas to use a more realistic adversarial
model to help test the true effectiveness of the patrolling policies.
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