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ABSTRACT 
Wireless energy transfer is a recent emerging technology in 

wireless sensor network. This technology is a promising 

alternative to the power constraint problem in wireless sensor 

networks. Energy is the important constraint in sensor 

network which can be improved by different technology. 

Energy harvesting techniques can scavenge some amount of 

energy but still it’s not enough. Lots of researchers put effort 

to solve this problem which results in wireless energy transfer. 

With the development in the technology, multiple nodes can 

be charged simultaneously by wireless charging vehicle.  

Scheduling of wireless charging vehicle helps to improve the 

network lifetime. In addition to optimizing the travel time of 

the wireless charging vehicle the cost arising from travel path 

of charger between the nodes must also be taken into account. 

In this paper a (pso) based heuristics to schedule the travel 

path of wireless charging vehicle that takes into account both 

the travel cost and travel time. The result is experiment with a 

sample environment by varying its travel cost and travel time. 

Our results show that PSO can achieve shortest travel path 

and cost is also saved as well as network lifetime is improved. 
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Wireless energy transfer, sensor networks, Particle swarm 
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1. INTRODUCTION 
The recent promising wireless charging technology provides a 

solution to sensor nodes by means of charging wirelessly. The 

wireless charging technology was initiated by Kurs et al [1]; 

By means of the two strongly coupled magnetic resonant 

objects he tried to transfer energy from one storage device 

into other device wirelessly. In Wireless power charging 

Technology [2], power can be transferred from the 

transmitting antenna of a power charger to the receiving 

antennas of a power charger to sensor nodes receiving 

antennas. The power is transferred to DC voltage for the 

purpose of sensor utilization or else it can be stored in 

batteries. 

Wireless sensor networks (WSN) are mainly powered by 

batteries. The battery storage capacity is limited and so a 

WSN can only remain operational for a limited amount of 

time. To extend the lifetime of sensor networks lot of efforts 

are put by various researchers, But still it remains as a 

bottleneck. This area of research leads to the growth of 

wireless energy in fields of electronics, health care, electrical 

vehicles, etc. For example, wireless charging pads  is used to 

charge mobile devices without connecting charging cables 

whenever they are placed on the pad [3]. In case of health care 

applications wireless charging of implanted batteries is 

replaced by surgical operation to dispose old batteries. 

Wireless charging technology provides a new research 

solution to the emerging Electrical Vehicle (EV) industry. 

This can be introduced with high efficiency to deliver 

hundreds of watts of energy, where the charging system are 

placed at power stations, parking lots or even under the road 

surface to recharge EV’s battery packs [4]. For the next 

generation WSNs, wireless charging technology has to grow 

up with hybrid technology to power the sensor nodes and 

these networks are known as Wireless Rechargeable Sensor 

Networks (WRSNs).  

There are lots of applications that utilize commercial products 

from Powercast to charge the sensor nodes wirelessly [5]–

[8].The Radiation-based wireless charging techniques have 

very low efficiency and can only transfer a small amount of 

energy whereas magnetic resonant coupling proposed in [9] 

has high efficiency and supports transferring hundreds of 

watts of energy over a large air gap. To implement futuristic 

WRSNs, this technique is adopted in mobile vehicles where 

resonant coils and high-density battery packs are used in very 

close proximity and deliver wireless energy to the nodes with 

high efficiency [10]–[16]. To schedule more than one vehicle 

to recharge all the sensors is a great challenge [15], [16].In 

addition to it vehicle’s recharge capacity, travelling cost pose 

great research issue [16]. These problems are NP-hard and 

new algorithms arrived with good results which are more 

desirable [14]–[16].  

In this paper, the main focus is on minimizing the total 

travelling cost of wireless charging vehicles to recharge the 

sensors. In order to achieve this fair scheduling algorithm 

should be implemented. This is achieved by using a meta-

heuristics method called Particle Swarm Optimization 

(PSO).Kennedy and Eberhart introduced a self-adaptive 

global search based optimization technique which is called as 

Particle Swarm Optimization (PSO) [17]. The algorithm is 

similar to Genetic algorithms but, the difference is only no 

direct recombination of individuals of the population. It is 

based on the social behavior of the particles. In PSO each 

particle adjusts its trail based on its best position (local best) 

and the position of the best particle (global best) of the entire 

population. This increases the stochastic nature of the particle 

and converges quickly to a global minimum with a good 

solution. 

The advantage of using PSO is its simplicity and its 

effectiveness in wide range of application with low 

computational cost. Some examples of PSO application are: 

the reactive voltage control problem [18], data mining [19], 

pattern recognition [20] and environmental engineering [21], 

Scheduling [22, 23] and task allocation [24, 25]. 

The works contributed in this paper are as follows: 

• A model is formulated for WCV-SN mapping to 

minimize the overall cost of Recharging.  
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• Designed a heuristic that uses PSO to scheduling 

problem of charging vehicle based on the proposed 

method.  

The rest of the paper is organized as follows: Section 2 

presents related work. In Section 3, WCV-SN scheduling 

problem and its formulation is described. In Section 4, 

scheduling heuristic that uses PSO is described. Section 5 

presents an experimental simulation of our work. Section 6 

concludes the paper.   

2. RELATED WORK 
After energy information has been collected, a global energy 

map can be visually analyzed by SenCars. Then the next 

important objective is to schedule a number of SenCars to 

keep all the nodes alive and minimize the traveling distance of 

SenCars. This is referred to as perpetual operation of the 

network and one of the primary goals in the designs of 

WRSNs. Seeking an optimal solution to schedule a fleet of 

SenCars for recharge is usually an NP-hard problem whereas 

traditional efforts of standard optimization techniques are not 

cost effective given limited computation resources on the 

SenCar. Thus, heuristic algorithms are usually proposed in 

practice to achieve a reasonable balance between optimality 

and computation complexity.  

In [14], the problem to schedule a SenCar for emergency 

recharge is studied. In order to resolve as many emergent 

nodes as possible before the next emergency occurs, the 

SenCar needs to maximize the energy replenished back into 

the network within a limited time threshold. The problem is 

formulated into an Orienteering Problem. In the Orienteering 

Problem, a set of control points associated with scores are 

visited by competitors before a time expiration, and the 

competitor collecting the highest score wins the game. The 

problem aims to find the highest score in limited time 

durations. The problem is NP-hard. However, it has been 

shown in [14] by utilizing the fact that traveling time is 

negligible compared to recharge time since traveling time is 

usually 1-5 mins whereas recharge time requires more than 60 

mins. Therefore, the traveling time of SenCar can be ignored 

and the Orienteering Problem can be closely approximated by 

a Knapsack problem. Then classic dynamic programming 

method is applied to solve the problem in polynomial time. 

In [15], a more general case with multiple SenCars and 

dynamic battery deadlines is considered. Based on the energy 

information, an on-line algorithm that aims to select the next 

node with the minimum weighted sum of traveling time and 

node lifetime is proposed. The weighted sum method is used 

to balance conflicting factors in the problem. That is, on one 

hand, to minimize SenCars’ traveling cost, it is desired to 

move to the nearest node requesting recharge, which may be 

far away from SenCar’s location. On the other hand, to meet 

node’s battery deadline, SenCars should prioritize nodes with 

shorter estimated lifetime. The algorithm runs in polynomial 

time with acceptable performance compared to the optimal 

case. Additionally, bringing more practical aspects would be 

beneficial for real applications and design the network but it 

certainly complicates the algorithm designs. For example, if 

the SenCar’s own battery capacity is not considered in 

algorithm design, it may be stranded during operation and 

unable to return to the base station for battery replacement. In 

addition, the moving cost of SenCar should be also considered 

to avoid long distance movements. 

 In [16], a set of practical constraints of SenCar’s own 

recharge capacity, moving cost and nodes’ battery deadlines 

are considered. With the needs of better route plans and 

desires to meet sensors’ battery deadlines, we need to 

coordinate the activities among the SenCars. To tackle these 

challenges, a 3-step adaptive algorithm is proposed in [16].  

The operation of the algorithm is illustrated through an 

example in Fig. 4. Fig. 4(a) gives a snapshot of energy request 

during the operation. To keep the movement of SenCars in 

their confined scopes, the network is partitioned adaptively 

according to the recharge requests (Fig. 4(b)). The well-

known K-means algorithm can be used [26].  

The K-means algorithm aims to minimize the total square of 

sum of distance to a set of centroid positions. The centroid 

position is chosen as the starting position of each SenCar. 

After each SenCar has been assigned a working region, they 

compute Capacitated Minimum Spanning Trees (CMST) 

independently as shown in Fig. 4(c). The CMST is a 

minimum spanning trees with capacity threshold so it can 

naturally capture the recharging capacity of the SenCar and 

indicate from which subset of nodes the SenCar should 

choose to minimize the traveling cost. Finding the CMST first 

can also ensure the nodes on the same tree are placed in the 

same recharge route later. After the CMSTs are formed, the 

SenCar needs to further capture the sensors’ battery deadlines. 

 To improve the previous weighted-sum algorithm from [15], 

the SenCar categorizes nodes according to their lifetime. If a 

node’s lifetime is enough to last for the total recharging time 

of the entire recharge sequence, it can be placed at any 

arbitrary position in the sequence. We denote these nodes  

“non-prioritized nodes”. On the other hand, if a node’s 

lifetime is not enough, it needs to be inserted at advantageous 

locations in the sequence and each insertion should retain the 

battery deadlines of all the nodes in the recharge sequence.  

These nodes are denoted as “prioritized” nodes. The algorithm 

first computes the recharging route of the non-prioritized 

nodes using a classic Traveling Salesmen Problem algorithm, 

e.g. the nearest neighbor or Christofides algorithm [27]. Then 

it inserts prioritized nodes into the recharge sequence 

iteratively while maintaining the time feasibility and 

minimizing the moving cost of the SenCar for each insertion. 

The final recharge routes are shown in Fig. 4(d). The 

aforementioned works have provided initial attempts to solve 

complicated recharge scheduling problems. For future works 

on this topic, a more general problem that encompasses 

stochastic energy demands should be considered. 

 In [28], theoretical results for on-demand wireless charging 

have been studied. A queuing model has been established and 

important characteristics have been proposed such as 

throughput and charging latency. Based on the analysis in 

[28], stochastic recharge policies can be developed in future.  

3. WCV-SN SCHEDULIGN PROBLEM 

FORMULATION 
The scheduling of WCV to sensor nodes can have several 

objectives. The main focus is on minimizing the total cost of 

recharging the sensor nodes with maximum efficiency of the 

network. The optimization problem can be defined as follows. 

The sensor network is denoted as a Directed Acyclic Graph 

(DAG) represented by G=(V, E), where Vi (i ∈ Nr) is the 

location of sensor node i to be visited, and E is the set of 

edges. Each edge Eij is associated with a traveling energy cost 

cij , which is proportional to the distance between nodes i and 

j. 

Given a set of SenCars S = {1, 2, . . . ,m} and a set of recharge 

node list Nr = {1, 2, . . . , nr}. A SenCar has recharge capacity 
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Ca that determines the maximum number of nodes it can 

recharge before it goes back to the base station for its own 

battery replacement. Different SenCars could have different 

recharge capacities during the run. Each sensor node i has 

lifetime li and demand (reward) for energy recharge ri. Ai 

specifies the arrival time for a vehicle at sensor node i. 

Two decision variables xij for edge Eij and yia for vertex Vi 

are introduced. The decision variable xij is 1 if an edge is 

visited, otherwise it is 0. The decision variable yia is 1 if and 

only if vertex i is served by vehicle a, otherwise it is 0. ui is 

the position of vertex i in the path. Our objective is to 

maximize the total amount of energy recharged minus total 

traveling energy cost of the SenCars while ensuring the 

recharge capacities of SenCars are not exceeded and no sensor 

node depletes battery energy. 

The problem can be given as: “Find a Route for WCV such 

that the total cost incurred for recharging all the  The problem 

can be given as: “Find a Route for WCV such that the total 

cost incurred for recharging all the sensors and the travel time 

of the WCV is minimized by covering all the sensor nodes.”  

The total travel time of all the assigned wireless charging 

vehicle WCVj is given as travel (Rechrg)t by adding all the 

travel time of WCV from Base station to sensor nodes and 

return back to base station(Eq. 1).  

The total recharging time of the sensor by WCVi is given by 

the adding the time of recharging of individual sensors of 

individual WCVs (Eq. 2).The total cost of recharging a WCV 

is just the sum of total travel time and recharge time (Eq. 

3).The network recharge cost is given by adding the recharge 

cost of all the WCV assigned for the network (Eq.4.).When 

estimating the total cost for all the nodes to be recharged, the 

largest cost for travelling to all the sensor nodes is minimized 

(Eq. 5).  

ctravel  (Rechrg)j= WCVkj   k                 −(1) 

c(Rechrg(WCV)= WCVkj    Snj   k  k                 −(2) 

cTotal (wcv)j= WCVkj  +k    WCVkj    Snj   k  k                −(3) 

cost Total = max Ctotal rechrg j ∀j€p 

                                                                            -(4) 

minimize(cost rechrg          ∀ Ctravel     − (5) 

4. SCHEDULING BASED ON 

PARTICLE SWARM 

OPTIMIZATION 
A scheduling heuristic for dynamically scheduling the 

wireless charging vehicle is given here. The heuristic 

optimizes the cost of WCV- SN mapping based on the 

solution given by particle swarm optimization technique. The 

optimization method consist of two components: a) 

the scheduling heuristic given in Algorithm 1, and b) the PSO 

steps for WCV-SN mapping optimization as listed in 

Algorithm 2. 

vi
k+1  = ωvi

k
 + c1rand1 × (pbesti – xi

k ) + c2rand2 × (gbest –  xi
k  

)    –(6) 

xi
k+1 = xi

k+ vi 
k+1    - (7) 

where 

vi
k  velocity of particle i at iteration k 

vik+1 velocity of particle i at iteration k + 1 

ω inertia weight 

cj acceleration coefficients; j = 1, 2 

randi random number between 0 and 1; i = 1, 2 

xik current position of particle i at iteration k 

pbesti best position of particle i 

gbest position of best particle in a population 

xik+1 position of the particle i at iteration k + 1. 

4.1 Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a stochastically global 

optimization swarm-based intelligence algorithm [8] which 

was introduced by Kennedy and Eberhart (1995).  PSO is 

influenced by the social behavior of animals such as a flock of 

birds’ searches a food source or a school of fish protects from 

a predator or swarm of bee’s searches for food sources. The 

particle swarm optimization algorithm solves many problems 

in various fields of engineering and computer science. 

In PSO the particle is equivalent to a bird or fish flying 

through a search space. The movement of each particle is co-

ordinated by a velocity which has two components i.e. 

magnitude and direction. The position of each particle is 

influenced by its best position and the best particle position in 

a problem space. The fitness value is used to measure the 

performance of a particle. 

The term population is used in PSO which is the number of 

particles in a problem space and the Particles are randomly 

initialized. Each particle in the population has a fitness value, 

which is evaluated by a fitness function to be optimized in 

each generation. The particles movements are influenced by 

two factors using the information as iteration-to iteration and 

as particle-to-particle .Each particle know its best position 

visited so far and store in as pbest and the best position so far 

visited by any particles gbest. In each generation the velocity 

and the position of particles will be updated. This process 

continues, iteratively, until an expected optimized solution is 

obtained. 

Algorithm 1 Scheduling heuristic. 

1: Calculate average recharging cost of all WCV in all clusters 

2: Calculate average cost of travelling of WCV between 

sensor nodes 

3: Set Total Energy of all nodes Etot  as average Energy level 

4: Set Initial Energy es1,s2 as energy of individual sensors 

nodes 

5: Compute PSO({ti})  

6: repeat 

7: for all “ready” WCV{ti} ∈  T do 

8: Assign WCV {ti} to Sensor nodes {pj} according to the 

solution provided by PSO 

9: end for 

10: Dispatch all the assigned nodes 

11: Wait for polling time 

12: Update the ready charging list 

13: Update the average cost of travel between WCV to sensor 

nodes to the current position 
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14: Compute PSO({ti}) 

15: until there are unscheduled tasks 

Algorithm 2 

PSO algorithm 

1: Set particle dimension as equal to the size of ready WCV 

in {ti} ∈  T 

2: Initialize particles position randomly from sn = 1, ..., j and 

velocity vi randomly. 

3: For each particle, calculate its fitness value as in Equation 

4.  

4: If the fitness value is better than the previous best pbest, 

set the current fitness value as the new pbest.  

5: After Steps 3 and 4 for all particles, select the best 

particle as gbest.  

6: For all particles, calculate velocity using Equation 6 and 

update their positions using Equation 7.  

7: If the stopping criteria or maximum iteration is not 

satisfied, repeat from Step 3.  

The PSO algorithm steps are given in Algorithm 2. The 

algorithm starts with random initialization of particle’s 

position and velocity. In this problem, the particles are the 

sensor node for the WCV to be assigned and the dimensions 

of the particles are the number of Sensors nodes for a WCV. 

The values assigned to each dimension of particles are the 

WCV. Thus the particle represents scheduling of WCV to the 

sensor nodes. The evaluation of each particle is performed by 

the fitness function given in Eq. 5. The particles calculate 

their velocity using Eq. 6 and update their position according 

to Eq. 7. The evaluation is carried out until the specified 

number of iterations. 

5. SIMULATION RESULTS 
The proposed algorithm has been simulated in NS2 

environment .Simulation is done using NS2 by making 

simulation environment with 100 nodes with 2 WCV in the 

area of 100*100.  The initial energy level of sensor node is 

given as 0.5J.The results are shown in Fig 1 and Fig 2. 

 

Fig 1. PDR Graph 

 

 

Fig 2. Average energy consumption Graph 

6. CONCLUSIONS AND FUTURE 

WORK 
In this paper, a scheduling heuristic based on Particle Swarm 

Optimization (PSO) is presented. The heuristic is used to 

minimize the total cost of recharging using wireless charging 

vehicle in wireless sensor network. The Results obtained by 

PSO based heuristic is compared against existing heuristic. 

PSO based WCV-SN mapping can achieve at least three times 

cost savings as compared to existing one. As a part of our 

future work, Integrate PSO based heuristic into our real time 

applications to schedule charging vehicles of real applications 

such as mobile robots, battery cars in amusement parks and 

others. 
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