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ABSTRACT
In this paper we apply our former result [S. Lazaiz, K. Chaira, M.
Aamri, and El M. Marhrani. Some remarks on Caristi type fixed
point theorem. International Journal of Pure and Applied Mathe-
matics, 104 (4): 585–597, 2015] to give a new results of iterated
contraction mapping in complete metric space. As application we
investigate the existence and uniqueness of solution for the nonlin-
ear integral equation.
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1. INTRODUCTION
Fixed point theory plays an important role in nonlinear functional
analysis and provides one of the best and important techniques for
the existence of fixed point, coincidence point, coupled fixed point,
and common fixed point for self-map under different situations. It
is useful for the solution of fractional differential equations, func-
tional equations, integral equations, matrix equations, linear in-
equalities, or integrodifferential equations and control theory (see
[1, 2, 3, 4, 5, 6] and references therein).
Banach [7] has sorted out the successful and well-known result
which later called the Banach contraction principle. Banach con-
traction principle [7] is the most versatile results in fixed point
theory. This theorem have been studied by many authors (e.g.
[8, 9, 10, 11, 12, 13]) and generalized in various ways.
In Hilbert space, Alber and Guerre-Delabriere [14] presented weak
contraction by generalizing contraction and showed the presence
of fixed points for a self map. Rhoades [15] proved this results in
metric space under φ-weak contraction. Dutta and Choudhury [16]
generalized φ-weak contraction to the concept of weak contraction

and examined results for fixed point. Sehgal [17], in 1969, proves
the following result for iterate mappings :

THEOREM 1. Let (X, d) be a complete metric space and let
T : X −→ X be a continuous mapping. Assume that for some
k < 1 and each y ∈ B there is an integer p ≥ 1 such that

d (T px, T py) ≤ kd (x, y)

for all x ∈ X .
Then there is a unique u ∈ X such that Tu = u and Tn(y0)→ u
for each y0 ∈ X .

Many results of iterate mappings has been studied and generalized
[18, 19]. It is well known that Caristi’s fixed point theorem (see
[20]) generalizes also the Banach principle and leads to another
forms of inequalities. Recently, Lazaiz et al [21] improve the Caristi
fixed point theorem in the setting of iterated mapping and prove the
following result :

THEOREM 2. Let (X, d) be a complete metric space, ϕ a map-
ping from X into a non-negative numbers and two co-prime posi-
tive integers p and q. T a self map ofX , suppose that for all x ∈ X
:

max {d (x, T px) , d (x, T qx)} ≤ ϕ (x)− ϕ (T pqx) (1)

and the mappings x 7→ d (x, T px) and x 7→ d (x, T qx) are lower
semi continuous. Then T has fixed point in X .

In view of the fact that the continuity of the mapping T was essen-
tial to prove Seghal’s theorem, in the present paper, this assumption
is dropped and replaced by a weak assumption, that is the iterate T p
is just lower semi-continuous for some positive integer p ≥ 1. For
that, we shall apply our former result (see [21]) to prove some con-
traction fixed point theorems for lower semi-continuous mappings
and, extend results of Geraghty [22], Sehgal [17], Bryant [18] and
Banach [7] to iterate mappings. The most results obtained follows
easily from Caristi’s inequality. As application, we investigate the
existence and uniqueness of solution for a nonlinear integral equa-
tion.
The rest of the manuscript is organized as follows: In Section II,
some standard assumptions are introduced, with the main theoreti-
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Fig. 1. Geometric representation of function Π (x, y) =
∣∣T 2 (x)− T 2 (y)

∣∣ over [0, 1]2

cal results. In Section III, an application to prove the the existence
and uniqueness of the solution for a nonlinear integral equation.

2. MAIN RESULTS
Let α be a function from [0,∞[ into [0, 1[ such that
lim sups→t+ α (s) < 1 for all t ∈ [0,∞[ and α (.) is non-
decreasing. The following result is of Geraghty-type fixed point
result.

THEOREM 3. Let (X, d) be complete metric space, p and q two
co-prime integers. Let T : X −→ X be a mapping such that T p
and T q are lower semi-continuous and for each x, y ∈ X

d (T pqx, T qpy) ≤ α (d (x, y)) d (x, y) (2)

Then T has a unique fixed point.

PROOF. Since T is a self mapping we get for all x ∈ X and
y = T px,

d
(
T pqx, T qp+px

)
≤ α (d (x, T px)) d (x, T px)

≤ d (x, T px)− (1− α (d (x, T px))) d (x, T px)

then

(1− α (d (x, T px))) d (x, T px) ≤ d (x, T px)−d
(
T pqx, T qp+px

)
(3)

it means that

d (x, T px) ≤ d (x, T px)

1− α (d (x, T px))
− d (T pqx, T qp+px)

1− α (d (x, T px))

and Since α (t) is non-decreasing and d (T pqx, T qpy) < d (x, y)
we get

α (d (Tpqx,T qpy)) < α (d (x, y))⇒ 1

1−α (d (Tpqx,T qpy))
<

1

1−α (d (x, y))

Define ϕ : X −→ R+ by

ϕ (x) =
d (x, T px)

1− α (d (x, T px))

hence by (3) it follows that :

d (x, T px) ≤ ϕ (x)− ϕ (T pqx)

and since x 7→ d (x, T px) is lower semi-continuous, all assump-
tions of theorem 2 hold, which implies that T has a fixed point u in
X .
Uniqueness : Suppose that there exists v ∈ X such that Tv = v
with v 6= u, then

d (u, v) = d (T pqu, T pqv) ≤ α (d (u, v)) d (u, v) < d (u, v)

contradiction, then u = v.

REMARK 1. In view of the fact that the continuity of T was
essential in the proof of [[22], Theorem 1.3], it is remarkable that
this result remains true without such assumption.

EXAMPLE 1. In this example we use the following data: X =

[0, 1], d (x, y) = |x− y|, α (x) = 2arctan(x)
π+1

and

T (x) = − x

50
+ 1 (4)

thus, for p = 1 and q = 2, we have

T 2 (x) =
x

2500
+

49

50
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Fig. 2. Geometric representation of functions Π and Φ: Φ is the higher surface and Π is the lower one.

Fig. 3. Geometric representation of functions Γ and Φ over [0, 0.1]2

In order to verify our results, we use the following geometric rep-
resentations. For that we need some notations

Γ (x, y) = |T (x)− T (y)|
Π (x, y) =

∣∣T 2 (x)− T 2 (y)
∣∣

Φ (x, y) =
2 arctan (|x− y|)

π + 1
|x− y|

Figure 1 shows the geometric representation of function Π over
[0, 1]2, we should note that the vertical axis, of this Figure, have a
maximum value equal to 4×10−4, while in Figure 2, when the both
functions Π and Φ are plotted, the maximal value of the vertical
axis is 0.4, for that, it seems that the lower surface takes a zero
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values. It is clear from Figure 2 that

Π (x, y) ≤ Φ (x, y) , for all (x, y) ∈ [0, 1]2

which means that∣∣T 2 (x)− T 2 (y)
∣∣ ≤ 2 arctan (|x− y|)

π + 1
|x− y| , for all (x, y) ∈ [0, 1]2

(5)
Then all conditions of Theorem 3 are satisfied and hence T has a
unique fixed point in [0, 1], that is 50

51
.

Figure 3 proves that the chosen function T in (4) doesn’t verify the
condition (5), which means that for p = q = 1, the condition (5) is
not satisfied for all (x, y) ∈ [0, 1]2. To show that, we chose to plot
the functions Γ and Φ over [0, 0.1]2.
If q = 1 and α ≡ k < 1 Sehgla’s theorem follows as a corollary.

COROLLARY 1. Let (X, d) be complete metric space and p ≥
1 an integer. Let T : X −→ X be a continuous mapping such that
for each x, y ∈ X

d (T px, T py) ≤ kd (x, y) (6)

for some k ∈ [0, 1[, then T has a unique fixed point u ∈ X and
Tn(y0)→ u for each y0 ∈ X .

PROOF. By the above theorem, T has a unique fixed point u ∈
X . We must only show that Tn(y0) → u for each y0 ∈ X , let
y0 ∈ X then by inequality (2) we get for n large enough, write
n = rpq + s with m > 0 and 0 ≤ r < n then

d (Tny0, u) = d
(
Tmpq+ry0, T

pqu
)

≤ kd
(
T (m−1)pq+ry0, u

)
≤ · · ·

≤ kmd (T ry0, u) ≤ kmM

and it follows that Tny0 → u.
If p = q = 1 and α ≡ k < 1, we get the famous Banach principle.

COROLLARY 2. Let (X, d) be complete metric space and T :
X −→ X a continuous mapping such that for each x, y ∈ X

d (Tx, Ty) ≤ kd (x, y) (7)

for some k ∈ [0, 1[, then T has a unique fixed point and Tn(y0)→
u for each y0 ∈ X .

THEOREM 4. Let (X, d) be complete metric space, p and q two
co-prime integers. T : X −→ X a mapping, such that T p and T q
are lower semi-continuous and for each x, y ∈ X

η (d (T pqx, T qpy)) ≤ η (d (x, y))− d (x, y) (8)

where η : [0,∞)→ [0,∞) and η (t) = 0 if t = 0.
Then T has a unique fixed point.

PROOF. It suffices to choose

ϕ (x) = η (d (x, T px))

for all x ∈ X , y = T px, then the inequality (8) shows that

d (x, T px) ≤ ϕ (x)− ϕ (T pqx)

Using theorem 2, T has a fixed point u ∈ X . For the uniqueness,
suppose there exists v ∈ X with v 6= u such that Tv = v then by
(8) we get

η (d (u, v)) = η (d (T pqu, T qpv))

≤ η (d (u, v))− d (u, v)

< η (d (u, v))

Contradiction, hence u = v.

THEOREM 5. Let (X, d) be complete metric space, p ≥ 1 an
integer. Let T : X −→ X a mapping such that T p is lower semi-
continuous and for all x, y ∈ X

d (x, y) ≤ ψ (x, y)− ψ (T px, T py) (9)

Then T has a unique fixed point.

PROOF. For each x ∈ X , let y = T px and ϕ(x) = ψ(x, T px).
Then for each x ∈ X

d (x, T p) ≤ ϕ (x)− ϕ (T px)

and T p is a lower semi-continuous mapping. Thus, applying Theo-
rem 2 for q = 1 implies that T has a fixed point u ∈ X such that
Tu = u.
Uniqueness : Suppose that there exists v ∈ X such that Tv = v,
then

d (u, v) ≤ ψ (u, v)− ψ (T pu, T pv) = ψ (u, v)− ψ (u, v) = 0

thus, u = v.

THEOREM 6. Let (X, d) be complete metric space and p ≥ 1
an integer. Let T : X −→ X a mapping such that T p is lower
semi-continuous and for all x, y ∈ X

max {d (T px, T py) , d (T qx, T qy)} ≤ θ (d (x, y)) (10)

where θ : [0,∞) → [0,∞) is such that θ(t) < t for each t > 0
and θ(.) is a non-decreasing map.
Then T has a unique fixed point.

PROOF. Define

ψ (x, y) =


d(x,y)

1− θ(d(x,y))
d(x,y)

if x 6= y

0 if x = y

then 10 shows that

d (T px, T py) ≤ d (x, y)−
(

1− θ (d (x, y))

d (x, y)

)
d (x, y)

hence

d (x, y) ≤ d (x, y)

1− θ(d(x,y))
d(x,y)

− d (T px, T py)

1− θ(d(x,y))
d(x,y)

since θ(t)
t

is non-decreasing and d(T px, T py) < d(x, y), we get

d (x, y) ≤ d (x, y)

1− θ(d(x,y))
d(x,y)

− d (T px, T py)

1− θ(d(Tpx,Tpy))
d(Tpx,Tpy)

then
d (x, y) ≤ ψ (x, y)− ψ (T px, T py)

and so by applying Theorem 6, one can conclude that T has a
unique fixed point.
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3. APPLICATION
The main aim of this section is to investigate the existence and
uniqueness of solution for the nonlinear integral equation:

x (t) = φ (t) +

ˆ t

0

K (s, x (s)) ds (11)

where T > 0, x ∈ C [0, T ] space of all continuous functions form
[0, T ] into R, φ : [0, T ] → R and K : [0, T ] × R → R are two
given function.
Let X = C [0, T ] endowed by the metric d : X × X → R+such
that for each x, y ∈ X

d (x, y) = sup
t∈[O,T ]

|x (t)− y (t)|

clearly (X, d) is complete metric space.
Consider the mapping F : X → X defined by

F (x) (t) = φ (t) +

ˆ t

0

K (s, x (s)) ds

for all x ∈ X .
In the nonlinear integral equation (11), suppose that the following
condition hold

THEOREM 7. (1) K : [0, T ]×R→ R is continuous mapping;
(2) For all x, y ∈ X and s ∈ [0, T ] there exists some positive

integer p ≥ 1 such that

|K (s, F p (x) (s))−K (s, F p (y) (s))| ≤ 1

T
α (|x (s)− y (s)|) |x (s)− y (s)|

where α (.) is non-decreasing function from [0,∞[ into [0, 1[
such that lim sups→t+ α (s) < 1 for all t ∈ [0,∞[ .

Then the nonlinear integral equation (11) has a unique solution.

PROOF. We will show that F is contraction mapping in the
sense of theorem 3. Assume that x, y ∈ X and t ∈ [0, T ] . Then
we get

|Fp (x) (t)− Fp (y) (t)| =

∣∣∣∣ˆ t
0

K (s,Fp (x) (s))ds−
ˆ t
0

K (s,Fp (y) (s))ds

∣∣∣∣
=

∣∣∣∣ˆ t
0

[K (s,Fp (x) (s))ds−K (s,Fp (y) (s))]ds

∣∣∣∣
≤
ˆ t
0

|K (s,Fp (x) (s))ds−K (s,Fp (y) (s))|ds

≤ 1

T

ˆ t
0

α (|x (s)− y (s)|) |x (s)− y (s)|ds

≤ T

T
α (|x (s)− y (s)|)d (x, y)

≤ α (d (x, y))d (x, y)

which implies that

sup
t∈[O,T ]

|F p (x) (t)− F p (y) (t)| ≤ α (d (x, y)) d (x, y)

and hence

d (F px, F py) ≤ α (d (x, y)) d (x, y)

for all x, y ∈ X . It follows that where q = 1 that all the conditions
of Theorem 3 are satisfied and hence F has a unique fixed point in
X . This implies that there exists a unique solution of the nonlinear
equation (11).
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