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ABSTRACT 

In this paper, we prove fixed point theorems in 

multiplicative metric spaces. 

General Terms 

The set of positive real numbers ℝ+ is not complete 

according to the usual metric  IR, but it is complete in the 

sense of multiplicative metric spaces. 
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1. INTRODUCTION 
The set of positive real numbers ℝ+ is not complete 

according to the usual metric, IR . To overcome this 

problem, in 2008, Bashirov et. al. [2] introduced the concept 

of multiplicative metric spaces as follows:  

Definition 1.1.[2] Let X be a non-empty set. A 

multiplicative metric is a mapping                                    d: 

X×X → ℝ+ satisfying the following conditions: 

i. d(x, y) ≥ 1 for all x, y ∈  X and d(x, y) = 1 if and 

only if x=y; 

ii. d(x, y) = d(y, x) for all x, y ∈ X; 

iii. d(x, y) ≤ d(x, z). d(z, y) for all x, y, z ∈ X 

(multiplicative triangle inequality).  (iii) d(x, y) ≤ d(x, 

z). d(z, y) for all x, y, z ∈ X (multiplicative triangle 

inequality). 

Example 1.1. [4] Let d: ℝ × ℝ→ [1, ∞) be defined as  

      d(x, y) = 𝑎 𝑥−𝑦  ,where x, y ∈ ℝ and a > 1. Then d(x, y) is a 

multiplicative metric and (X, d) is called a multiplicative metric 

space. We call it usual multiplicative metric spaces. 

Example1.2.[4] Let (X, d) be a metric space .Define a  mapping 

da  on X by                                              da(x, y) = 𝑎𝑑(𝑥 ,𝑦) where a 

> 1 is a real number and  da(x, y) = 𝑎𝑑(𝑥 ,𝑦) =  
1  𝑖𝑓  𝑥 = 𝑦
𝑎  𝑖𝑓  𝑥 ≠ 𝑦.

    

The metric da(x, y) is called discrete multiplicative metric and X 

together with metric da i.e.,                               (X, da ) is known 

as a discrete multiplicative metric space. 

For more detail on multiplicative metric topology one can refer 

to ([3]). 

Definition 1.2.([3]) Let (X, d) be a multiplicative metric space. 

A sequence {𝑥𝑛} in X said to be a 

(i) multiplicative convergent sequence to x, if for every 

multiplicative open ball   

(ii) 𝐵𝜖 (x) = { y | d(x, y) < } , > 1, there exists a natural 

number N such that   ∈ (x) for all                      

n ≥ N, i. e, d( ) → 1 as n → ∞.(ii) 

multiplicative Cauchy sequence if for all > 1, 

there exists N ∈ ℕ such that d( ) < for 

all m, n > N i. e , d( ) → 1 as n → ∞. 

A multiplicative metric space is called complete if every 

multiplicative Cauchy sequence in X is  multiplicative 

converging to  x ∈  X. 

In 2012, Özavşar and Çevikel [3] proved Banach-contraction 

principle mappings in the setting of multiplicative metric 

spaces akin   to Banach-contraction principle mappings in 

metric spaces. 

 Let (X, d) be a complete multiplicative metric space and let f: X 

→ X be a multiplicative contraction if there exists a real constant 

λ ∈ [0, 1) such that  

           d(f(x), f(y)) ≤  for all x, y ∈ X. Then f has a 

unique fixed point. 

2. MAIN RESULTS 
Now  we prove a result  for a map that satisfy the  

contractive type condition.  

Theorem  2.1. Let (X, d) be a complete multiplicative 

metric space. Suppose the mapping  

f : X → X be a continuous self- mapping satisfies the 

condition 

 (2.1)d(fx,fy)≤ 

for all x, y ∈ X, where                                          , 

, ,  ≥ 0 and + + +  < 1. 

Then f has a unique fixed point in X. 

Proof. Let { }be a sequence in X defined as follows. 
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Let  ∈ X. For this  there exists  such that f( ) = 

. Again, for this  there exists  such that f ( ) 

= . Continue like this we get f ( ) =  

Consider (2.1), we have  

d( , ) = d(f ,f )≤ 

      

 

On simplification ,we have  

d( , )= d(f ,f ) 

 ≤ . 

. 

This implies that 

d( , ) ≤ ,where       

               h =  < 1. 

Similarly, d( , ) ≤  

d( , ) ≤  

Continue in a similar fashion, we get  

d( , ) ≤  

For n > m,  

d( , ) ≤ d( , ) · d( , ) · · ·     

                    d( , ) 

               ≤  

               ≤  .  

This implies d( , ) →1 as n, m → ∞. 

Hence ( ) is a Cauchy sequence. By the multiplicative 

completeness of X, there is z ∈ X such that  → z as n 

→∞. 

Now we show that z is fixed point of f by assuming that f is 

continuous or f is not continuous. 

(i)  f is continuous, since  → z (n →∞) and f is 

continuous so, = fz =           

= z, i.e., z is a fixed point of f. 

(ii)  f is not continuous then 

      d(fz, z) ≤ d(f ,fz). d(f z) 

                   ≤ 

d(fz, z) ≤  gives fz = z, i.e., z is a fixed 

point of f. 

Uniqueness.  Suppose z, w (z ≠ w) be two fixed point of f, 

then  

d(z, w) = d(fz, fw)  ≤ 

d(z, w) ≤  this implies that d(z, w) = 

1 i.e., z = w. 

Hence f has a unique fixed point. 

Cor. 2.1. On Putting  =  =   = 0 in (2.1)  , we get  

Banach-contraction [3] in the sense of multiplicative metric 

spaces. 

Now  we prove a result  for a map that satisfy the rational 

type contractive condition . 

Theorem  2.2. Let f be a continuous self- mapping defined 

on a complete multiplicative metric space X, further f 

satisfies the following conditions  

(2.2) d(fx, fy) 

 ≤  

for all x, y ∈ X  and   < 1. Then f has  a unique fixed 

point. 

Proof. Let { } be a sequence in X, defined as follows: 

Let  ∈ X, f( ) = ,f( ) = ,···,f( ) = . 

If  =  for some n∈ Ν then  is a fixed point of f. 

Taking ≠  for all n ∈ Ν 

Consider (2.2), we have 

 

d( , ) = d(f ,f )  

  ≤.  

  ≤  

  = . 
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d( , ) ≤ 

. , 

d( , ) ≤ ,where h =  < 1. 

Similarly, d( , ) ≤ , 

d( , ) ≤  

Continue like this we get,  

d( , ) ≤  

For n > m, d( , ) ≤ d( , ) · d( , ) · · 

· d( , ) 

                                  ≤  

                                   ≤  . This implies 

d( , ) →1(n, m → ∞). 

Hence ( ) is a Cauchy sequence. By the multiplicative 

completeness of X, there is z ∈ X such that  → z  as n 

→∞. 

Now we show that z is fixed point of f. 

Since f is continuous and  → z (n →∞) so, 

= fz = = z,  

i.e., z is a fixed point of f. 

Uniqueness follows easily. 
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