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ABSTRACT

Food preservation uses many processes to improve quality and/or
to extend shelf life of fruits and vegetables. One of these pro-
cesses is osmotic dehydration that is a pretreatment before con-
ventional drying. This process usually produces food with in-
termediary level of moisture. Osmotic dehydration can be opti-
mized using mathematical modelling but it can present a bad ad-
justment to experimental data. Uses of Artificial Neural Network
(ANN) in food processes is nowadays a goal for researchers be-
cause large applications and good adjustment to data.In this study
it was used Artificial Neural Network (ANN) to optimize os-
motic dehydration process of cashew from Cerrado. Variables of
process were temperature (°C), agitation (rpm) and solution con-
centration (%) and responses were weight reduction (WR), wa-
ter loss (WL) and solid gain (SG). Several configuration of ANN
were tested and results showed that Multilayer Feedforward neu-
ral network (MLF) 3 — 7 — 3 was the best one for this process.
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1. INTRODUCTION

Brazil is the third biggest producer of fruits but only 3% of fruits
production goes to global fruit commerce [1]].

Great consume and production of fruits are relevant for a healthy
life mainly because their high content of vitamins, minerals and
fibers.

Cerrado is a Brazilian bioma that has several fruit species with a
great potential for agricultural production. These fruits are con-
sumed by local population in different forms such as juices, jellies,
ice creams and licors [1]. Most of these processed fruits goes to
international commerce [[1]].

Osmotic dehydration (OD) process has been studied for many re-
searchers all over the world. It is a pretreatment before conventional
drying to reduce time of process and to keep organoleptic character-
istics of food. OD process presents data of weight reduction, water
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loss and solid gain. can also produce food of intermediary mois-
ture. Mass transfer is evolved in this process because samples are
immerged in a solution with high concentration of one or more so-
lutes [2], [3]. Sugar can provide a good condition of process when
fruits are evolved because produce a high water loss and low solid
gain [3].

To optimize drying processes some authors are using Artificial
Neural Networks (ANNs) [4], [S], [6] and [7]]. This computer tool
can be a good alternative to predict behavior of food when submit-
ted to osmotic dehydration process.

The objective of this work was to evaluate influences of osmotic
dehydration process on chemical and physical characteristics of
cashew from Cerrado and to obtain experimental data of process
(Weight Reduction, Water Loss and Solid Gain) to test ANN for
optimization of osmotic dehydration process.

2. MATERIAL AND METHODS
2.1 Material

Cashew from Cerrado was bought from local market. They were
selected, washed and put on identified plastic bags.

2.2 Methods

2.2.1 Fruit Characterization. Analysis of moisture content, pH,
titrable acidity, color, carotenoids, vitamin C, vitamin A, reduc-
ing and non-reducing sugars, lipids contents, protein contents
and fibers were carried out. Samples were analyzed in triplicate.
Methodologies of analysis were made according to Adolfo Lutz
Institute (2005) [8]]. Statistical analyses were made using Assistat
software with Tukey test for 5% of confidence.

2.2.2  Osmotic Dehydration. Osmotic dehydration process was
realized using a Planning Design to optimize process. Variables for
this were:



Table 1. Independent variables for osmotic dehydration

process.

Run Temp. (°C) Concentration (%) Agitation (rpm)
01 40 20 80
02 40 20 120
03 40 50 80
04 40 50 120
05 50 20 80
06 50 20 120
07 50 50 80
08 50 50 120
09 45 35 65
10 45 35 65
11 45 35 65
12 30 35 65
13 45 10 65
14 45 35 80
15 60 35 65
16 45 60 65
17 45 35 130

Analysis of weight reduction (WR), water loss (WL) and solid gain
(SG) were calculated using equations below:

R(%) _ (Mo X UO)]\;O(Mt X Ut) ) (1)

L(%) = (Mth,,)—(MoxBo). @
M,

G(%) = w x 100. 3)

Where:

—WR (%) = weight reduction, % (w/w);

—WL (%) = water loss, % (w/w);

—SG (%) = solid gain, % (w/w);

—M,, = mass of fruit on time ¢ = 0, grams;

—M,; = Mass of treated fruit on time ¢, grams;

—B, = °Brix of fruit on time t = 0;

—B; = °Brix of treated fruit on time ¢;

—U, = Moisture content on time ¢ = 0, % in wet basis;

—U, = Moisture content of treated fruit on time ¢, % wet basis.

Statistical analyses for osmotic dehydration were made using Sta-
tistica 7.0 software.

2.2.3 Artificial neural network modeling. There are many neu-
ral network models. A widely used ANN model for prediction and
control of food processing operations is a Multilayer Feedforward
neural network (MLF)[7]. A MLF consists of (i) an input layer
with neurons representing input variables to the problem, (ii) an
output layer with neuron(s) representing the dependent variable(s),
and (iii) one or more hidden layers containing neuron(s) to help
capture the nonlinearity in the system (Fig.[I).
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Fig. 1. Multilayer feedforward neural network architecture with one hid-
den layer for prediction solid gain, water loss and weight reduction of os-
motically dehydrated of Cashew from Cerrado (Anacardium occidentale).

In this study, the operational variables of osmotic process of cashew
from Cerrado (Anacardium occidentale) (temperature, concentra-
tion, and agitation) were used as inputs, and solid gain, water loss,
and weight reduction were considered as outputs. In the hidden
layer, was chosen to be used a hyperbolic tangent activation func-

tion (Eq.[4).

x _ -z
tanh = —— @)
et t+e®
To improve the behavior of the MLF, due to the different ranges of
each input and each output, both input and output data were nor-
malized before feeding into the network according to Eq. [5}

¢ — min(¢;)
max(¢;) — min(¢;)’

d)i norm — (5)
where ¢; is i-th case.

The performance of the networks was measured by linear correla-
tion coefficient (R?, Eq. @), which compares the values predicted
by the artificial neural networks and the experimental values as fol-
lows.

i 1/’1 pred — 71 exp)
e ©)
i=1 wl exp 1/% ea:p)

where 1., is experimental value and 1),,.cq is ANN predicted
value.

3. RESULTS AND DISCUSSION
3.1 Fruit characterization

On Table Plit can be observed fruit characterization of fruit before
osmotic dehydration process.



Table 2. Experimental data of fruit before osmotic dehydration

process.
Analyses [ Avg & Std. Deviation [ CV(%) [ F
DPPH 7.98 +0.02 0.33 0.5800
pH 3.70 + 0.54 13.27 1.9571
Carotenoids 0.33 £0.01 4.25 1.8991
Lipids 3.28 +0.44 10.72 3.4841
Moisture content 91.24 + 0.50 0.60 0.3373
Titrable acidity 420+ 041 11.64 1.1463
Ashes 0.30 + 0.04 1.51 0.3804
Reducing sugars 2.55+0.10 4.21 10.24*
Non-reducing sugars 2.012 £ 0.08 0.51 0.0162*

* significant of 5% of probability.

In natura fruit presented high moisture content (91.24%) that is
consistent for fruits and vegetable. Values of pH (3.70 £ 0.54),
Titrable acidity (4.20 + 0.41mLg~') and reducing sugars (2.55 +
0.10mg100g~'). These values were different from [9] working
with fruits from Cerrado and [10]] working with cashew from Cer-
rado. This behavior can be explained by the fact that fruits and veg-
etables suffer influence of weather changes, soil components, hours
of exposition to sun and crop treatments.

Comparing both Tables ([2]and [3) it can be observed that variations
occurred for moisture, pH and sugar contents. Osmotic dehydra-
tion process was efficient to reduce moisture content according to
solution concentration increase. Value of pH increased from 3.70
(raw material) to 4.16 (60°Brix solution concentration) but did not
change its acidity character. Reducing sugars was 2.55 then had in-
creases when solution concentration increased. Removal of mois-
ture can concentrate other components like sugars. Carotenoids,
lipids and ashes were not influenced by OD process. This behav-
ior was observed by [11]] working with pineapple in solution with
sucrose.

3.2 Osmotic dehydration process - Effects of the
process on response variables

Tables [4] [5] and [f] presents Statistical analyses of responses (WR,
WL and SG).

3.2.1 Weight Reduction. Table [ presents results for weight re-
duction.

Table 4. Statistical analyses of weight reduction (WR).
[ Effect & StdDev] t | p |

13.371 £+ 1.423 9.39 ]0.011
9.197 £ 1.297 7.09 [0.019
-0.141 £0.428 | —0.33 | 0.772
-1.790 £ 1.352 | —1.32 [ 0.317
-6.921 £1.322 | —5.23 [ 0.035

Factors

Global Average
Temperature (L)
Temperature (Q)
Concentration (L)
Concentration (Q)

R%2=0,78

Agitation (L 9.451 £ 1.596 5.92 [0.027
Agitation (Q) 1.880 £ 3.679 0.511 | 0.660
1x2 -3.625 £ 1.566 | —2.314 | 0.147
1x3 6.554 £ 1.441 4.55 |0.045
2x3 -7.495 £ 1.695 —4.42 10.048

* p < 0, 05, L=linear, Q=quadratic, interactions are made for linear variables.

For weight reduction (WR) the most significant variables were tem-
perature and agitation and interactions between temperature and
agitation, solution concentration and agitation. According to [11]]
increase of temperature affects WR of osmotically dehydrated
cashew apples. Negative values for solution concentration can be
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explained by the fact that higher concentrations of solution can
formed a layer on fruit. This layer can avoid mass transference.

3.2.2 Water Loss. Table 5] presents results for water loss. Water
loss (WL) was affected by temperature and agitation. Quadratic
variable of solution concentration was also significant. These re-
sults were similar to [2]] working with pineapple and [11]] with pear
cubes. Quadratic factors of temperature, solution concentration and
interaction of solution concentration and agitation presented nega-
tive values. These negative values indicate that an increase of vari-
ables caused a decrease of response. For WL regression coefficient
had an improvement (0.81) that indicated a good adjust to experi-
mental data.

Table 5. Statistical analyses of water loss (WL).
[ Effect &StdDev] t [ p |

33.36 £0.904 | 36.91 | 0,001*
4.97 £0.824 6.03 |0,026*
—-0.23+£0.272 | —-0.85| 0.483
0.76 £ 0.859 0.88 | 0.472
—7.57+0.840 |—-9.01|0,012*
4.41£1.014 4.34 10,049*
6.42 £+ 2.336 2.74 | 0.111

Factors

Global Average
Temperature (L)
Temperature (Q)
Concentration (L)
Concentration (Q)
Agitation (L
Agitation (Q)

R?=0,81

1x2 —3.714+£0.995 | -3.72| 0.065
1x3 3.19 £0.915 3.48 | 0.073
2x3 —8.76 £1.076 | —8.14| 0.015*

*p < 0,05, L=linear, Q=quadratic, interactions are made for linear variables.

3.2.3 Solid Gain. The most significant factors for solid gain (Ta-
ble[f) were temperature, solution concentration and agitation. It can
be observed that temperature and agitation had negative value that
could be explained because high variables values can promote a
tissue damage of skin so they become permeable to mass transfer-
ence. This behavior was observed by [12] working with pineapple
cubes.

Statistical analyses showed that WR,WL and SG were influenced
by temperature, solution concentration and agitation of samples and
they were according other authors working OD [2]], [9] and [[L1].

Table 6. Statistical analyses of solid gain (SG).
[ Effect & StdDev] t | p |

19.50 £0.498 | 39.15 | 0.001*
—2.46+0.454 | —5.41|0.033*
0.09 £0.150 0.62 | 0.601
27.854+0.473 | 58.84 | 0.000*
1.90 +0.463 4.11 | 0.054
—2.4940.559 | —4.45|0.047*

Factors

Global Average
Temperature (L)
Temperature (Q)
Concentration (L)
Concentration (Q)
Agitation (L

R?2 =0,99

Agitation (Q) —0.854+1.288 | —-0.66 | 0.576
1x2 —-0.31+0.548 | -0.57| 0.629
1x3 —-1.394+0.504 |—-2.76| 0.110
2x3 0.13 £0.593 0.23 | 0.841

* p < 0,05, L=linear, Q=quadratic, interactions are made for linear variables.

Statistical analyses showed that WR,WL and SG were influenced
by temperature, solution concentration and agitation of samples and
they were according other authors working OD [12]},[11] and [7].



3.3 Artificial neural network optimization

In this study an ANN was used to optimize osmotic dehydration
process. This ANN was configured using three input variables
(temperature, solution concentration and agitation), three output
variables (weight reduction, water loss and solid gain) and then hid-
den layers were tested to adjust the best one for predicting process
(Fig.[T). Used MLFs are marked with following notation, MLF fol-
lowed by number of inputs, number of neurons in the hidden layer,
and the number of outputs.

Hidden layers varied from 2 to 9. Table [7| presents results of R?
between experimentally measured and ANN outputs. It can be ver-
ified that if hidden layers were only 2, regression coefficient (R?)
was inferior of R? of statistical analyses for all responses, but when
hidden layers are increased then B2 of ANN was better than of sta-
tistical analyses. Uses of 9 hidden layers were not more efficient
than 7 so the best configuration of ANN was MLF 3 — 7 — 3.

Table 7. R? between experimentally
measured and ANN outputs.
ANNname [ WR [ WL | SG

MLF3—-2-3 | 0.64 | 0.68 | 0.89
MLF3-3-3 | 0.90 | 0.84 | 0.95
MLF3—-5-3 | 094 | 0.94 | 0.96
MLF3-7-3 | 098 | 0.97 | 0.99
MLF3-9-3 | 097 | 0.97 | 0.99

In Figure [2] all configurations of ANN to WR was plotted and
showed that the best configuration of ANN was MLF 3 — 7 — 3
because their values are closed to perfect prediction line [13].
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Fig. 2. Normalized Weigth Reduction (WR) model prediction perfor-
mance for differents MLF configuration.

For WL and SG (Figures [3]and ) it can be observed that same
behavior of WR, the best adjust to experimental data is MLF 3 —
7—3.
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Fig. 3. Normalized Water Loss (WL) model prediction performance for
differents MLF configuration.
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Fig. 4. Normalized Solid Gain (SG) model prediction performance for dif-
ferents MLF configuration.

In Figures [3] [f] and [7] it was observed ANN configuration with 7
neurons on hidden layer (MLF 3 — 7 — 3). They presented a better
adjust to experimental data. Regression coefficient (R?) of WR was
0.98, for WL was 0.97 and for SG was 0.99. [13] working with
papaya varied hidden layer from 3 to 10 and observed that when
more hidden layers can adjust data to experimental processes more
than other statistical tools.
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Fig. 5. Experimental vs. predicted values for weigth reduction of osmot-
ically dehydrated Cashew from Cerrado by optimum ANN configuration
MLF 3 — 7 — 3 (R? = 0.98).
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Fig. 6. Experimental vs. predicted values for water loss of osmotically
dehydrated Cashew from Cerrado by optimum ANN configuration MLF
3—7-3(R?=0.97).
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Fig. 7. Experimental vs. predicted values for solid gain of osmotically
dehydrated Cashew from Cerrado by optimum ANN configuration MLF
3—7—3(R?=0.99).

ANN is an artificial intelligence that can learn with process so they
are important to predict behavior of biological material. For os-
motic dehydration process they provide a good adjust to experi-
mental data and could predict the process improving values of re-
gression coefficient. Other authors working with ANN had good
prediction of processes of drying [4], [, [7] and [13]].

4. CONCLUSION

Osmotic Dehydration (OD) process can be effective to reduce
moisture content and produce intermediary moisture level foods.
This behavior is important for food stability. Temperature, con-
centration and agitation influenced Weight Reduction (WR), Water
Loss (WL) and Solid Gain (SG).

Statistical analyses showed that R? were low for WR (0.78) WL
(0.81). Only for SG it was high (0.99). After using Artificial Neu-
ral Network (ANN) they became higher than 0.90. This behavior
showed that ANN can predict better conditions for OD process.
ANN configurations were tested from 2 hidden layers to 9. For only
2 hidden layers R? were below statistical analyses. Nine hidden
layers did not present an improvement to OD process, so the best
configuration to OD process of cashew from Cerrado was Multi-
layer Feedforward neural network (MLF) 3 — 7 — 3.

Use of ANN to optimize osmotic dehydration of cashew from Cer-
rado was efficient and presented a good adjust to experimental data.
ANN is a good tool for OD processes and can help food production
for industry.
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Table 3. Experimental data after osmotic dehydration process with average and standard deviation

Analysis [ 10°Brix 20°Brix 35°Brix 50°Brix 60°Brix
DPPH 7.99+0.5 8.001 +0.5 8.032+0.5 8.103+0.5 8.101 £ 0.5
pH 3.87£0.02 4.08 £0.02 4.10 £0.02 4.11 £0.02 4.16 £0.02
Carotenoides 0.333+£0.05 0.339+0.05 0.336£0.05 0.343£0.05 0.351£0.05
Lipides 3.3214+£0.01 3.395+0.01 3.428+0.01 3.771+£0.01 3.567+0.01
Moisture content 72.3+1.5 68.4+1.6 63.5+1.6 65.9+1.8 61.3+1.7
Titrable acidity 4.10 £ 0.001 4.11£0.01 4.244+0.01 4.18 £0.01 4.30 +£0.01
Ashes 0.353 +£0.5 0.378 £ 0.5 0.361+0.5 0.389+0.5 0.404 + 0.5
Reducing Sugars 15.34+0.5 18.87 £ 0.5 20.55 £ 0.5 23.78 £0.5 25.01£0.5
Non Reducing Sugars 13.43+0.5 14.98 £ 0.5 16.73+£0.5 19.86 £ 0.5 21.34£0.5
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