
International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

1

Hardware Accelerator for Feature Extraction based on

Circle Views Signature

Huda D. Jomma
Ph.D. researcher at Computer
& Systems Eng. Dept., Minia

University,
 Minia, Egypt.

Aziza I. Hussein
Computer & Systems Eng.

Dept., Minia University
 Minia, Egypt

Electrical & Computer Eng.
Dept, Effat University

Jeddah KSA

Alaa M. Hamdi
Electronics, Communications &
Computer Eng. Dept., Helwan

university
Cairo, Egypt

ABSTRACT

This paper presents a hardware accelerator for feature

extraction based on circle views (CVs) signature suitable for

shape recognition. The heavy computational and memory

access needs in shape features extraction using general

purpose sequential processors enforces the use of a hardware

accelerator. This work presents some modifications to the

original CVs signature algorithm. These modifications are

intended to reduce time and space requirements for the

hardware accelerator. A software version for 1NN classifier is

implemented based on the modified CVs signature algorithm.

This software version records 89.85% recognition rate using

MPEG-7 dataset which is too close to that scored by the

original CVs signature algorithm. This small reduction in

performance can be ignored against the reduction in the

hardware requirements and the computation time achieved. A

parallel architecture for the hardware accelerator is proposed.

Using 16 processing elements, the proposed hardware

accelerator achieved 50.34 times speedup compared to the

standard software PC implementation. A study is done to

measure the effect of changing the number of processing

elements on the speedup gained and the hardware components

used by the proposed hardware accelerator. The proposed

hardware accelerator is implemented in a field programmable

gate array (FPGA) by using Verilog hardware description

language.

Keywords

Feature extraction, shape recognition, real-time image

processing, hardware accelerator, FPGA.

1. INTRODUCTION
Real-time object shape recognition is a difficult task that

involves preprocessing the image, extracting shape features

and classifying the shape according to stored training set

shape features. Object shape recognition has a wide range of

applications including multimedia, military and medical

science. The recognition process is divided into two parts:

creating the features of the training set (the off-line phase) and

classifying a query features according to the training set

features (the on-line phase). During the on-line phase, real-

time feature extraction remains a crucial challenge, since it

consumes most of the computation time. So, this paper

focuses on the acceleration of features computation. Advances

in fabrication technology permits the manufacturing of field

programmable gate arrays (FPGAs) having high performance

and high density. These FPGAs can be used as powerful

computing systems for image processing applications [1, 2].

A variety of architecture designs capable of supporting real-

time object shape recognition have been proposed in the

literature. Implementations of algorithms for image feature

extraction were proposed in [3, 4, and 5]. The work in [3]

extracts the Gabor wavelet features for face/object

recognition. Heikkinen et. al. [4] presented hardware

architectures for computing two texture features: mean and

contrast. A novel FPGA-based architecture for the extraction

of four texture features using Gray Level Co-occurrence

Matrix (GLCM) analysis was proposed in [5]. Hedberg et. al.

[6] presented hardware architecture of a labeling algorithm

with extraction of simple features: area and center of gravity

(COG). The work in [7] presented hardware architecture for

computing three basic image component feature descriptors,

namely, centre of gravity, area, and bounding box. An FPGA-

based accelerator for Fourier descriptors computing for color

object recognition was proposed in [8].

Recently, new shape recognition techniques that achieved

high recognition rates have been proposed. Some of these

methods are 2D histogram representation of shapes called

shape contexts (SC) [9], triangle area representation (TAR)

[10], a shape tree that is used to represent a hierarchical

description [11], inner-distance shape context (IDSC) [12],

and the circle views (CVs) signature [13]. Despite the high

recognition rates these methods achieved, they need a lot of

computations. So, they are in need to hardware accelerators to

speed up their computations.

In this paper, a hardware accelerator for computing the circle

views (CVs) signature is proposed. The CVs signature aimed

to be: very simple, easy to compute, and computationally

efficient. In addition, it constitutes a translation, rotation and

scale invariant signature [13]. There are many advantages that

make the CVs signature algorithm suitable for hardware

implementation. The high recognition rate of the CVs

signature and the simplicity of the needed calculations are the

main reason to choose it. Also, many of these calculations are

independent from each other. This will give the chance to

design a parallel architecture to compute the CVs signature

matrix. Some important modifications are introduced to the

original CVs signature algorithm that simplifies the

computations needed by the proposed accelerator and thus

reduces its FPGA hardware requirements. To test the

robustness of the introduced modifications, a software version

of the shape classification system is implemented using

Matlab that is based on the modified CVs signature algorithm.

The remainder of this paper is organized as follows: Section 2

gives a review on needed algorithms. Section 3 presents the

proposed hardware accelerator for computing the CVs

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

2

Fig 1: The indices of the 8-neighbourhood of the center

pixel (PC)

 P5 P6 P7

 P4 PC P0

 P3 P2 P1

signature. Section 4 presents the experimental results for the

proposed hardware accelerator. Finally, Section 5 includes the

conclusions of the proposed work.

2. REVIEW ON NEEDED

ALGORITHMS
In this section, the main algorithms needed to implement the

proposed hardware accelerator for computing circle views

(CVs) signature will be reviewed. The CVs signature is a

shape signature for recognizing 2D object silhouettes. The

shape is an important visual feature of a graphical object and

also one of the basic features used to describe image content

[13]. The CVs signature algorithm extracts the shape features

to describe the shape contour. It is obvious that the detection

and extraction of the shape contour is a prerequisite for the

extraction of shape features. So, contour tracing technique

should be executed firstly to detect the external shape contour

and produce ordered list of contour pixels. These sequential

contour pixels will be used by the CVs signature algorithm to

recognize and classify the shape object. In the following

subsections, details about these two algorithms will be

provided.

2.1 Contour Tracing Algorithm
The goal of the contour tracing algorithm is to extract an

external shape contour. Contour tracing finds the start point of

an object, traces the shape contour, and extracts the shape

contour in the form of an ordered contour pixels list. Many

algorithms were proposed for contour tracing. Haig et. al. [14]

proposed a simple and efficient contour tracing algorithm.

First the algorithm starts to scan the image pixel by pixel in

raster scan mode from top to bottom and from left to right

until an outer shape contour starting pixel is encountered.

Then, the algorithm begins reading the eight adjacent

neighbors of the start pixel. The problem now is how

effectively to search and find the next contour pixel in the

eight adjacent neighbors. The other important point that must

be considered is from which neighbor pixel the search among

the eight neighbors should start. Each pixel in the eight

neighbors is assigned an index as shown in figure 1. Tracing

is performed in a clockwise direction. From the contour start

pixel PS, a procedure called tracer is executed to find the next

contour pixel starting the search from P5. The end of contour

tracing algorithm will be reached if the tracer identifies PS as

an isolated pixel. If PS is not an isolated point, the contour

pixel following PS will be output. For any other contour pixel

the search in the 8-neighborhood starts from the neighbor d+2,

where d is the index of the previous pixel relative to the

current pixel. The tracer procedure will be executed

repeatedly until a stop condition occurs. The stop condition

occurs when the start pixel PS is visited again and its next

pixel is the same as that found in the beginning of the search.

2.2 Circle Views (CVs) Signature

Algorithm
The main idea of the CVs signature algorithm is based on

creating many views for the shape contour from sampled

points on a viewing circle. This circle is centered at the shape

centroid. The following algorithm summarizes the steps for

constructing the CVs signature matrix [13].

Algorithm

Step1: Input a binary shape image.

Step2: Extract the shape contour.

Step3: Sample out N points on the shape contour with x

and y coordinates.

 contour_Points = {(x1, y1), (x2, y2), …, (xN, yN)}

Step4: Compute the centroid coordinates (xc, yc).

 xc =
1

N
 x u N

u=1 yc =
1

N
 y(u)N

u=1

Step5: Generate N uniform viewing points on a circular

orbit centered at the shape centroid and having a

radius R.

 viewing_Points = {(xv1, yv1), (xv2, yv2), …, (xvN,

yvN)}

Step6: Construct an N x N CVs signature matrix as

follows:

for view = 1 to N

 get coordinates of viewing point number (view)

 (xv, yv) = viewing_Points(view)

 i = view

 for k = 1 to N

 get coordinates of contour point number i

 (xcont, ycont) = contour_Points(i)

 CVs signature (i, view) =

 xv − xcont
2 + yv − ycont

2

 i = (i % N) + 1

 end

 end

Step7: Output the CVs signature matrix.

In [13], the features of two viewing circles were merged to

capture more information. This obviously enriches the

information content of the CVs signature. The Fourier

transform was applied to the CVs signature to generate the

shape descriptor. The CVs signature achieved 83.71%

retrieval rate using bulls-eye test on MPEG-7 database [13].

3. THE PROPOSED HARDWARE

ACCELERATOR FOR COMPUTING

CVS SIGNATURE
The main purpose of the proposed work is to design a

hardware accelerator for computing CVs signature. There is a

wide difference between software and hardware

implementations. It is a simple task to implement any

algorithm in a typical PC environment. The programmer does

not take into account the memory requirements, power

consumption, and logic usage. These requirements must be

considered in advance during hardware system design

process. The main bottlenecks regarding the hardware

implementation of the CVs signature are the need of

tremendous calculations and all these calculations comprise

floating point numbers arithmetic’s. Since the CVs signature

matrix size is 128*128, it needs several multiplications,

additions, subtractions, divisions, and square root operations.

Thus, some modifications will be proposed for the original

CVs signature algorithm that will account for the hardware

system design requirements and make it more suitable for

hardware implementation. Most of the proposed modifications

concentrate on the reduction of the tremendous calculations

needed as well as avoiding the usage of floating point

numbers arithmetic’s. The hardware accelerator for

computing CVs signature is implemented on FPGA by using

Verilog HDL language. Figure 2 illustrates the main modules

of the proposed system. The hardware accelerator comprises

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

3

four main components, a parallel memory module (storing an

input binary image), contour tracer module, contour sampler

module, and CVs signature computation module. The detailed

description of each module will be presented below.

3.1 Parallel Memory Module
The major bottleneck in the hardware implementation of

contour tracing algorithms is the large number of memory

accesses needed for tracing the whole shape contour. For each

contour pixel, the contour tracer needs to read a 3*3 window

that contains the eight adjacent neighbors from the memory

that stored the input binary image. Most of the previous work

stores the image in a linear RAM array. In this way, nine

memory accesses are needed for each window to be read. This

will cost the system too much time for only reading

sequentially each window of the shape contour pixels. So,

achieving real-time performance is difficult due to this

memory access demands in contour tracing and hence

hardware acceleration is unavoidable.

Ratnayake et. al. in [15] designed a parallel memory
architecture by exploiting FPGA memory blocks (BRAMs)

that can achieve reading the 3*3 window in one memory

access. This obviously will reduce the total memory access

time for tracing the whole shape contour by factor of nine. As

shown in figure 3, the parallel memory architecture has four

hierarchical memory stacks. Each stack consists of four

BRAMs constructed as dual port with 1 bit data width and

18K memory location. As shown, the lines of the input image

is stored in the parallel memory stacks sequentially, where the

first line is stored in stack0, the second line is stored in

stack1,the fifth line is stored in stack0 and so on. By the same

manner, the pixels of each line is stored sequentially in the

block RAMs. This strategy that used for storing the input

image facilitates reading any 16 pixels in one memory access

[15]. No doubt, incorporating this parallel memory in the

proposed hardware implementation will reduce the total

execution time needed to compute the CVs signature. So, the

parallel memory architecture introduced by Ratnayake to store

the input binary image is re-implemented.

3.2 Contour Tracer Module
During tracing journey, the contour tracer counts the contour

pixels and outputs the number of contour pixels (contour

length). Later, the contour sampler module will use the

number of contour pixels to compute the sampling step. The

coordinates of the shape start pixel are stored in two registers

(xs, ys). The contour tracer starts tracing the shape contour by

the aid of the binary image data stored in the parallel memory

module. As shown in figure 4, the contour tracer sends the

center pixel coordinates (xi, yi) of the window to the parallel

memory address generator. The address generator computes

the address of each neighboring pixel in the 3*3 window and

passes them to the corresponding block RAMs of the parallel

memory. The parallel memory returns the neighboring pixels

values of the 3*3 window. In the proposed hardware for

contour tracer, the tracing algorithm introduced in [14] is

implemented to trace the outer contour of the shape. The

following steps demonstrate briefly the procedures done by

the proposed hardware to implement this algorithm:

1- Initialize the contour_length register to 1.

2- Make the current pixel coordinates (xi, yi) = (xs, ys).

3- Read the 3*3 neighborhood window for the current pixel

(xi, yi) from the parallel memory in one memory access.

4- Search for the first foreground pixel in the 8-

neighborhood (indexed as shown in figure 1) starting

from pixel P5.

5- If no foreground pixel found then

 An isolated point is found and contour tracing ends

 Else

 Store the index of the next pixel in a register named

“next”.

 contour_length = contour_length + 1

6- Compute the coordinates of the next contour pixel (xn, yn)

using the lookup tables DXLUT and DYLUT shown in

figure 5(a, b). Store the coordinates of this second

contour pixel into two registers (xs2,ys2).

7- Make current pixel coordinates (xi, yi) = (xn, yn).

8- Read the 3*3 neighborhood window for the current pixel

(xi, yi) from the parallel memory in one memory access.

9- Compute d (where d is the index of the previous pixel

relative to the current pixel) using the lookup table

DLUT shown in figure 5 (c) and the index of the next

pixel stored in the register “next”.

Fig 2: The main components of the proposed hardware

accelerator

Contour Tracer

module

CVs Signature Computation

module

The resulted shape features

Parallel memory

(binary image)

Contour Sampler

module

BRAM 0 P0 P4 P8 … P252 …

BRAM 1 P1 P5 P9 … P253 …

BRAM 2 P2 P6 P10 … P254 …

BRAM 3 P3 P7 P11 … P255 …

Stack 0 Line0 Line4 … Line252

Stack 1 Line1 Line5 … Line253

Stack 2 Line2 Line6 … Line254

Stack 3 Line3 Line7 … Line255

Fig 3: Hierarchical architecture of the parallel memory

(assume image size 256*256)

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

4

10- Search the 3*3 neighborhood window for the first

foreground pixel starting from the neighbor index d+2.

11- Store the index of this foreground pixel into the register

“next” and compute the coordinates of the next pixel (xn,

yn) using DXLUT and DYLUT lookup tables.

12- If (xi, yi) = (xs, ys) and (xn, yn) = (xs2, ys2) then

Stop contour tracing (stop condition occurred).

 Else

 contour_length = contour_length + 1

 Go to step 7

The proposed hardware initializes a 16 bits register named

“contour_length” to 1. This register will be incremented each

time a new contour pixel is found. The two registers facing

the parallel memory (xi, yi) will be loaded initially by the

coordinates of the shape starting pixel (xs, ys). The tracer

receives the values of 3*3 pixels window, centered at (xi, yi),

returned from the parallel memory module in one memory

access. These values of the eight neighbors will be stored in

an 8 bits register named P. So, Pj is the jth neighbor of the

center pixel (current pixel). Then, the tracer starts to search

for the first foreground contour pixel in the 8-neighborhood

pixels. If a foreground pixel is found, the index of this pixel

will be stored in a register named “next”. If the center pixel of

the window is the start contour pixel (xs, ys), the proposed

hardware enforces the search to start from neighbor P5. For

the other contour pixels, the search starts from the neighbor

that has the index d+2, where d is the index of the previous

pixel relative to the current pixel. A lookup table (DLUT)

shown in figure 5(c) is introduced to determine the value d+2

directly. The input for this lookup table is the value stored in

the “next” register, which is the index of the next pixel in the

previous 8-neighborhood. Obviously, this next pixel in the

previous 8-neighborhood is the center pixel of the current

window. Two lookup tables DXLUT and DYLUT shown in

figure 5(a, b) are used to compute the coordinates of this next

pixel and then store them in two registers (xn, yn). DXLUT

and DYLUT lookup tables store the differences in the x and y

coordinates of the eight neighboring pixels relative to the

window’s center pixel. For the next window, the next pixel

will be its center pixel, so the coordinates (xn, yn) are then

transferred to the inputs of the parallel memory module (xi, yi)

to read the next 3*3 window.

The occurrence of the stop condition is monitored by using

comparators. These comparators compare the coordinates of

the current pixel (xi, yi) by the coordinates of the stored start

pixel (xs, ys) and also compare the coordinates of the next

pixel (xn, yn) with the coordinates of the stored second contour

pixel (xs2, ys2). If these comparators indicate the equivalence

of these coordinates, the contour tracer module stops tracing

and outputs the number of contour pixels. The contour tracer

module stores the ordered shape contour pixel coordinates

into two 16 Kbytes block RAMs named contXRAM and

contYRAM.

3.3 Contour Sampler Module
The goal of the contour sampler module is to sample N points

out of the whole shape contour pixels. Many systems had

chosen the value N = 128 for sampling the contour. This is an

essential step before computing the CVs signature. As shown

in figure 4, the inputs of the contour sampler are the total

number of contour pixels (stored in contour_length register)

and the coordinates of the ordered contour pixels list stored in

the two RAMs (contXRAM and contYRAM). The output is two

register arrays (128*8 bits) named sampledXcont and

sampledYcont. These register arrays will contain the

coordinates of the 128 sampled contour points.

To sample the obtained contour, the sample step needs to be

computed. The step usually has a fraction. In the proposed

system, a method that uses only integer calculations is

introduced. This method depends on shifting the contents of

the “contour_length” register by 7 bits to right. This is

equivalent to the division by 128. The 7 bits shifted out are

used as the division remainder (R), and the other bits as the

integer division result (I). The starting pixel of the contour is

considered as the first sample point and its coordinates are

stored in the first location of the sampledXcont and

sampledYcont register arrays. During contour sampling, the

index of the next sample point “Next_sample_idx” will be

determined as illustrated below:

1- Initialization: TR = 0, Next_sample_idx = 0

2- Next_sample_idx = Next_sample_idx + I,

 TR = TR + R

3- If (TR >= 128)

Next_sample_idx = Next_sample_idx + 1

TR = TR - 128

4- Retrieve a contour pixel coordinates from contXRAM and

contYRAM stored at Next_sample_idx

5- If the number of sampled contour points <= 128, then

Go to step 2

Contour Tracer

2 register arrays 128*8bits

(sampledXcont & sampledYcont)

Parallel memory

(16 Block RAMs)

(binary image)

window 3*3

Address

generator

(xi, yi)

Contour Sampler

 ordered

contour pixels

contYRAM

16 Kbytes
contXRAM

16 Kbytes

contour_length

Fig 4: Detailed description for computing the sampled

contour points

 (a) DXLUT (b) DYLUT (c) DLUT

Fig 5: Lookup tables contents: (a) DXLUT (b) DYLUT

(c) DLUT

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

5

Else

Stop

Where, TR is an accumulator register for the remainder R.

Each time a new index of the next sample point

“Next_sample_idx” is updated, the contXRAM and contYRAM

RAMs are accessed at the address “Next_sample_idx” to read

the coordinate’s values of the next sample contour point.

Then, the fetched coordinates are stored into the

sampledXcont and sampledYcont register arrays. The contour

sampler module stops when sample point number 128 is

reached.

3.4 CVs Signature Computation Module
The proposed hardware implementation is intended as a

hardware accelerator. In order to achieve lower time

complexity, the number of mathematical operations needs to

be reduced also the usage of the floating point numbers needs

to be avoided during the design process. As discussed

previously, the construction of the CVs signature matrix is

based on creating many views for the shape contour from 128

viewing points sampled from a viewing circle. This circle is

centered at the shape centroid. To do this, firstly a hardware

that produces 128 sampled viewing points will have to be

introduced. Then, a parallel architecture that performs the

computation of the CVs signature matrix will be proposed.

3.4.1 Sampled Viewing Circle Points

Computation Module
The objective of this module is to compute the coordinates of

the viewing points lying on the viewing circle and store them

into two register arrays (VPXCoord and VPYCoord). Figure 6

illustrates the hardware architecture of this module. As shown,

the sampled viewing circle points computation module takes

as input the output of the contour sampler module, which

represents the coordinates of the 128 sampled contour points

that were stored into two register arrays (sampledXcont and

sampledYcont). This module comprises three main units:

centroid coordinates computation unit, viewing circle radius

computation unit, and a generator unit.

3.4.1.1 Centroid Coordinates Computation Unit
The original CVs signature algorithm computes the shape

centroid coordinates as the average of the whole shape

contour points coordinates. To simplify the computation of

this step, the shape centroid computation is restricted to only

the sampled contour points (128 samples instead of the whole

contour points). The time needed to compute the shape

centroid using the original CVs signature algorithm is a

function of the number of contour pixels. However, by

computing the shape centroid using only the sampled contour

points, the processing time will be fixed (to perform 128

additions) regardless the number of contour pixels. Also, it

eliminates the need for wide-ranging hardware divider, which

reduces the hardware requirements considerably. The

proposed hardware used to compute the shape centroid

coordinates is very simple. Two adders are needed; the first

one is used to compute sequentially the sum of all x

coordinates of the 128 sampled contour points stored at the

register array sampledXcont. The second adder is used to

compute sequentially the sum of all y coordinates of the 128

sampled contour points stored at the register array

sampledYcont. Since the coordinates of the 128 sampled

contour points are integer values, an integer value will result

for the sum of the coordinates of the sampled points. Then the

average values of these two sums are computed by dividing

them by 128. This division process can simply be

implemented using a shifter to right shift these two sums by 7

bits. The shift logic is much simpler and faster than the

division logic. Finally, two registers (xc, yc) are used to store

the integer part of the result as the coordinates of the shape

centroid.

3.4.1.2 Viewing Circle Radius Computation Unit
To compute the radius of the viewing circle, the city block

distance between the shape centroid and all the sampled

contour points is used instead of the Euclidean distance used

by the original CVs signature algorithm. This simplifies the

hardware implementation as well as avoiding the floating

numbers that would have resulted from the square root needed

by the Euclidean distance. The actual value of the viewing

circle radius will be the maximum city block distance (Rmax)

computed multiplied by 0.75. The factor 0.75 is chosen

empirically, so that it achieves the highest recognition rate. To

compute the city block distance, two comparators and two

subtractors are used to get the absolute differences between

the shape centroid and a sampled contour point (∆x, ∆y).

These two absolute differences are added together to get the

city block distance. Each new city block distance computed is

compared to a register named Rmax (initialized to 0). If the

new city block distance is larger than that stored in the

register Rmax, the contents of Rmax will be replaced by this new

distance. In this way, Rmax register will finally contain the

maximum distance between the shape centroid and all

sampled contour points. As illustrated previously, the radius

of the viewing circle is 0.75*Rmax. To multiply Rmax by 0.75, a

shifter is used to right shift the Rmax value one bit to get 0.5 *

Rmax then right shift Rmax two bits to get 0.25 * Rmax. Using an

adder, the integer results of the two shift operations are added

to get the viewing circle radius Rvc = 0.75* Rmax as an integer

value. In this way, the need for floating point multiplications

to compute the factor 0.75* Rmax is eliminated.

3.4.1.3 Computing Sampled Viewing Circle

Points Coordinates
Computing the coordinates of the sampled points of the

viewing circle is a main challenge to implement in hardware,

since they need heavy floating point calculations. So, to

simplify the hardware implementation, an efficient method for

computing the sampled viewing points coordinates without

any floating point arithmetic’s will be proposed. The

coordinates of a sampled viewing circle point (xview, yview) can

be computed by (1, 2) as follows:

 (1)

 (2)

Where, xC, yC are the coordinates of the shape centroid. The

full period [Ө = 0: 2π] is sampled using 128 points. In the

proposed hardware accelerator, if equations (1, 2) are

implemented directly to compute 128 sampled viewing points,

this will need 256 floating point multiplications. This

unconditional hardware implementation causes an increase in

both logic usage and the time complexity. The proposed

hardware for computing the coordinates of the sampled

viewing points depends on the fact that using only the first

quarter values [0: π/2] of a sampled cosine function, the

sampled cosine values for the other three quarters could be

generated. By the same manner, the whole values of a

sampled sine function could be generated using only the first

quarter values of a sampled cosine function. This idea

depends on that the order of the values of the sampled cosine

and sine functions for each quarter can be considered either in

the same order or in the reversed order as the values of the

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

6

sampled cosine function for the first quarter. Also, the sign of

these samples is taken into consideration. For example, the

second quarter period of a sampled cosine function is in the

reverse order of that of cosine function’s first quarter after

adding a negative sign. Another example regarding the sine

function: the second quarter of a sampled sine function is in

the same order as that of first quarter samples of a cosine

function with the same sign. By the same idea, values of all

quarters of sampled cosine and sine functions can be

generated using only the first quarter values of a sampled

cosine function. This means that only 32 values of the

sampled cosine function for the first quarter need to be stored

and from which the coordinates of the 128 sampled viewing

circle points can be generated. These 32 values are stored in a

lookup table as a 15 bits fixed point numbers, 1 bit for the

integer part and 14 bits for the fraction. Then, a multiplier is

used to perform only 32 multiplications sequentially to

compute the term Rvc*cos θ (in (1)), where θ is in the interval

[0: π/2]. To simplify the multiplication process, the stored

values of the sampled cosine function are considered as an

unsigned integer binary numbers, and then they are multiplied

by Rvc. The least 14 bits of the multiplication results

(representing the fraction part) are ignored and the other bits

are used to represent the result of the product term Rvc*cos θ.

These results are stored in a 32*8 bits register array. As

shown in figure 6, a generator is introduced that uses the

stored register array values to generate the other values of the

term Rvc*cos θ for the interval [π/2: 2π].

Fig 6: The proposed hardware architecture of the viewing

circle sample points computation module

Also, it generates the values of the term Rvc*sin θ for the

whole interval [0: 2π]. In both of these two cases there will be

no need for any additional multiplications. To do this, the

generator takes care by reversing the order of the 32 stored

values for the factor Rvc*cos θ as needed by the proposed

method. Finally, according to (1, 2), to produce the

coordinates of the 128 sampled viewing points, each output of

the generator is added or subtracted (according to the

expected sign for each generated value of the product terms

Rvc*cos θ and Rvc*sin θ) to or from the centroid coordinates

(xC, yC).

As seen the proposed hardware for computing the viewing

points coordinates reduces the multiplications needed to only

32 multiplications instead of 256 multiplications (12.5%)

which also reduces the time complexity by the same factor.

Also, the space needed to store the values of the sampled

cosine and sine functions will be reduced to 12.5%. An

important point is that the need for floating point

multiplication is eliminated; merely, a simple binary integer

multiplier is used. Finally, the coordinates of the 128 sampled

viewing points are stored into two register arrays named

VPXCoord and VPYCoord.

3.4.2 CVs Signature Matrix Computation Module
The main challenge faced when implementing the hardware

accelerator of the CVs signature algorithm is the need of

tremendous calculations since the size of the CVs signature

matrix is 128*128. As seen, to compute the Euclidean

distance between every sampled viewing point and all

sampled contour points, 16384*2 subtractions, 16384*2

multiplications, 16384 additions, and 16384 square root

operations are needed. To simplify the hardware

implementation of the CVs computation, the squared

Euclidean distance between every viewing point and all

sampled contour points is used instead of the direct Euclidean

distance. This simplification eliminates the need for additional

hardware to compute the square root and as a result avoiding

the need for floating point numbers. According to the nature

of the CVs signature, each contour view from a certain

viewing point on the viewing circle can be computed

independently. Figure 7 illustrates the construction of the CVs

signature matrix. As shown, it is obvious that each column

represents one contour view from a certain viewing point VPj

and its computation is independent from the other columns

(views). This will give a chance to use parallel architecture to

compute the CVs signature matrix.

As shown in figure 8, the inputs of the CVs signature matrix

computation module are two pairs of register arrays. One pair

contains the coordinates of 128 sampled contour points

(sampledXcont and sampledYcont) and the other contains the

coordinates of 128 sampled viewing points (VPXCoord and

VPYCoord). As illustrated in figure 8, CVs signature Matrix

computation module comprises four processing elements that

operate in parallel. Each processing element is composed of

two subtractors, two multipliers and one adder to compute a

squared Euclidean distance. Using four processing elements

will cause a speedup on the CVs signature matrix

computations. The columns of the CVs signature matrix are

divided between the processing elements. So, each processing

element will compute different 32 (128 views /4 processing

elements) contour views from different 32 sampled viewing

points. Here, 4 processing elements are used as an illustration.

However, in the experimental results section, a study of the

effect of changing the number of processing elements on the

system speedup gained and hardware requirements will be

made. Studying figure 7 carefully, it is obvious that each

column (view) starts from a contour point whose index is the

same as that of the viewing point VPj. Hence, an indexing

controller is designed that helps each processing element to

start with the correct index when accessing the register arrays

sampledXcont and sampledYcont.

The views that generated by the processing elements are

stored in four block RAMs representing the CVs signature

Viewing circle radius

computation unit

32 values of

Rvc*cos θ

256 values of

Rvc*cos θ &

 Rvc*sin θ

xc, yc

2 register arrays 128*8bits

(sampledXcont & sampledYcont)

2 signed register arrays 128*10bits

(VPXCoord & VPYCoord)

Centroid coordinates

computation unit

LUT: 32*15bits fixed

point numbers

(sampled cosine values

for first quarter)

Generator

+or

Rvc

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

7

matrix. Ignoring the usage of the square root will lead to large

data width of the block RAMs that stores the CVs signature

matrix. According to the representations used for the

coordinates of the sampled contour points and the sampled

viewing points, the squared distance will need 21 bits binary

number which is very large. In order to reduce the memory

requirements for storing the CVs signature matrix, each

squared distance is divided by the factor 1024 and the resulted

integer parts are stored as the shape signature. This division is

equivalent to right shift each element in the signature matrix

by 10 bits which could be easily implemented on FPGA chip.

As a result a memory is needed having only 11 bits data width

Fig 8: Parallel architecture for computing CVs signature matrix

instead of 21 bits, which reduces memory space requirements

significantly.

The original CVs signature algorithm performs row wise

normalization for the CVs signature matrix. For row wise

normalization, the squared distances in each row should be

divided by the maximum value of the corresponding row.

Division operations exhaust a large FPGA chip area and at

least it takes number of clock pulses equal to the sum of the

bit lengths of both dividend and divisor. This means that time

and space costs needed will be very large using FPGA chips.

So, the normalization process is postponed to the software

part of the classification system.

4. EXPERIMENTAL RESULTS
In this work, the original CVs signature algorithm is

implemented using Matlab on a PC having an Intel® core ™

i5-2430M CPU @ 2.4 GHz and 4 Giga bytes RAM. Only one

viewing circle with a radius 0.9 of the maximum Euclidean

distance between the shape centroid and the sampled contour

points is used to compute the CVs signature. This software

version of the original CVs signature algorithm is used for

shape classification task. The MPEG-7 database is used for

evaluation. Ten instances for each of the 70 classes

composing MPEG-7 database are used for training 1NN

classifier. The other 10 instances from each class are used for

testing. The original CVs signature algorithm achieves

91.28% recognition rate.

As illustrated in section 3, the proposed modifications are

introduced to the original CVs signature algorithm to reduce

the processing time and the hardware requirements needed.

To measure the robustness of the proposed modifications, a

software version for the modified CVs signature algorithm is

implemented using Matlab. Again, the MPEG-7 database is

used for testing. The recognition rate for the modified CVs

signature algorithm is measured the same way as used with

the original CVs signature algorithm. The modified CVs

signature algorithm achieves 89.85% recognition rate. As

seen, the small reduction in performance using the proposed

modifications can be ignored against the reduction in the

hardware requirements and the computation time that will be

achieved. This small reduction in performance proves the

robustness of the modified CVs signature algorithm.

The proposed hardware accelerator for computing CVs

signature is implemented using Verilog HDL language. The

system is implemented on a Spartan-3 XC3S5000 FPGA with

74,880 logic cells, 1,872 kilo bits Block RAM, 784 user I/O

pins [16]. The proposed hardware accelerator will be

evaluated in terms of FPGA hardware requirements, and total

computation time. Some binary images are chosen from the

MPEG-7 database and are rescaled to 256*256 pixels to test

the proposed hardware accelerator. The FPGA Hardware

utilization is found to be 8.11% slice flip flops, 20.38% 4-

input LUTs, 24.75% occupied slices, 2.88% 18x18 bits

multipliers, and 40.38% block RAMs. The clock frequency is

29.51MHz. At this frequency, the computation time needed

by the proposed hardware accelerator is found to be 0.673

milliseconds. The speedup achieved is 11.14 since the

computation time needed by the software version of the

original CVs signature algorithm (for the same image size) is

7.5 milliseconds. As seen, the proposed hardware accelerator

achieves an acceptable FPGA chip utilization and a good

speedup of more than 11 times.

2 signed register arrays 128*10bits

(VPXCoord & VPYCoord)

2 register arrays 128*8bits

(sampledXcont & sampledYcont)

CVs Computing Module

PE1

Block RAM

128*32*11bits

(1st quarter of

CVs matrix)

PE2

Block RAM

128*32*11bits

(2nd quarter of

CVs matrix)

)

PE3

Block RAM

128*32*11bits

(3rd quarter of

CVs matrix)

)

PE4

Block RAM

128*32*11bits

(4th quarter of

CVs matrix)

 VP0 VP1 VP2 … VP127

0 d 0,0 d1,1 d2,2 … d127,127

1 d 1,0 d2,1 d3,2 … d 0,127

2 d 2,0 d3,1 d4,2 … d 1,127

:

:

:

:

:

:

:

:
…

:

:

127 d 127,0 d0,1 d1,2 … d126,127

Fig 7: Construction of the CVs signature matrix

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

8

Table 1. Effect of increasing no. of processing elements on

speedup and the FPGA Hardware utilization

FPGA HW Utilization

Available
1 PE 2 PE 4 PE 8 PE 16 PE

Slice Flip

Flops
5404 5451 5546 5737 6120 66560

4 Input LUTs 13567 14802 17265 22191 32061 66560

Occupied

Slices
8238 8874 10131 12644 17660 33280

MULT 18x18s 3 5 9 17 33 104

Block RAMs 42 42 44 48 48 104

Global Clocks 4 4 4 4 4 8

Computation

time

(milliseconds)

0.673 0.394 0.254 0.184 0.149

Speedup 11.14 19.04 29.53 40.76 50.34

The proposed hardware accelerator is re-implemented using

more than one processing element (2, 4, 8 and 16 processing

elements). Table 1 shows the computation time needed by the

hardware accelerator against the FPGA hardware utilization

for different number of processing elements. Using 16

processing elements a speedup of 50.34 times has been

achieved. The choice of the number of processing elements is

left to the specific application designer. So, a compromise

between FPGA hardware requirements needed and speedup

gained can be made.

5. CONCLUSIONS
The implementation of a hardware accelerator for feature

extraction in binary images based on CVs signature algorithm

is presented. In this work, some modifications to the original

CVs signature algorithm are introduced. These modifications

are intended to reduce time and space requirements for the

proposed hardware accelerator. Robustness for the modified

CVs signature algorithm is tested by incorporating it into 1NN

classifier. Thus, a 1NN classifier software version based on

the modified CVs signature algorithm is implemented using

Matlab. The MPEG-7 database is used for evaluation. The

modified version scores 89.85% recognition rate compared to

91.28% obtained by the original CVs signature algorithm. So,

the modified CVs algorithm achieves a score that is too close

to the original one while gaining a speed up of at least 11.14

(using only one processing element) and a significant

reduction in hardware requirements.

The proposed hardware accelerator for computing CVs

signature is implemented using Spartan-3 XC3S5000 FPGA.

The system is designed using Verilog HDL language. One

property of the CVs signature is that each contour view from a

certain viewing point on the viewing circle can be computed

independently. This gives us the opportunity to design a

parallel hardware architecture for computing the CVs

signature. Four versions for this parallel architecture are

proposed. These versions use two, four, eight, and sixteen

processing elements. A study relating the number of

processing elements, speedup, and the FPGA hardware

requirements needed has been done. The proposed hardware

accelerator needs only 0.149 milliseconds (using 16

processing elements) for computing the CVs signature, while

the corresponding software version for the original CVs

signature algorithm needs 7.5 milliseconds on 2.4GHz core i5

processor with a 4 Giga bytes RAM. So, by using 16

processing elements, the proposed hardware accelerator

achieves a speedup of 50.34. For the future work, an FFT IP

core could be added to the proposed system to generate the

CVs shape descriptor. In this way, the proposed hardware

accelerator after adding the FFT IP core could be incorporated

in a shape classification real time system. Also, the proposed

system could be redesigned using pipelined architecture that

speeds up computing the CVs shape descriptor.

6. REFERENCES
[1] M.A. Tahir, A. Bouridane, and F. Kurugoullu, “An

FPGA based coprocessor for GLCM and Haralick

texture features and their application in prostate cancer

classification”, Analog Integrated Circuits and Signal

Processing (2005) Vol. 43, Issue 2, 205–215.

[2] D. Nguyen, D. Halupka, P. Aarabi, and A.

Sheikholeslami, “Realtime face detection, lip feature

extraction using field programmable gate arrays”, IEEE

Trans. Syst. Man Cybern. B Cybern. (2006) Vol. 36,

Issue 4, 902–912.

[3] Nakano, T., Morie, T. and Iwata, A. 2003. A face/object

recognition system using FPGA implementation of

coarse region segmentation. In Proceedings of SICE

Conference.

[4] Heikkinen, K. and Vuorimaa, P. 1999. Computation of

two texture features in hardware. In Proceedings of the

10th International Conference on Image Analysis and

Processing.

[5] Bariamis, D.G., Iakovidis, D.K., Maroulis, D.E. and

Karkanis, S.A. 2004. An FPGA-based architecture for

real time image feature extraction. In Proceedings of

ICPR’04.

[6] Hedberg, H. Kristensen, F. and Owall, V.

Implementation of a labeling algorithm based on contour

tracing with feature extraction. IEEE International

Symposium on Circuits and Systems.

[7] A.W. Malik, B. Thörnberg, M. Imran, and N. Lawal,

“Hardware architecture for real-time computation of

image component feature descriptors on a FPGA”,

Hindawi Publishing Corporation, Int. J. Distributed

Sensor Networks, Vol. 2014.

[8] F.F. Smach, J. Miteran M. Atri, J. Dubois , m. Abid, and

J.-P. Gauthier, “An FPGA-based accelerator for Fourier

Descriptors computing for color object recognition using

SVM”, J. Real-Time Image Proc. (2007) vol. 2, 249–258.

[9] S. Belongie, J. Malik, and J. Puzicha, “Shape matching

and object Recognition Using Shape Context”, IEEE

Trans. Pattern Analysis and Machine Intelligence (2002)

vol. 24, no. 4, 509-522.

[10] N. Alajlan, I.E. Rube, M.S. Kamel, and G. Freeman,

“Shape retrieval using triangle area representation and

dynamic space warping”, Pattern Recognition, (2007)

vol. 40, 1911–1920.

[11] Felzenszwalb, P.F. and Schwartz, J. 2007. Hierarchical

matching of deformable shapes. In Proceedings of IEEE

CS Conference CVPR.

http://link.springer.com/journal/10470
http://link.springer.com/journal/10470
http://link.springer.com/journal/10470
http://link.springer.com/journal/10470/43/2/page/1

International Journal of Computer Applications (0975 – 8887)

Volume 156 – No 9, December 2016

9

[12] H. Ling and D. Jacobs, “Shape classification using the

inner-distance”, IEEE Trans. Pattern Analysis and

Machine Intelligence (Feb. 2007) vol. 29, no. 2, 286-299.

[13] H.D. Jomma and A.I. Hussein, “Circle views signature: a

novel shape representation for shape recognition and

retrieval”, CJECE, to be published.

[14] Haig, T.D. and Attikiouzel, Y. 1989. An improved

algorithm for border following of binary images. In

Proceedings of IEE Eur. Conference Circuit Theory and

Design.

[15] Ratnayake, K. and Amer, A. 2007. Sequential, irregular

and complex object contour tracing on FPGA. In

Proceedings of IEEE International conference ICIP.

[16] Xilinx Inc. Spartan-3 FPGA family data sheet. Available

from www.xilinx.com, May 1997.

IJCATM : www.ijcaonline.org

