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ABSTRACT 

This paper presents a hardware accelerator for feature 

extraction based on circle views (CVs) signature suitable for 

shape recognition. The heavy computational and memory 

access needs in shape features extraction using general 

purpose sequential processors enforces the use of a hardware 

accelerator. This work presents some modifications to the 

original CVs signature algorithm. These modifications are 

intended to reduce time and space requirements for the 

hardware accelerator. A software version for 1NN classifier is 

implemented based on the modified CVs signature algorithm. 

This software version records 89.85% recognition rate using 

MPEG-7 dataset which is too close to that scored by the 

original CVs signature algorithm. This small reduction in 

performance can be ignored against the reduction in the 

hardware requirements and the computation time achieved. A 

parallel architecture for the hardware accelerator is proposed. 

Using 16 processing elements, the proposed hardware 

accelerator achieved 50.34 times speedup compared to the 

standard software PC implementation. A study is done to 

measure the effect of changing the number of processing 

elements on the speedup gained and the hardware components 

used by the proposed hardware accelerator. The proposed 

hardware accelerator is implemented in a field programmable 

gate array (FPGA) by using Verilog hardware description 

language.   

Keywords 

Feature extraction, shape recognition, real-time image 

processing, hardware accelerator, FPGA. 

1. INTRODUCTION 
Real-time object shape recognition is a difficult task that 

involves preprocessing the image, extracting shape features 

and classifying the shape according to stored training set 

shape features. Object shape recognition has a wide range of 

applications including multimedia, military and medical 

science. The recognition process is divided into two parts: 

creating the features of the training set (the off-line phase) and 

classifying a query features according to the training set 

features (the on-line phase). During the on-line phase, real-

time feature extraction remains a crucial challenge, since it 

consumes most of the computation time. So, this paper 

focuses on the acceleration of features computation. Advances 

in fabrication technology permits the manufacturing of field 

programmable gate arrays (FPGAs) having high performance 

and high density. These FPGAs can be used as powerful 

computing systems for image processing applications [1, 2]. 

A variety of architecture designs capable of supporting real-

time object shape recognition have been proposed in the 

literature. Implementations of algorithms for image feature 

extraction were proposed in [3, 4, and 5]. The work in [3] 

extracts the Gabor wavelet features for face/object 

recognition. Heikkinen et. al. [4] presented hardware 

architectures for computing two texture features: mean and 

contrast. A novel FPGA-based architecture for the extraction 

of four texture features using Gray Level Co-occurrence 

Matrix (GLCM) analysis was proposed in [5]. Hedberg et. al. 

[6] presented hardware architecture of a labeling algorithm 

with extraction of simple features: area and center of gravity 

(COG). The work in [7] presented hardware architecture for 

computing three basic image component feature descriptors, 

namely, centre of gravity, area, and bounding box. An FPGA-

based accelerator for Fourier descriptors computing for color 

object recognition was proposed in [8]. 

Recently, new shape recognition techniques that achieved 

high recognition rates have been proposed. Some of these 

methods are 2D histogram representation of shapes called 

shape contexts (SC) [9], triangle area representation (TAR) 

[10], a shape tree that is used to represent a hierarchical 

description [11], inner-distance shape context (IDSC) [12], 

and the circle views (CVs) signature [13]. Despite the high 

recognition rates these methods achieved, they need a lot of 

computations. So, they are in need to hardware accelerators to 

speed up their computations.  

In this paper, a hardware accelerator for computing the circle 

views (CVs) signature is proposed. The CVs signature aimed 

to be: very simple, easy to compute, and computationally 

efficient. In addition, it constitutes a translation, rotation and 

scale invariant signature [13]. There are many advantages that 

make the CVs signature algorithm suitable for hardware 

implementation. The high recognition rate of the CVs 

signature and the simplicity of the needed calculations are the 

main reason to choose it. Also, many of these calculations are 

independent from each other. This will give the chance to 

design a parallel architecture to compute the CVs signature 

matrix. Some important modifications are introduced to the 

original CVs signature algorithm that simplifies the 

computations needed by the proposed accelerator and thus 

reduces its FPGA hardware requirements. To test the 

robustness of the introduced modifications, a software version 

of the shape classification system is implemented using 

Matlab that is based on the modified CVs signature algorithm. 

The remainder of this paper is organized as follows: Section 2 

gives a review on needed algorithms. Section 3 presents the 

proposed hardware accelerator for computing the CVs 
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signature. Section 4 presents the experimental results for the 

proposed hardware accelerator. Finally, Section 5 includes the 

conclusions of the proposed work.  

2. REVIEW ON NEEDED 

ALGORITHMS 
In this section, the main algorithms needed to implement the 

proposed hardware accelerator for computing circle views 

(CVs) signature will be reviewed. The CVs signature is a 

shape signature for recognizing 2D object silhouettes. The 

shape is an important visual feature of a graphical object and 

also one of the basic features used to describe image content 

[13]. The CVs signature algorithm extracts the shape features 

to describe the shape contour. It is obvious that the detection 

and extraction of the shape contour is a prerequisite for the 

extraction of shape features. So, contour tracing technique 

should be executed firstly to detect the external shape contour 

and produce ordered list of contour pixels. These sequential 

contour pixels will be used by the CVs signature algorithm to 

recognize and classify the shape object. In the following 

subsections, details about these two algorithms will be 

provided. 

2.1 Contour Tracing Algorithm 
The goal of the contour tracing algorithm is to extract an 

external shape contour. Contour tracing finds the start point of 

an object, traces the shape contour, and extracts the shape 

contour in the form of an ordered contour pixels list. Many 

algorithms were proposed for contour tracing. Haig et. al. [14] 

proposed a simple and efficient contour tracing algorithm. 

First the algorithm starts to scan the image pixel by pixel in 

raster scan mode from top to bottom and from left to right 

until an outer shape contour starting pixel is encountered. 

Then, the algorithm begins reading the eight adjacent 

neighbors of the start pixel. The problem now is how 

effectively to search and find the next contour pixel in the 

eight adjacent neighbors. The other important point that must 

be considered is from which neighbor pixel the search among 

the eight neighbors should start. Each pixel in the eight 

neighbors is assigned an index as shown in figure 1. Tracing 

is performed in a clockwise direction. From the contour start 

pixel PS, a procedure called tracer is executed to find the next 

contour pixel starting the search from P5. The end of contour 

tracing algorithm will be reached if the tracer identifies PS as 

an isolated pixel. If PS is not an isolated point, the contour 

pixel following PS will be output. For any other contour pixel 

the search in the 8-neighborhood starts from the neighbor d+2, 

where d is the index of the previous pixel relative to the 

current pixel. The tracer procedure will be executed 

repeatedly until a stop condition occurs. The stop condition 

occurs when the start pixel PS is visited again and its next 

pixel is the same as that found in the beginning of the search. 

2.2 Circle Views (CVs) Signature 

Algorithm 
The main idea of the CVs signature algorithm is based on 

creating many views for the shape contour from sampled 

points on a viewing circle. This circle is centered at the shape 

centroid. The following algorithm summarizes the steps for 

constructing the CVs signature matrix [13]. 

Algorithm 

Step1:  Input a binary shape image. 

Step2:  Extract the shape contour. 

Step3: Sample out N points on the shape contour with x 

and y coordinates.  

  contour_Points = {(x1, y1), (x2, y2), …, (xN, yN)} 

Step4: Compute the centroid coordinates (xc, yc). 

  xc =
1

N
 x u           N

u=1 yc =
1

N
 y(u)N

u=1   

Step5: Generate N uniform viewing points on a circular 

orbit centered at the shape centroid and having a 

radius R. 

  viewing_Points = {(xv1, yv1), (xv2, yv2), …, (xvN, 

yvN)} 

Step6: Construct an N x N CVs signature matrix as 

follows: 

for view = 1 to N 

         get coordinates of viewing point number (view) 

         (xv, yv) = viewing_Points(view) 

        i = view 

        for k = 1 to N 

          get coordinates of contour point number i 

          (xcont, ycont) = contour_Points(i) 

 CVs signature (i, view) =            

  xv − xcont  
2 +  yv − ycont  

2 

          i = (i % N) + 1 

        end 

    end 

Step7:  Output the CVs signature matrix. 

In [13], the features of two viewing circles were merged to 

capture more information. This obviously enriches the 

information content of the CVs signature. The Fourier 

transform was applied to the CVs signature to generate the 

shape descriptor. The CVs signature achieved 83.71% 

retrieval rate using bulls-eye test on MPEG-7 database [13]. 

3. THE PROPOSED HARDWARE 

ACCELERATOR FOR COMPUTING 

CVS SIGNATURE 
The main purpose of the proposed work is to design a 

hardware accelerator for computing CVs signature. There is a 

wide difference between software and hardware 

implementations. It is a simple task to implement any 

algorithm in a typical PC environment. The programmer does 

not take into account the memory requirements, power 

consumption, and logic usage. These requirements must be 

considered in advance during hardware system design 

process. The main bottlenecks regarding the hardware 

implementation of the CVs signature are the need of 

tremendous calculations and all these calculations comprise 

floating point numbers arithmetic’s. Since the CVs signature 

matrix size is 128*128, it needs several multiplications, 

additions, subtractions, divisions, and square root operations. 

Thus, some modifications will be proposed for the original 

CVs signature algorithm that will account for the hardware 

system design requirements and make it more suitable for 

hardware implementation. Most of the proposed modifications 

concentrate on the reduction of the tremendous calculations 

needed as well as avoiding the usage of floating point 

numbers arithmetic’s. The hardware accelerator for 

computing CVs signature is implemented on FPGA by using 

Verilog HDL language. Figure 2 illustrates the main modules 

of the proposed system. The hardware accelerator comprises 
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four main components, a parallel memory module (storing an 

input binary image), contour tracer module, contour sampler 

module, and CVs signature computation module. The detailed 

description of each module will be presented below. 

3.1 Parallel Memory Module 
The major bottleneck in the hardware implementation of 

contour tracing algorithms is the large number of memory 

accesses needed for tracing the whole shape contour. For each 

contour pixel, the contour tracer needs to read a 3*3 window 

that contains the eight adjacent neighbors from the memory 

that stored the input binary image. Most of the previous work 

stores the image in a linear RAM array. In this way, nine 

memory accesses are needed for each window to be read. This 

will cost the system too much time for only reading 

sequentially each window of the shape contour pixels. So, 

achieving real-time performance is difficult due to this 

memory access demands in contour tracing and hence 

hardware acceleration is unavoidable. 

Ratnayake et. al. in [15] designed a parallel memory 
architecture by exploiting FPGA memory blocks (BRAMs) 

that can achieve reading the 3*3 window in one memory 

access. This obviously will reduce the total memory access 

time for tracing the whole shape contour by factor of nine. As 

shown in figure 3, the parallel memory architecture has four 

hierarchical memory stacks. Each stack consists of four 

BRAMs constructed as dual port with 1 bit data width and 

18K memory location. As shown, the lines of the input image 

is stored in the parallel memory stacks sequentially, where the 

first line is stored in stack0, the second line is stored in 

stack1,the fifth line is stored in stack0 and so on. By the same 

manner, the pixels of each line is stored sequentially in the 

block RAMs. This strategy that used for storing the input 

image facilitates reading any 16 pixels in one memory access  

[15]. No doubt, incorporating this parallel memory in the 

proposed hardware implementation will reduce the total 

execution time needed to compute the CVs signature. So, the 

parallel memory architecture introduced by Ratnayake to store 

the input binary image is re-implemented.  

 

 

3.2 Contour Tracer Module 
During tracing journey, the contour tracer counts the contour 

pixels and outputs the number of contour pixels (contour 

length). Later, the contour sampler module will use the 

number of contour pixels to compute the sampling step. The 

coordinates of the shape start pixel are stored in two registers 

(xs, ys). The contour tracer starts tracing the shape contour by 

the aid of the binary image data stored in the parallel memory 

module. As shown in figure 4, the contour tracer sends the 

center pixel coordinates (xi, yi) of the window to the parallel 

memory address generator. The address generator computes 

the address of each neighboring pixel in the 3*3 window and 

passes them to the corresponding block RAMs of the parallel 

memory. The parallel memory returns the neighboring pixels 

values of the 3*3 window. In the proposed hardware for 

contour tracer, the tracing algorithm introduced in [14] is 

implemented to trace the outer contour of the shape. The 

following steps demonstrate briefly the procedures done by 

the proposed hardware to implement this algorithm: 

1- Initialize the contour_length register to 1. 

2- Make the current pixel coordinates (xi, yi) = (xs, ys). 

3- Read the 3*3 neighborhood window for the current pixel 

(xi, yi) from the parallel memory in one memory access. 

4- Search for the first foreground pixel in the 8-

neighborhood (indexed as shown in figure 1) starting 

from pixel P5. 

5-   If no foreground pixel found then  

           An isolated point is found and contour tracing ends  

    Else 

  Store the index of the next pixel in a register named 

“next”. 

        contour_length = contour_length + 1 

6-   Compute the coordinates of the next contour pixel (xn, yn) 

using the lookup tables DXLUT and DYLUT shown in 

figure 5(a, b). Store the coordinates of this second 

contour pixel into two registers (xs2,ys2). 

7- Make current pixel coordinates (xi, yi) = (xn, yn). 

8- Read the 3*3 neighborhood window for the current pixel 

(xi, yi) from the parallel memory in one memory access. 

9- Compute d (where d is the index of the previous pixel 

relative to the current pixel) using the lookup table 

DLUT shown in figure 5 (c) and the index of the next 

pixel stored in the register “next”. 

Fig 2: The main components of the proposed hardware 

accelerator 

Contour Tracer 

module 

CVs Signature Computation 

module 

The resulted shape features 

Parallel memory 

(binary image) 

Contour Sampler 

module 

BRAM 0 P0 P4 P8 … P252 … 

BRAM 1 P1 P5 P9 … P253 … 

BRAM 2 P2 P6 P10 … P254 … 

BRAM 3 P3 P7 P11 … P255 … 

 
 

Stack 0 Line0 Line4 … Line252 

Stack 1 Line1 Line5 … Line253 

Stack 2 Line2 Line6 … Line254 

Stack 3 Line3 Line7 … Line255 

 
Fig 3: Hierarchical architecture of the parallel memory 

(assume image size 256*256) 
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10- Search the 3*3 neighborhood window for the first 

foreground pixel starting from the neighbor index d+2. 

11- Store the index of this foreground pixel into the register 

“next” and compute the coordinates of the next pixel (xn, 

yn) using DXLUT and DYLUT lookup tables. 

12- If (xi, yi) = (xs, ys) and (xn, yn) = (xs2, ys2) then  

Stop contour tracing (stop condition occurred). 

 Else 

       contour_length = contour_length + 1 

     Go to step 7 

The proposed hardware initializes a 16 bits register named 

“contour_length” to 1. This register will be incremented each 

time a new contour pixel is found. The two registers facing 

the parallel memory (xi, yi) will be loaded initially by the 

coordinates of the shape starting pixel (xs, ys). The tracer 

receives the values of 3*3 pixels window, centered at (xi, yi), 

returned from the parallel memory module in one memory 

access. These values of the eight neighbors will be stored in 

an 8 bits register named P. So, Pj is the jth neighbor of the 

center pixel (current pixel). Then, the tracer starts to search 

for the first foreground contour pixel in the 8-neighborhood 

pixels. If a foreground pixel is found, the index of this pixel 

will be stored in a register named “next”. If the center pixel of 

the window is the start contour pixel (xs, ys), the proposed 

hardware enforces the search to start from neighbor P5. For 

the other contour pixels, the search starts from the neighbor 

that has the index d+2, where d is the index of the previous 

pixel relative to the current pixel. A lookup table (DLUT) 

shown in figure 5(c) is introduced to determine the value d+2 

directly. The input for this lookup table is the value stored in 

the “next” register, which is the index of the next pixel in the 

previous 8-neighborhood. Obviously, this next pixel in the 

previous 8-neighborhood is the center pixel of the current 

window. Two lookup tables DXLUT and DYLUT shown in 

figure 5(a, b) are used to compute the coordinates of this next 

pixel and then store them in two registers (xn, yn). DXLUT 

and DYLUT lookup tables store the differences in the x and y 

coordinates of the eight neighboring pixels relative to the 

window’s center pixel. For the next window, the next pixel 

will be its center pixel, so the coordinates (xn, yn) are then 

transferred to the inputs of the parallel memory module (xi, yi) 

to read the next 3*3 window. 

 

 
The occurrence of the stop condition is monitored by using 

comparators. These comparators compare the coordinates of 

the current pixel (xi, yi) by the coordinates of the stored start 

pixel (xs, ys) and also compare the coordinates of the next 

pixel (xn, yn) with the coordinates of the stored second contour 

pixel (xs2, ys2). If these comparators indicate the equivalence 

of these coordinates, the contour tracer module stops tracing 

and outputs the number of contour pixels. The contour tracer 

module stores the ordered shape contour pixel coordinates 

into two 16 Kbytes block RAMs named contXRAM and 

contYRAM.  

3.3 Contour Sampler Module 
The goal of the contour sampler module is to sample N points 

out of the whole shape contour pixels. Many systems had 

chosen the value N = 128 for sampling the contour. This is an 

essential step before computing the CVs signature. As shown 

in figure 4, the inputs of the contour sampler are the total 

number of contour pixels (stored in contour_length register) 

and the coordinates of the ordered contour pixels list stored in 

the two RAMs (contXRAM and contYRAM). The output is two 

register arrays (128*8 bits) named sampledXcont and 

sampledYcont. These register arrays will contain the 

coordinates of the 128 sampled contour points. 

To sample the obtained contour, the sample step needs to be 

computed. The step usually has a fraction. In the proposed 

system, a method that uses only integer calculations is 

introduced. This method depends on shifting the contents of 

the “contour_length” register by 7 bits to right. This is 

equivalent to the division by 128. The 7 bits shifted out are 

used as the division remainder (R), and the other bits as the 

integer division result (I). The starting pixel of the contour is 

considered as the first sample point and its coordinates are 

stored in the first location of the sampledXcont and 

sampledYcont register arrays. During contour sampling, the 

index of the next sample point “Next_sample_idx” will be 

determined as illustrated below: 

1- Initialization: TR = 0, Next_sample_idx = 0 

2- Next_sample_idx = Next_sample_idx + I,  

 TR = TR + R 

3- If (TR >= 128) 

Next_sample_idx = Next_sample_idx + 1 

TR = TR - 128 

4- Retrieve a contour pixel coordinates from contXRAM and 

contYRAM stored at Next_sample_idx 

5- If the number of sampled contour points <= 128, then  

Go to step 2 

Contour Tracer 

2 register arrays 128*8bits 

(sampledXcont & sampledYcont) 

 

 

Parallel memory 

(16 Block RAMs) 

(binary image) 

window 3*3 

Address 

generator 

(xi, yi) 

Contour Sampler 

   ordered  

contour pixels 

 

contYRAM  

16 Kbytes 
contXRAM  

16 Kbytes 

contour_length 

Fig 4: Detailed description for computing the sampled 

contour points 

    

 

                        (a) DXLUT              (b) DYLUT              (c) DLUT 

Fig 5: Lookup tables contents: (a) DXLUT (b) DYLUT   

(c) DLUT 
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Else 

Stop 

 

Where, TR is an accumulator register for the remainder R. 

Each time a new index of the next sample point 

“Next_sample_idx” is updated, the contXRAM and contYRAM 

RAMs are accessed at the address “Next_sample_idx” to read 

the coordinate’s values of the next sample contour point. 

Then, the fetched coordinates are stored into the 

sampledXcont and sampledYcont register arrays. The contour 

sampler module stops when sample point number 128 is 

reached. 

3.4 CVs Signature Computation Module 
The proposed hardware implementation is intended as a 

hardware accelerator. In order to achieve lower time 

complexity, the number of mathematical operations needs to 

be reduced also the usage of the floating point numbers needs 

to be avoided during the design process. As discussed 

previously, the construction of the CVs signature matrix is 

based on creating many views for the shape contour from 128 

viewing points sampled from a viewing circle. This circle is 

centered at the shape centroid. To do this, firstly a hardware 

that produces 128 sampled viewing points will have to be 

introduced. Then, a parallel architecture that performs the 

computation of the CVs signature matrix will be proposed. 

3.4.1  Sampled Viewing Circle Points 

Computation Module 
The objective of this module is to compute the coordinates of 

the viewing points lying on the viewing circle and store them 

into two register arrays (VPXCoord and VPYCoord). Figure 6 

illustrates the hardware architecture of this module. As shown, 

the sampled viewing circle points computation module takes 

as input the output of the contour sampler module, which 

represents the coordinates of the 128 sampled contour points 

that were stored into two register arrays (sampledXcont and 

sampledYcont). This module comprises three main units: 

centroid coordinates computation unit, viewing circle radius 

computation unit, and a generator unit. 

3.4.1.1 Centroid Coordinates Computation Unit 
The original CVs signature algorithm computes the shape 

centroid coordinates as the average of the whole shape 

contour points coordinates. To simplify the computation of 

this step, the shape centroid computation is restricted to only 

the sampled contour points (128 samples instead of the whole 

contour points). The time needed to compute the shape 

centroid using the original CVs signature algorithm is a 

function of the number of contour pixels. However, by 

computing the shape centroid using only the sampled contour 

points, the processing time will be fixed (to perform 128 

additions) regardless the number of contour pixels. Also, it 

eliminates the need for wide-ranging hardware divider, which 

reduces the hardware requirements considerably. The 

proposed hardware used to compute the shape centroid 

coordinates is very simple. Two adders are needed; the first 

one is used to compute sequentially the sum of all x 

coordinates of the 128 sampled contour points stored at the 

register array sampledXcont. The second adder is used to 

compute sequentially the sum of all y coordinates of the 128 

sampled contour points stored at the register array 

sampledYcont. Since the coordinates of the 128 sampled 

contour points are integer values, an integer value will result 

for the sum of the coordinates of the sampled points. Then the 

average values of these two sums are computed by dividing 

them by 128. This division process can simply be 

implemented using a shifter to right shift these two sums by 7 

bits. The shift logic is much simpler and faster than the 

division logic. Finally, two registers (xc, yc) are used to store 

the integer part of the result as the coordinates of the shape 

centroid. 

3.4.1.2 Viewing Circle Radius Computation Unit 
To compute the radius of the viewing circle, the city block 

distance between the shape centroid and all the sampled 

contour points is used instead of the Euclidean distance used 

by the original CVs signature algorithm. This simplifies the 

hardware implementation as well as avoiding the floating 

numbers that would have resulted from the square root needed 

by the Euclidean distance. The actual value of the viewing 

circle radius will be the maximum city block distance (Rmax) 

computed multiplied by 0.75. The factor 0.75 is chosen 

empirically, so that it achieves the highest recognition rate. To 

compute the city block distance, two comparators and two 

subtractors are used to get the absolute differences between 

the shape centroid and a sampled contour point (∆x, ∆y). 

These two absolute differences are added together to get the 

city block distance. Each new city block distance computed is 

compared to a register named Rmax (initialized to 0). If the 

new city block distance is larger than that stored in the 

register Rmax, the contents of Rmax will be replaced by this new 

distance. In this way, Rmax register will finally contain the 

maximum distance between the shape centroid and all 

sampled contour points. As illustrated previously, the radius 

of the viewing circle is 0.75*Rmax. To multiply Rmax by 0.75, a 

shifter is used to right shift the Rmax value one bit to get 0.5 * 

Rmax then right shift Rmax two bits to get 0.25 * Rmax. Using an 

adder, the integer results of the two shift operations are added 

to get the viewing circle radius Rvc = 0.75* Rmax as an integer 

value. In this way, the need for floating point multiplications 

to compute the factor 0.75* Rmax is eliminated. 

3.4.1.3 Computing Sampled Viewing Circle 

Points Coordinates 
Computing the coordinates of the sampled points of the 

viewing circle is a main challenge to implement in hardware, 

since they need heavy floating point calculations. So, to 

simplify the hardware implementation, an efficient method for 

computing the sampled viewing points coordinates without 

any floating point arithmetic’s will be proposed. The 

coordinates of a sampled viewing circle point (xview, yview) can 

be computed by (1, 2) as follows: 

                                                                         (1) 

                                                                         (2) 

Where, xC, yC are the coordinates of the shape centroid. The 

full period [Ө = 0: 2π] is sampled using 128 points. In the 

proposed hardware accelerator, if equations (1, 2) are 

implemented directly to compute 128 sampled viewing points, 

this will need 256 floating point multiplications. This 

unconditional hardware implementation causes an increase in 

both logic usage and the time complexity. The proposed 

hardware for computing the coordinates of the sampled 

viewing points depends on the fact that using only the first 

quarter values [0: π/2] of a sampled cosine function, the 

sampled cosine values for the other three quarters could be 

generated. By the same manner, the whole values of a 

sampled sine function could be generated using only the first 

quarter values of a sampled cosine function. This idea 

depends on that the order of the values of the sampled cosine 

and sine functions for each quarter can be considered either in 

the same order or in the reversed order as the values of the 
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sampled cosine function for the first quarter. Also, the sign of 

these samples is taken into consideration. For example, the 

second quarter period of a sampled cosine function is in the 

reverse order of that of cosine function’s first quarter after 

adding a negative sign. Another example regarding the sine 

function: the second quarter of a sampled sine function is in 

the same order as that of first quarter samples of a cosine 

function with the same sign. By the same idea, values of all 

quarters of sampled cosine and sine functions can be 

generated using only the first quarter values of a sampled 

cosine function. This means that only 32 values of the 

sampled cosine function for the first quarter need to be stored 

and from which the coordinates of the 128 sampled viewing 

circle points can be generated. These 32 values are stored in a 

lookup table as a 15 bits fixed point numbers, 1 bit for the 

integer part and 14 bits for the fraction. Then, a multiplier is 

used to perform only 32 multiplications sequentially to 

compute the term Rvc*cos θ (in (1)), where θ is in the interval 

[0: π/2]. To simplify the multiplication process, the stored 

values of the sampled cosine function are considered as an 

unsigned integer binary numbers, and then they are multiplied 

by Rvc. The least 14 bits of the multiplication results 

(representing the fraction part) are ignored and the other bits 

are used to represent the result of the product term Rvc*cos θ. 

These results are stored in a 32*8 bits register array. As 

shown in figure 6, a generator is introduced that uses the 

stored register array values to generate the other values of the 

term Rvc*cos θ for the interval [π/2: 2π]. 

 

Fig 6: The proposed hardware architecture of the viewing 

circle sample points computation module 

Also, it generates the values of the term Rvc*sin θ for the 

whole interval [0: 2π]. In both of these two cases there will be 

no need for any additional multiplications. To do this, the 

generator takes care by reversing the order of the 32 stored 

values for the factor Rvc*cos θ as needed by the proposed 

method. Finally, according to (1, 2), to produce the 

coordinates of the 128 sampled viewing points, each output of 

the generator is added or subtracted (according to the 

expected sign for each generated value of the product terms 

Rvc*cos θ and Rvc*sin θ) to or from the centroid coordinates 

(xC, yC). 

As seen the proposed hardware for computing the viewing 

points coordinates reduces the multiplications needed to only 

32 multiplications instead of 256 multiplications (12.5%) 

which also reduces the time complexity by the same factor. 

Also, the space needed to store the values of the sampled 

cosine and sine functions will be reduced to 12.5%. An 

important point is that the need for floating point 

multiplication is eliminated; merely, a simple binary integer 

multiplier is used. Finally, the coordinates of the 128 sampled 

viewing points are stored into two register arrays named 

VPXCoord and VPYCoord. 

3.4.2 CVs Signature Matrix Computation Module 
The main challenge faced when implementing the hardware 

accelerator of the CVs signature algorithm is the need of 

tremendous calculations since the size of the CVs signature 

matrix is 128*128. As seen, to compute the Euclidean 

distance between every sampled viewing point and all 

sampled contour points, 16384*2 subtractions, 16384*2 

multiplications, 16384 additions, and 16384 square root 

operations are needed. To simplify the hardware 

implementation of the CVs computation, the squared 

Euclidean distance between every viewing point and all 

sampled contour points is used instead of the direct Euclidean 

distance. This simplification eliminates the need for additional 

hardware to compute the square root and as a result avoiding 

the need for floating point numbers. According to the nature 

of the CVs signature, each contour view from a certain 

viewing point on the viewing circle can be computed 

independently. Figure 7 illustrates the construction of the CVs 

signature matrix. As shown, it is obvious that each column 

represents one contour view from a certain viewing point VPj 

and its computation is independent from the other columns 

(views). This will give a chance to use parallel architecture to 

compute the CVs signature matrix.  

As shown in figure 8, the inputs of the CVs signature matrix 

computation module are two pairs of register arrays. One pair 

contains the coordinates of 128 sampled contour points 

(sampledXcont and sampledYcont) and the other contains the 

coordinates of 128 sampled viewing points (VPXCoord and 

VPYCoord). As illustrated in figure 8, CVs signature Matrix 

computation module comprises four processing elements that 

operate in parallel. Each processing element is composed of 

two subtractors, two multipliers and one adder to compute a 

squared Euclidean distance. Using four processing elements 

will cause a speedup on the CVs signature matrix 

computations. The columns of the CVs signature matrix are 

divided between the processing elements. So, each processing 

element will compute different 32 (128 views /4 processing 

elements) contour views from different 32 sampled viewing 

points. Here, 4 processing elements are used as an illustration. 

However, in the experimental results section, a study of the 

effect of changing the number of processing elements on the 

system speedup gained and hardware requirements will be 

made. Studying figure 7 carefully, it is obvious that each 

column (view) starts from a contour point whose index is the 

same as that of the viewing point VPj. Hence, an indexing 

controller is designed that helps each processing element to 

start with the correct index when accessing the register arrays 

sampledXcont and sampledYcont. 

The views that generated by the processing elements are 

stored in four block RAMs representing the CVs signature 
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matrix. Ignoring the usage of the square root will lead to large 

data width of the block RAMs that stores the CVs signature 

matrix. According to the representations used for the 

coordinates of the sampled contour points and the sampled 

viewing points, the squared distance will need 21 bits binary 

number which is very large. In order to reduce the memory 

requirements for storing the CVs signature matrix, each 

squared distance is divided by the factor 1024 and the resulted 

integer parts are stored as the shape signature. This division is 

equivalent to right shift each element in the signature matrix 

by 10 bits which could be easily implemented on FPGA chip. 

As a result a memory is needed having only 11 bits data width  

 

 

Fig 8: Parallel architecture for computing CVs signature matrix 

instead of 21 bits, which reduces memory space requirements 

significantly.  

The original CVs signature algorithm performs row wise 

normalization for the CVs signature matrix. For row wise 

normalization, the squared distances in each row should be 

divided by the maximum value of the corresponding row. 

Division operations exhaust a large FPGA chip area and at 

least it takes number of clock pulses equal to the sum of the 

bit lengths of both dividend and divisor. This means that time 

and space costs needed will be very large using FPGA chips. 

So, the normalization process is postponed to the software 

part of the classification system. 

4. EXPERIMENTAL RESULTS 
In this work, the original CVs signature algorithm is 

implemented using Matlab on a PC having an Intel® core ™ 

i5-2430M CPU @ 2.4 GHz and 4 Giga bytes RAM. Only one 

viewing circle with a radius 0.9 of the maximum Euclidean 

distance between the shape centroid and the sampled contour 

points is used to compute the CVs signature. This software 

version of the original CVs signature algorithm is used for 

shape classification task. The MPEG-7 database is used for 

evaluation. Ten instances for each of the 70 classes 

composing MPEG-7 database are used for training 1NN 

classifier. The other 10 instances from each class are used for 

testing. The original CVs signature algorithm achieves 

91.28% recognition rate. 

As illustrated in section 3, the proposed modifications are 

introduced to the original CVs signature algorithm to reduce 

the processing time and the hardware requirements needed. 

To measure the robustness of the proposed modifications, a 

software version for the modified CVs signature algorithm is 

implemented using Matlab. Again, the MPEG-7 database is 

used for testing. The recognition rate for the modified CVs 

signature algorithm is measured the same way as used with 

the original CVs signature algorithm. The modified CVs 

signature algorithm achieves 89.85% recognition rate. As 

seen, the small reduction in performance using the proposed 

modifications can be ignored against the reduction in the 

hardware requirements and the computation time that will be 

achieved. This small reduction in performance proves the 

robustness of the modified CVs signature algorithm.  

The proposed hardware accelerator for computing CVs 

signature is implemented using Verilog HDL language. The 

system is implemented on a Spartan-3 XC3S5000 FPGA with 

74,880 logic cells, 1,872 kilo bits Block RAM, 784 user I/O 

pins [16]. The proposed hardware accelerator will be 

evaluated in terms of FPGA hardware requirements, and total 

computation time. Some binary images are chosen from the 

MPEG-7 database and are rescaled to 256*256 pixels to test 

the proposed hardware accelerator. The FPGA Hardware 

utilization is found to be 8.11% slice flip flops, 20.38% 4-

input LUTs, 24.75% occupied slices, 2.88% 18x18 bits 

multipliers, and 40.38% block RAMs. The clock frequency is 

29.51MHz. At this frequency, the computation time needed 

by the proposed hardware accelerator is found to be 0.673 

milliseconds. The speedup achieved is 11.14 since the 

computation time needed by the software version of the 

original CVs signature algorithm (for the same image size) is 

7.5 milliseconds. As seen, the proposed hardware accelerator 

achieves an acceptable FPGA chip utilization and a good 

speedup of more than 11 times. 
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Fig 7: Construction of the CVs signature matrix 
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Table 1. Effect of increasing no. of processing elements on 

speedup and the FPGA Hardware utilization 

 
FPGA HW Utilization 

 

Available 
1 PE 2 PE 4 PE 8 PE 16 PE 

Slice Flip 

Flops 
5404 5451 5546 5737 6120 66560 

4 Input LUTs 13567 14802 17265 22191 32061 66560 

Occupied 

Slices 
8238 8874 10131 12644 17660 33280 

MULT 18x18s 3 5 9 17 33 104 

Block RAMs 42 42 44 48 48 104 

Global Clocks 4 4 4 4 4 8 

Computation 

time 

(milliseconds) 

0.673 0.394 0.254 0.184 0.149 

 

Speedup 11.14 19.04 29.53 40.76 50.34 

 

The proposed hardware accelerator is re-implemented using 

more than one processing element (2, 4, 8 and 16 processing 

elements). Table 1 shows the computation time needed by the 

hardware accelerator against the FPGA hardware utilization 

for different number of processing elements. Using 16 

processing elements a speedup of 50.34 times has been 

achieved. The choice of the number of processing elements is 

left to the specific application designer. So, a compromise 

between FPGA hardware requirements needed and speedup 

gained can be made. 

5. CONCLUSIONS 
The implementation of a hardware accelerator for feature 

extraction in binary images based on CVs signature algorithm 

is presented. In this work, some modifications to the original 

CVs signature algorithm are introduced. These modifications 

are intended to reduce time and space requirements for the 

proposed hardware accelerator. Robustness for the modified 

CVs signature algorithm is tested by incorporating it into 1NN 

classifier. Thus, a 1NN classifier software version based on 

the modified CVs signature algorithm is implemented using 

Matlab. The MPEG-7 database is used for evaluation. The 

modified version scores 89.85% recognition rate compared to 

91.28% obtained by the original CVs signature algorithm. So, 

the modified CVs algorithm achieves a score that is too close 

to the original one while gaining a speed up of at least 11.14 

(using only one processing element) and a significant 

reduction in hardware requirements. 

The proposed hardware accelerator for computing CVs 

signature is implemented using Spartan-3 XC3S5000 FPGA. 

The system is designed using Verilog HDL language. One 

property of the CVs signature is that each contour view from a 

certain viewing point on the viewing circle can be computed 

independently. This gives us the opportunity to design a 

parallel hardware architecture for computing the CVs 

signature. Four versions for this parallel architecture are 

proposed. These versions use two, four, eight, and sixteen 

processing elements. A study relating the number of 

processing elements, speedup, and the FPGA hardware 

requirements needed has been done. The proposed hardware 

accelerator needs only 0.149 milliseconds (using 16 

processing elements) for computing the CVs signature, while 

the corresponding software version for the original CVs 

signature algorithm needs 7.5 milliseconds on 2.4GHz core i5 

processor with a 4 Giga bytes RAM. So, by using 16 

processing elements, the proposed hardware accelerator 

achieves a speedup of 50.34. For the future work, an FFT IP 

core could be added to the proposed system to generate the 

CVs shape descriptor. In this way, the proposed hardware 

accelerator after adding the FFT IP core could be incorporated 

in a shape classification real time system. Also, the proposed 

system could be redesigned using pipelined architecture that 

speeds up computing the CVs shape descriptor. 
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