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ABSTRACT 

This paper presents a new version of Teaching Learning-

Based Optimization (TLBO) algorithm to find the optimal 

parameters of Proportional Integral Derivative (PID) 

controller. The proposed algorithm is an altered version of 

dynamic group strategy TLBO (DGS-TLBO) and is named as 

modified dynamic group based TLBO (MDG-TLBO) 

algorithm.  The proposed algorithm is tested on 12 benchmark 

functions to verify its efficiency over other procedures. The 

results show that the MDG-TLBO algorithm offers better 

solution quality and has better convergence rate. Finally, the 

proposed algorithm is tested on  a three-tank liquid-level 

control system for the optimization of PID gains.  The 

simulation result indicate that the proposed algorithm is an 

effective method in tuning of PID controllers to obtain better 

performance measures the error values and the time domain 

specifications.   

General Terms 
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1. INTRODUCTION 
PID controller is a widely used controller in industry. It uses 

the three parameters known as proportion, integral and 

deviation to conduct a loop feedback control based on the 

error value of the system. Because of its so many advantages 

such as simplicity, ease of use, effectiveness and robustness 

etc [1,2], more than 90% of industrial controllers are still 

implemented based around PID control algorithms [3,4]. In 

the application of a controller, the setting of the three 

parameters is the core content of the control system. However, 

the real problem is that it’s difficult to find the precise and 

optimal PID parameters when using the traditional PID 

controller optimization methods, such as Ziegler and Nichols 

(Z-N) method [5], Cohen-Coon method [6]. The results got by 

traditional method usually should be refined again since they 

always in an unacceptable performance. 

Recently, many optimization methods which based on 

evolutionary algorithm and swarm intelligence have been 

employed to tune PID controller parameters. these 

optimization methods contain such as genetic algorithm (GA) 

[7], particle swarm optimization (PSO) [8], difference 

evolution (DE) [9], ant colony optimization (ACO) [10], 

harmony search (HS) [11]and teaching-learning-based 

optimization (TLBO) algorithm etc. 

The teaching-learning-based optimization algorithm was 

originally introduced by Rao et al [12]. It’s inspired by the 

teaching-learning process in a classroom, similar to other 

intelligent algorithms, TLBO is also a population-based 

algorithm. Due to its simplicity, less deployment parameters 

and well-performed numerical results, this algorithm has been 

applied in many engineering fields. 

However, in the process of evolutionary computation, the 

TLBO algorithm hardly avoid being trapped in a local optimal 

when dealing with some complex problems containing 

multimodal local optimal solutions, for this reason, a dynamic 

group strategy was introduced to the original TLBO 

algorithm. The teaching-learning-based optimization with 

dynamic group strategy (DGS-TLBO) was proposed by Zou 

et al [13], it aims at improving the performance of the original 

TLBO through dynamic group. Tests have demonstrated the 

DGS-TLBO well-performs than the original TLBO algorithm. 

But, to some extent, the numerical results displayed in the 

paper [13] still have the potential to be improved. 

In this paper, a modified dynamic group based TLBO (MDG-

TLBO) is presented. In order to maintain the diversity of 

population, an improved formula is made to take place of the 

original one in the teacher phase, then, after the learn phase, a 

new tutoring phase is proposed to improve the worst student 

in a group by the group teacher. To validate the performance 

of MDG-TLBO, tests have been made on the 12 benchmark 

functions with the same criteria as DGS-TLBO. Then the 

MDG-TLBO algorithm is used to tune a PID controller. 

The remaining of this paper is organized as follows. Section 2 

introduces the DGS-TLBO algorithm, the MDG-TLBO 

algorithm is presented in Section 3. In Section 4, MDG-TLBO 

is tested on 12 benchmark functions together with the original 

TLBO and the DGS-TLBO. Section 5 gives a simple 

application case introduction about three-tank liquid-level 

system and describes the using of MDG-TLBO to tune the 

PID controller. Finally, conclusions are given in Section 6. 

2. TEACHING-LEARNING-BASED 

OPTIMIZATION WITH DYNAMIC 

GROUP STRATEGY 
Teaching-learning-based optimization (TLBO) is based on the 

philosophy of teaching and learning and it works on the effect 

of influence of a teacher on the output of learners in a class 

[14]. In this algorithm, the population is considered as a group 

of learners and different design variables related to each 

learner can be considered as different subjects. Learner’s 

score is analogous to the fitness value of an optimization 
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problem and the teacher is considered as the best value in the 

population. 

The process of TLBO is divided into two parts, ‘teacher 

phase’ and ‘learner phase’. In the teacher phase, all the 

students learn from the teacher, whereas in the learner phase, 

students learn through the interaction between other students. 

More detailed description of original TLBO could refer to the 

paper [12-18]. In this section, more attention would be 

focused on the teaching-learning-based optimization with 

dynamic group strategy (DGS-TLBO). 

The DGS-TLBO algorithm has brought some fundamental 

changes to the original TLBO algorithm by introducing the 

‘group’ concept. It divides the learners into small-sized 

groups in order to increase the diversity of the population. As 

all learners belong to certain groups, after a certain number of 

generations, the learners would be regrouped again, the 

periodical regrouping can make sure the exchange of 

information covers all learners so as to improve the 

exploration ability. The specific process of the algorithm is as 

follows. 

2.1 Teacher phase 
In this phase, the teacher distributes his knowledge to all 

students and tries to improve the mean result of the class in 

the subjects. Let’s suppose Xbest is the highest learned person 

who has the best fitness value and is identified and assigned 

as a teacher. GroupMean is the mean value of the scores 

obtained by corresponding group of students for each of their 

subject. After learning from the teacher of class and the mean 

of his own group, learner X is updated in the teacher phase 

according to the following formula: 

best
newX = X+ r* (X -TF* GroupMean)  (1) 

 TF round [1 rand(0,1 )]  (2) 

where r is a random number between 0 and 1, TF is the 

teaching factor which can be set to either 1 or 2 randomly 

using Eq. 2. newX means the updated value of learner X, the 

new value is accepted only if it gives better function value 

than the old one. 

2.2 Learner phase 
In DGS-TLBO algorithm, there are two learning modes in the 

learner phase, the original TLBO learning mode and the 

quantum-behaved learning mode, each learner can choose 

either of them by the following pseudo code 1: 

Pseudo code 1. Learner phase 

For learner X 

If rand(0,1) < Pc 

Execute the original TLBO learning mode 

Else 

Execute the quantum-behaved learning mode 

End if  

End for 

where Pc is a constant parameter set for learners, in our case, 

Pc is set to 0.5, it has been proved that a large value of Pc 

would improve the diversity of learners, and a small one 

would enhance the convergence speed [13]. 

The original TLBO learning mode can be described using the 

following pseudo code 2: 

 

Pseudo code 2. The original TLBO learning mode 

For learner X 

Randomly select another learner Xj  

If f(X) < f(Xj ) 

newX = X + rand(0,1) * (X - Xj ) (3) 

Else 

newX = X + rand(0,1) * (Xj - X) (4) 

End if  

End for 

The quantum-behaved learning mode can be described using 

the following pseudo code 3: 

Pseudo code 3. The quantum-behaved learning mode 

For learner X 

tempX = φ. * GroupTeacher + (1 -φ). * Teacher (5) 

If rand(0,1) < k 

newX = tempX +β* |GroupMean - X| * ln(1/u) (6) 

Else 

newX = tempX -β* |GroupMean - X| * ln(1/u) (7) 

End if 

End for 

In pseudo code 3, where GroupTeacher means the best learner 

of learner X’s own corresponding group, Teacher and 

GroupMean have the same explanation as mentioned before. 

Φ, u, k and β are different vectors, in which, each element is a 

random number between 0 and 1. After the learning phase, the 

newX will be accepted if it gives better function value. The 

Teacher, GroupTeacher, GroupMean will be updated in every 

generation, after a certain generations, the class will be 

regrouped again. The algorithm will be ended if the 

termination criteria is satisfied. 

3. DESCRIPTION OF MODIFIED 

DYNAMIC GROUP BASED TLBO 

(MDG-TLBO) 

3.1 Modification in teacher phase 
In the DGS-TLBO algorithm, each learner learns from both 

the Teacher and the GroupMean of his corresponding group, 

this has a great improvement compared with the original 

TLBO algorithm. However, it still haven’t taken into account 

that the differences between learners whom in the same group 

completely. In the proposed MDG-TLBO, a modified 

parameter GroupMean' is proposed, the formula for updating 

the value of learner X in teacher phase is improved as follows: 

GroupMean' = (GroupMean+ X) / 2  (3) 

  newX X r* (Teacher TF*GroupMean')  (4) 

The advantage of the modification is the parameter 

GroupMean' differs from learner to learner in each group, that 

can improve the diversity of the population and therefore 

enhance the exploration nature of the algorithm further more. 

3.2 Modification after learn phase 
In the MDG-TLBO algorithm, a new phase named tutoring 

phase is presented and it works after learner phase of each 

group. The tutoring phase, simulates the one-on-one tutoring 

between a teacher and a learner, aims to improve the worst 

learner in the relative group by the teacher of group in a short 

time. The mathematical formulation of tutoring operation is 

described as follows: 
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newXw Xw TF * (GroupTeacher Xw )    (5) 

TF = 2 - gen/ genMax  (6) 

Here, Xw denotes the worst learner in his group, newXw 

denotes the updated value of learner Xw, GroupTeacher 

denotes the best learner in the same group with learner Xw. 

TF is the tutoring factor, gen and genMax mean the current 

generation and the max generation respectively. 

The introduction of tutoring phase can have a distinct 

improvement on the performance of each group through 

updating the value of the worst learner. Although the new step 

increase the function evaluations (FEs), compared with the 

same FEs, the max number of iterations will decrease, 

however, tests have been made to demonstrate that the 

reduced number of iterations have little effect on the 

performance of the algorithm. Fig. 1 illustrates the flowchart 

of MDG-TLBO algorithm. 

4. TEST FUNCTIONS AND 

EXPERIMENTAL RESULTS 
In this section, 12 benchmark functions with different 

characteristics are used to evaluate the performance of the 

proposed algorithm. The test criteria is as same as that in the 

DGS-TLBO algorithm. Since other algorithms such as jDE 

[19], SaDE [20], PSO-cf-Local [21], FDR-PSO [22] have 

been compared with DGS-TLBO algorithm, so, here only the 

original TLBO, DGS-TLBO and MDG-TLBO are made a 

comparison of their result. 

4.1 Benchmark functions and parameter 

settings 
The 12 benchmark functions with different traits are described 

in Table 1. The tests were implemented on an Intel dual-core 

3.30GHz CPU, 4 GB RAM, and Windows 7 professional with 

Matlab R2012a runtime environment. In the experiments, the 

population size was set to 50 in 10 dimensions for F1 to F9, 

the count of group and regrouping period were set to 5, the 

learning ability Pc was set to 0.5, the termination criteria is a 

certain number of fitness evaluations about 100000 for 10 

dimensions, also 20000 and 40000 for 2 and 4 dimensions 

respectively. The each function was simulated by various 

algorithm 50 times independently. The results are shown in 

Table 2. 

4.2 Experimental results 
The test results are shown in Table 2 and Fig. 2. In Table 2, B, 

M, W and SD denote the best, mean, worst results and the 

standard deviation respectively. The best results are shown in 

bold. 

Begin

Initialization Parameters 

Divide learners into groups

Update the teacher of class, teacher, mean, worst of each group

Modify every learn X in a group use Eq. 2

newX better X?

X = newX X = X

Random select learn Xj in a group

Rand(0,1)<Pc

The original TLBO learning Quantum-behaved learning

newX better X?

X = newX X = X

Tutoring the worst learner

newXw better Xw?

X = newXw X = Xw

Mod(gen,p)=0

Regroup learners into groups

Termination criteria 
satisfided?

End

gen = gen + 1

Yes No

Yes No

Yes No

Yes No

Yes

No

Yes

No

 

Figure 1. Flowchart of the MDG-TLBO algorithm 
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Table 1. Test benchmark functions 

Function Formula Dim. Range Optima 

Sphere   2

1 1

D

ii
F x x


  10 [-100,100] 0 

Quadric    
2

2 1 1

D i

ji j
F x x

 
   10 [-100,100] 0 

Sum Square   2

3 1

D

ii
F x ix


  10 [-10,10] 0 

Zakharov      
2 4

2

4 1 1 1
0.5 0.5

D D D

i i ii i i
F x x ix ix

  
      10 [-10,10] 0 

Rosenbrock      
21 22

5 11
100 1

D

i i ii
F x x x x





    
    10 [-2.048,2.048] 0 

Ackley    2

6 1 1

1 1 1
20 20exp exp cos 2 e

5

D D

i ii i
F x x x

D D


 

   
           

   10 [-32.768,32.768] 0 

Rastrigin     2

7 1
10cos 2 10

D

i ii
F x x x


    10 [-5.12,5.12] 0 

Griewank  
2

8 1 1
cos 1

4000

nD i i

i i

x x
F x

i 

 
   

 
   10 [-600,600] 0 

Schwefel     9 1
418.9829 sin

D

i ii
F x D x abs x


    10 [-500,500] 0 

Colville 
       

       

2 222 2 2

10 1 2 1 3 3 4

2 2

2 4 2 4

100 1 ( 1) 90

              10.1 1 1 19.8 1 1

F x x x x x x x

x x x x

        

     
 4 [-10,10] 0 

Matyas    2 2

11 1 2 1 20.26 0.48  F x x x x x  2 [-10,10] 0 

Bukin N.6   2

12 2 1 1100 0.01 0.01 10   F x x x x  2    1 215, 5  3,3x x      0 

Table 2. Results of 12 benchmark functions over 50 runs 

  TLBO DGS-TLBO MDG-TLBO   TLBO DGS-TLBO MDG-TLBO 

F1 

 

B 2.5865e-206 4.6760e-289 0 

F7 

B 0 0 0 

M 2.2197e-202 6.6737e-283 0 M 1.7180 0.3399 0.3386 

W 5.4737e-201 3.2404e-281 0 W 4.9748 7.9597 5.9698 

SD 0 0 0 SD 1.5823 1.4156 1.3586 

F2 

B 1.2957e-95 1.6863e-156 0 

F8 

B 0 0 0 

M 6.7700e-91 1.7046e-148 9.6274e-320 M 0.0038 0.0127 0.0143 

W 2.1939e-89 6.0299e-147 3.3303e-318 W 0.0590 0.0836 0.1229 

SD 3.1548e-90 8.7322e-148 0 SD 0.0099 0.0228 0.0326 

F3 

B 8.8131e-208 1.0925e-289 0 

F9 

B 118.4385 236.8768 335.5781 

M 2.3646e-203 8.7255e-286 0 M 520.2401 617.6238 760.1029 

W 5.4896e-202 1.4023e-284 0 W 1.0462e+03 1.0280e+03 1.2436e+03 

SD 0 0 0 SD 202.0300 201.0992 216.1216 

F4 

B 4.7589e-105 1.1099e-161 0 

F10 

B 6.0601e-08 1.5802e-15 0 

M 7.7242e-100 1.8790e-156 0 M 2.8394e-04 0.0886 1.1839e-28 

W 2.0133e-98 6.4456e-155 1.4822e-323 W 0.0076 3.8195 2.7895e-27 

SD 2.8571e-99 9.1680e-156 0 SD 0.0011 0.5403 4.8085e-28 

F5 

B 4.2259e-05 2.9264 2.7748e-18 

F11 

B 2.5764e-58 3.9382e-95 2.9184e-142 

M 0.0048 4.6524 5.6819e-05 M 6.8526e-53 2.3475e-87 2.1540e-136 

W 0.0965 6.0931 0.0025 W 2.7387e-51 9.7273e-86 6.1610e-135 

SD 0.0158 0.4428 3.5797e-04 SD 3.8736e-52 1.3782e-86 1.0207e-135 

F6 

B 0 0 0 

F12 

B 0.0500 0.0328 0.0037 

M 3.0553e-15 3.1264e-15 2.0606e-15 M 0.0671 0.0491 0.0455 

W 3.5527e-15 3.5527e-15 3.5527e-15 W 0.3493 0.0507 0.0500 

SD 1.2453e-15 1.1662e-15 1.7713e-15 SD 0.0450 0.0037 0.0101 
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 Figure 2. Convergence of the 3 algorithms on test functions.  

From Table 2, it can been observed that MDG-TLBO 

algorithm performs well in terms of all considered metrics for 

function F1, F2, F3, F4, F5, F10, and F11. For function F6, F7 

and F8, all three algorithms can obtain the best solution, 

especially, the original TLBO algorithm performs well for 

function F8. For function F6, F9 and F12, the DGS-TLBO 

algorithm has a better performance in standard deviation. For 

function 12, the MDG-TLBO performs well except in 

standard deviation. 

The convergence rate of all three algorithms for 12 

benchmark functions have been graphically presented in Fig. 

2. It can be seen clearly from Fig. 2 that the proposed MDG-

TLBO algorithm has better convergence characteristic for 

most functions compared with the original TLBO and DGS-

TLBO algorithms. Therefore, it can be concluded that the 

MDG-TLBO performs well in terms of getting better solution 

accuracy together with convergence speed. 

5. TUNING OF A PID CONTROLLER  
After having validated the performance of MDG-TLBO on 

the 12 benchmark functions, a classic case about three-tank 

liquid-level system will be studied, and the MDG-TLBO is 

used to tune the PID controller. Three-tank liquid-level 

instrument is a typical nonlinear time-delay process control 

system, it’s very important in many industrial applications 

such as chemical industry and water purification systems [3]. 

The simple structure of three-tank liquid-level system is 

shown in Fig. 3(a). The main principle of the system can be 

described as follows: the water in the tank A is piped to tank 

B, C and D by a pump, water level of each tank is measured 

by sensors and the difference value between actual level and 
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set point is calculated, then the PID controller response 

feedback to regular the flow-rate based on the error value of 

the system. 

More details about three-tank liquid-level could refer to the 

paper [23,24]. In this section, more attention would be paid on 

the tuning of the PID controller with MDG-TLBO algorithm, 

the overall transfer function of the system is given by [3] as: 

 
3 2

1

64 9.6 0.48 0.008


  
G s

s s s  
(7) 

The block diagram of the three-tank liquid-level system with a 

PID controller is shown in Fig. 3(b). Tuning of the PID 

controller with MDG-TLBO algorithm focus on obtaining the 

optimal solution for the three PID gains Kp, Ki, and Kd by 

minimizing the objection function [25]. Here, the 

minimization of the integral square error (ISE) has been 

carried out. In this section, other algorithms such as GA, PSO, 

and Ziegler-Nichols tuning method will be compared with the 

proposed algorithm. 
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Figure 3. The Simple structure and block diagram of the three-tank liquid level system. 

(a)Simple structure of the system. (b)Block diagram of closed loop system controlled by PID 
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For all the algorithms, the upper and lower bounds of PID 

parameters are considered as: Kp : [0 1], Ki : [0 1], Kd : [0 1], 

the population size is set to 20, the max function evaluations 

is set to 1000. For GA, the cross rate CR = 0.6. For PSO, the 

inertia weight ω= 0.6, acceleration constant C1 and C2 = 2. 

Table 3. Comparison of the experimental results 

 Kp Ki Kd ISE 

Z-N 0.0567 0.0009 0.2840 22.9442 

GA 0.0468 0.0011 0.8916 8.1242 

PSO 0.0965 0.0003 1 10.0624 

TLBOs 0.0419 0.0009 1 7.7503 

 Mp Tr Ts Tp 

Z-N 0.5526 25.0052 295.7311 40.3608 

GA 0.1879 20.6592 41.9790 30.1590 

PSO 0.3767 16.6369 154.7817 25.7567 

TLBOs 0.1250 20.7360 59.0159 27.2240 

 

Figure 4. Comparative step response of the system with 

various PID controllers 

 

The mean results of the step response characteristic and 

convergence performance of the three-tank liquid-level 

system for 20 independently runs are shown in Table 3, Fig. 4 

and Fig. 5. In Table 3, Mp, Tr, Ts and Tp denote overshoot, rise 

time, setting time and peak time respectively, TLBOs means 

the original TLBO, DGS-TLBO and MDG-TLBO algorithms, 

which have the same experimental results. 

From Table 3 and Fig. 4 it can be observed that all the 3 

TLBO-based algorithms can get better result than other 

compared algorithms based on the ISE criteria. From Fig. 5 it 

can be observed that the proposed algorithm have a better 

convergence rate among the 3 algorithms. Therefore, it could 

be concluded that the algorithm this paper proposed is not 

only suitable for the application of tuning of a PID controller 

but also shows excellent performance. 

 

Figure 5. Convergence performance of the 3 TLBO-PID 

controllers 

6. CONCLUSION 
In this paper, a modified dynamic group based TLBO (MDG-

TLBO) algorithm is proposed and used to tune a PID 

controller of a three-tank liquid-level system for obtaining the 

optimal parameter values. The proposed algorithm has been 

tested on a set of 12 benchmark functions to validate its 

performance. The experimental results indicate that the MDG-

TLBO has significant improvement and better performance 

compared with original algorithms. Then the new algorithm is 
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used to tune a PID controller and simulation results show that 

the proposed algorithm can obtain the optimal parameter 

values of PID controller efficiently. Further work is mainly 

focused on modifying the proposed algorithm suitably for 

multi-objective optimization problems and using it to solve 

optimization problems in the other practical applications. 
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