
International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 1, January 2017

43

A Hybrid Fault Tolerance System for Distributed

Environment using Check Point Mechanism and

Replication

S. Veerapandi
Research Scholar

School of information
Technology

Madurai Kamaraj University

S. Gavaskar, PhD
Assistant Professor

Department of Computer
Applications

Bharathiar University

A. Sumithra, PhD
Associate Professor

School of Computer Science &
Engineering

VSB College of Technical
Campus

ABSTRACT
Managing the distributed environment against the failures

plays an important role nowadays. There are so many

techniques evolved so far and each have their own merit and

demerit. The efficiency of the algorithm depends on how

much replication is done and upto what extent the fault

tolerance has been achieved. We have here proposed a new

method which uses both check point as well as the replication

to ensure consistency in the distributed environment. Our

method is also easy to implement.

Keywords
FTPA, PLR, GiFT

1. INTRODUCTION
A distributed system is a collection of independent computers

that appears to its users as a single coherent system.

Distributed Computing uses multiple geographically distant

computers and solves big and complex task very efficiently.

In other words, a distributed system is a collection of

independent computers that appears to its users as a single

coherent system. Computing power of idle hosts is utilized by

distributed computing. Distributed systems offer a better price

and performance than mainframes. Computing power can be

added in small increments in distributed systems. In this way

incremental growth can be achieved. Distributed systems

allow many users access to a common computing resource

thus provides resource sharing. Thus it allows many users to

share expensive peripherals. It makes human-to-human

communication easier. Examples of such distributed

computing are online railway reservation system, air traffic

control, internet banking etc. As the size of distributed system

is increasing day by day chances of faults are increasing.

Mean time to failure is decreasing with increase in size and

complexity of distributed system. In large and dynamic

distributed system millions of computing devices are working

altogether and these millions of computing device are prone to

failures. Failures of processors, disks, memory, power, and

link failure are some examples of failures. Faults are

inevitable in larger and dynamic distributed system. Faults

may stop or halt execution of distributed system. It disturbs

normal execution and may turn system execution in wrong

direction.

In air traffic control, distributed disaster system, railways

reservation system, internet banking a single fault may lead to

huge loss of money and even human lives. In such a situation,

inclusion of fault tolerance technique is essential. Fault

Tolerance Techniques enable systems to perform tasks in the

presence of faults [1]. There are high chances that more than

one fault may occur in distributed system. For example more

than one process may fail one by one or at a one time.

Likewise more than one process may also fails in same

manner. In such a situation simple fault a tolerance technique

having capability to handle one fault are not suitable and does

not solve the purpose. Such single fault tolerance algorithm

fails to recover and restore the normal execution of dynamic

distributed system in case of multiple faults. Handling more

than one fault is a distinctive feature which is achieved using

multiple fault tolerance technique. A multiple fault technique

capable of tolerating n number of concurrent faults is known

as kfaults tolerance technique. In some situation chain of

faults occurs in such a way that the faults occurs when

recovery of first is on progress and incomplete. Handling such

types of multiple faults situation required a systematic

approach and improved algorithms of multiple failure

detection and recovery from multiple faults. Performance,

scalability, robust, transparency, efficiency and consistency

etc are some important issue with multiple fault tolerance

implementation of distributed system.

In case of real time system multiple fault tolerance

mechanism must provide performance in both the situation;

fault free and faulty situation. Multiple node failures , process

failure and failure of another node when recovery of failure of

earlier node are some considered as a multiple faults

occurrence in distributed system. To enhance the performance

of multiple fault tolerance various overheads associate with

every technique are required to minimize with improved

algorithms. At the same time critical factor responsible for

low performance need to be identified and ways need to

explore to address these critical factors so that multiple fault

capability can be improved with performance.

2. VARIOUS FAULT TOLERANCE

TECHNIQUES
A. Replication Based Fault Tolerance Technique:

Replication based technique is one of the popular fault

tolerance techniques [1]-[3]. A replica means multiple copies.

Replication is a process of maintaining different copies of a

data item or object. In replication techniques, request from

client is forwarded to one of replica among a set of replicas.

This technique is used for request that do not modify state of

service. Replication adds redundancy in system. In this way

failure of some nodes will not result in failure in system and

thus faulttolerance is achieved as shown in fig 1.

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 1, January 2017

44

Fig1: Replication Based Technique

Replication protocol can be described using five generic

phases. These phases are client contact, server coordination,

execution, agreement, coordination and client response.

Consistencies among replica, replica management, replica on

demand, degree of replica etc. are some important issues in

replication based fault tolerance technique. Major issues

related to replication based techniques are consistency, degree

of replica, replica on demand etc.

1.1 Consistency
Consistency among replicas is a major issue. Multiple copies

of same entity causes problem of consistency due to update of

any copy by one of the user. A replication protocol must

ensure the consistency among all replicas of the same object.

Consistency is ensured by some criterion. Many consistency

criteria have been defined in the literature; linearizability [2],

sequential consistency and causal consistency [3] etc. In all

above cases, an operation is performed on the most recent

state of the object. However consistency criteria differ in the

definition of the most recent state. Primary-backup replication

technique and active replication technique ensure consistency

by linearizability. Both linearizability and sequential

consistency define strong consistency criterion, whereas

causal consistency defines a weak consistency criterion.

Sequential consistency informally states that a multiprocessor

program executes correctly if its result could have been

produced by executing that program on single processor

system. In order to have consistency an efficient strategy is

required. Passive strategy and active strategy are main

strategies. In a passive replication, only one primary execute

requests and multicasts state changes to all replicas. This

scheme avoids redundant computation of requests. It copes

with non-deterministic service behavior. In active replica,

client request is multicasts to all replicas. This means all

replicas execute the request individually. In this way active

replica takes less network resources than sending update.

Active replica response to a fault is faster than passive.

However, replica consistency usually requires deterministic

replica behavior [4].Researcher proposed an algorithm that

uses both active and passive strategies to implement

optimistic replication protocol [5]. Researcher also proposed a

simple protocol by combining the token with cache. This

gives benefits of token as well as cache [6].There is still need

of more simple, adaptive and practical replication protocol

with adequate and sufficient ensured consistency

1.2 Degree of Replica
Number of replica is known as a degree of replication. In

order to replicate an object a replication protocol is used.

Primary-backup replication [27], voting [23], and primary-per

partition protocol [24] are some of the replication protocol. A

replication protocol must be practical and simple. The

protocol must provide rigorously-proven yet simply-stated

consistency guarantee with a reasonable performance. Niobe

is such protocol purposed by researcher [25].Number of

replicas must be sufficient. Large numbers of replicas will

increase the cost of maintaining the consistency. Less number

of replicas will affect the performance, scalability and

multiple fault tolerance capability. Therefore, reasonable

number replicas must be estimate as per system configuration

and load. Researcher proposed adaptive replicas creation

algorithm [26].There is further research scope to develop

improved algorithm to maintain a rational replica number.

Replica on demand is a feature that can be implemented to

make more adaptive, flexible and dynamic. There is research

scope to further improve protocols to achieve replication

efficiently. There are some crucial requirements with

replication protocol. These crucial requirements are support

for a flexible number of replicas, strict consistency in the

presence of network, disk, and machine failures and efficient

common case read and write operations without requiring

potentially expensive two or three-phase commit protocols.

B. Process Level Redundancy

This technique is mainly used as a fault tolerance for transient

faults. A transient fault will eventually disappear without any

apparent intervention. Transient faults are less severe but hard

to diagnose and handle. It is caused by temporary malfunction

of some system component. Some environmental interference

also causes transient fault or faults. Transient faults are

emerging as a critical concern in the reliability of distributed

system. Hardware based fault tolerance is very costly hence

software based fault tolerance is used to handle transient

faults. Process-level redundancy (PLR) is a software based

technique for transient fault tolerance, which leverages

multiple cores for low overhead. PLR creates a set of

redundant processes per application process as shown in fig 2.

It systematically compares the processes to guarantee correct

execution. Redundancy at the process level allows the

operating system to schedule freely the processes across all

available hardware resources. PLR uses a software-centric

approach to transient fault tolerance, which shifts the focus

from ensuring correct hardware execution to ensuring correct

software execution.

Fig 2:- N process Redundancy

As a result, many benign faults that do not propagate to affect

program correctness can be safely ignored. PLR provides

improved performance over existing software transient fault

tolerance techniques with a 16.9 percent overhead for fault

detection [7].However; PLR does not provide an adaptive and

configurable fault tolerance on distributed systems. Further

there is research scope to make PLR to support simultaneous

faults by simply scaling the number of redundant processes

and the majority vote logic. Future work remains in

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 1, January 2017

45

characterizing fault propagation, exploring methods for

bounding the time in which faults remain undetected and

performance improvement by minimizing the various

overheads.

2.1 Check pointing and Roll Back
Checkpoint with rollback-recovery is a well-known technique.

Checkpoint is an operation which stores the current state of

computation in stable storage. Checkpoints are established

during the normal execution of a program periodically. This

information is saved on a stable storage so that it can be used

in case of node failures. The information includes the process

state, its environment, the value of registers, etc. When an

error is detected, the process is roll backed to the last saved

state [8]. Fig 3shown below gives an idea about this

technique.

Fig3: Check pointing Technique

The main function of a recovery is to recover the system again

in consistent and operation state as it continues to work in

normal condition. Two most important types of rollback

recovery are checkpoint based rollback recovery and log

based rollback recovery. Checkpoint-based rollback recovery

relies only on checkpoints .Log-based rollback-recovery

combines' checkpointing with logging of non-deterministic

events [9]. Coordinated checkpoint and uncoordinated

checkpoint associated with message logging are the two main

techniques used for saving the distributed execution state and

recovering from system failures [10]. In coordinate check

point processes coordinate their checkpoints in order to save a

system wide consistent state. Coordinate check points are

consistent set of checkpoints. These consistent check points

are used to bound rollback propagation. Consistency is more

in case of coordinate check points due to consistent set of

checkpoints [9]. Coordinated checkpoint involves the rollback

check point of all processes from the last snapshot when a

faulty situation is detected, even when a single process

crashes. Therefore recovery time is very large and it makes

unsuitable for real time applications. In case of frequent

failures and multiple faults coordinate check point technique

cannot be used. Performance can be improved by decreasing

the recovery time .Main reason for large recovery time is

restarting all the initial state. Recovery time can be reduced by

enabling the restart from last correct state instead of from very

first state. There must be some mechanism to ensure restarting

from last correct state will reach a state matching the the

system, as before the crash.

Uncoordinated checkpoint protocols are designed to handle

such critical issues to some extend. Message logging is

combined with uncoordinated checkpoint to restart the system

from last correct state.In Uncoordinated checkpoint protocols,

all processes execute a checkpoint independently of the others

so that recovery can be done independently with one another.

It is combined with message logging to ensure the complete

description of a process execution state in case of its failure.

Besides logging of all received messages, re-sending the same

relevant messages in the same order to the crashed processes

during their reexecution is also main function of message

logging. There are three kinds of message logging protocols:

optimistic, pessimistic and causal. Pessimistic protocols

ensure that all messages received by a process are logged on

reliable media before it sends information in the system. Log

information on reliable media can be re-sent later and only if

necessary during rollback.

Message logging optimistic protocols just ensure that all

messages will eventually be logged. So, one usual way to

implement optimistic logging is to log the messages on non-

reliable media. Causal protocols log message information of a

process in all causally dependent processes [11]. Check

pointing based fault tolerance is very costly. Researcher

proposed replication based check-pointing to improve the

performance [12].There are many issues related to replication

based check pointing fault-tolerance technique. These issues

are mainly degree of replication, check pointing storage type

and location, check pointing frequency, check point size and

check point run time. At the same time researcher suggested

an adaptive check pointing and replication to adapt

dynamically the check pointing frequency and the number of

replicas as a reaction on changing system properties (number

of active resources, resource failure frequency and system

load) [13]. In case of fault, the most important issue is

efficient recovery in dynamic heterogeneous systems.

Recovery under different numbers of processors is highly

desirable. The fault tolerant and recover approaches must be

suitable for applications with a need for adaptive or

reactionary configuration control.

Researcher proposed flexible rollback recovery in dynamic

heterogeneous computing for such crucial requirements [14].

Still overhead of this technique is significant and need to be

address further. Performance of any fault tolerant technique

depends on recovery time. Researchers and practitioners are

trying to improve the recovery time by improving the

recovery time. Conventional rollbackrecovery protocols redo

the computation of the crashed process since the last

checkpoint on a single processor. As a result, the recovery

time of all protocols is no less than the time between the last

checkpoint and the crash. Researcher proposed a new

application-level faulttolerant approach for parallel

applications called the Fault-Tolerant Parallel Algorithm

(FTPA), which provides fast self-recovery. When fail-stop

failures occur and are detected, all surviving processes

recomputed the workload of failed processes in parallel.

FTPA, however, requires the user to be involved in fault

tolerance. In order to ease the FTPA implementation,

Researcher developed Get it Fault-Tolerant (GiFT), a source-

tosource precompiled tool to automate the FTPA

implementation. Researcher evaluates the performance of

FTPA with parallel matrix multiplication and five kernels of

NAS Parallel Benchmarks on a cluster system with 1,024

CPUs. The experimental results show that the performance of

FTPA is better than the performance of the traditional check

pointing approach due to fast recovery [15].However this is

only suitable for large problem. If the problem size is not

large enough, not all processes will contribute to parallel

recomputing In order to tolerate multiple faults using

checkpoint and recovery, three critical functionalities that are

necessary for fault tolerance: a lightweight failure detection

mechanism, dynamic process management that includes

process migration, and a consistent checkpoint and recovery

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 1, January 2017

46

mechanism. Hugo Jung et al. proposed a technique to address

this critical functionality [9].

Fig 4: Fusion Process

2.2 Fusion Based Technique
Although replication method is widely used as a fault

tolerance technique but number of backups is a main

drawback. Number of backups increases drastically as

coverage against number of faults increases. As the number

of backup increases management of these backups is very

costly. Fusion based techniques overcome this problem. It is

emerging as a popular technique to handle multiple faults.

Basically it is an alternate idea for fault tolerance that requires

fewer backup machines than replication based approaches. In

fusion based fault tolerance a technique, back up machines is

used which is cross product of original computing machines.

These backup machines are called as fusions corresponding to

the given set of machines [28]. Overhead in fusion based

techniques is very high during recovery from faults. Hence

this technique is acceptable if probability of fault is low.

3. PROPOSED TECHNIQUE
Fault tolerance techniques enable systems to perform tasks in

the presence of faults. Fault tolerance can be achieved through

some kind of redundancy. The most common method used is

checkpoint-restart [17]; an application is restarted from an

earlier checkpoint or recovery point after a fault. This may

result in the loss of some processing and applications may not

be able to meet strict timing targets. Checkpointing is

primarily used to avoid losing all the useful processing done

before a fault has occurred [11]. Checkpointing consists of

intermittently saving the state of a program in a reliable

storage medium. Upon detection of a fault, previous

consistent state is restored. In case of a fault, checkpointing

enables the execution of a program to be resumed from a

previous consistent state rather than resuming the execution

from the beginning. In this way, the amount of useful

processing lost because of the fault is significantly reduced.

3.1 Types of checkpointing
Depending on the programmer’s intervention in process of

checkpointing, it can be classified as follows:

1) User triggered checkpointing
These checkpointing schemes [18] require user interaction.

These are generally employed where the user has the

knowledge of the computation being performed and can

decide the location of the checkpoints. The main problem is

the identification of the checkpoint location by a user. This

approach is well suited for long-running,

computationintensive parallel applications, because of the

minimal fault-free overhead. Indeed, there is no overhead

during the normal execution of the application between the

moments that the checkpoints are taken.

2) Uncoordinated Checkpointing:
In uncoordinated or independent checkpointing [16],

processes do not coordinate their checkpointing activity and

each process records its local checkpoint independently. In

this way, each process becomes independent in deciding when

to take checkpoint, i.e., each process may take a checkpoint

when it is most convenient. It eliminates coordination

overhead all together and forms a consistent global state on

recovery after a fault. After a failure, a consistent global

checkpoint is established by tracking the dependencies [11]. It

may require cascaded rollbacks that may lead to the initial

state due to domino-effect, i.e. the processes may resume from

the beginning. It requires multiple checkpoints to be saved for

each process and periodically invokes garbage collection

algorithm to reclaim the checkpoints that are no longer

needed. In this scheme, a process may take a useless

checkpoint that will never be a part of global consistent state.

Useless checkpoints incur overhead without advancing the

recovery line.

3) Coordinated Checkpointing
In coordinated [16] or synchronous checkpointing, processes

take checkpoints in such a manner that the resulting global

state is consistent. Mostly it follows two-phase commit

structure. In the first phase, processes take tentative

checkpoints and in the second phase, these are made

permanent. The main advantage is that only one permanent

checkpoint and at most one tentative checkpoint is required to

be stored. In case of a fault, processes rollback to last

checkpointed state. A permanent checkpoint cannot be

undone. It guarantees that the computation needed to reach the

checkpointed state will not be repeated [11]. A tentative

checkpoint, however, can be undone or changed to be a

permanent checkpoint.

4) Message Logging based checkpointing
Messagelogging protocols [18] are popular for building

systems that can tolerate process crash failures. Message

logging and checkpointing can be used to provide fault

tolerance in distributed systems in which all interprocess

communication is through messages. Each message received

by a process is saved in message log on stable storage. No

coordination is required between the checkpointing of

different processes or between message logging and

checkpointing. When a process crashes, a new process is

created in its place [11]. The new process [12] is given the

appropriate recorded local state, and then the logged messages

are replayed in the order the process originally received them.

All message logging protocols require that once a crashed

process recovers, its state needs to be consistent with the

states of the other processes.

In computing, systems checkpoint is an essential for ensuring

system availability. Checkpoint enables the system to

continuously take snapshots of running applications; in the

presence of a fault, the application can be rolled back to the

most recent snapshot and continue execution with minimal

downtime. Under error free execution, checkpoint incurs

performance overhead. To make checkpointing attractive, the

performance overhead must be minimized. All checkpoint

mechanisms work on the basis of taking a snapshot of the

running application. The snapshot required to recover an

application consists of all application memory, opened files,

sockets and IO devices. Our work also focuses on

checkpointing applications but we concentrate on those that

only require memory state recovery. The application memory

state has the largest footprint and therefore will be the most

time--‐ consuming.

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 1, January 2017

47

In this work the I/O traffic is buffered during each checkpoint

and if a recovery is required the I/O is played back so that the

application receives the same input during the second

execution. The biggest factor to affect the performance

overhead is the method adopted for the memory duplication

process. The most rudimentary approach is to perform a full

memory copy of the application at each checkpoint interval.

This strategy, however, causes a great performance overhead

since it requires a large amount of memory bandwidth. For

this reason, the most widely accepted approach is to duplicate

only a select region of application memory during each

checkpoint. This approach is called incremental checkpoint

[19]-[23]. The method of selecting which data to save and at

what time interval varies between the different checkpoint

types. In this we are implementing a memory space reduction

scheme by deleting the unwanted checkpoints which are not at

all further required. By this way our scheme proves to be

space saving as well as time complexity is also reduced. Even

if we need the deleted checkpoints detail that can also be got

by a replication scheme. The full memory copy of the

application at each checkpoint interval is copied into a

secondary storage such as the hard disk of the system.

4. CONCLUSION
In this paper we have proposed an improved and efficient

technique which ensures the consistency in the distributed

environment using java RMI. The proposed technique

involves lock leased protocol for performing the various

write-write or read-write operation. Simultaneous concurrent

read operations are possible in this environment. Our method

is very simple and easy to be implemented. It efficiently

reduces the checkpointing overhead by saving the checkpoints

on local hard disk as well as only selected data in memory.

5. REFERENCES
 [1] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G.

Alonso,“ Understanding Replication in Databases and

Distributed Systems,” Research supported by

EPFLETHZ DRAGON project and OFES).

[2] M. Herlihy and J. Wing. “Linearizability: a correctness

condition for concurrent objects,” ACM Trans. on Progr.

Languages and Syst., 12(3):463-492, 1990. (IJIDCS)

International Journal on Internet and Distributed

Computing Systems. Vol: 1 No: 1, 39

[3] M. Ahamad, P.W. Hutto, G. Neiger, J.E. Burns, and P.

Kohli., “Causal Memory:Definitions, implementations

and Programming,” TR GIT-CC-93/55, Georgia In-

stitute of Technology, July 94.

[4] H.P. Reiser, M.J. Danel, and F.J. Hauck., “ A flexible

replication framework for scalable andreliable .net

services.,” In Proc. of the IADIS Int. Conf. on Applied

Computing, volume1, pages 161–169, 2005.

[5] A. Kale, U. Bharambe, “Highly available fault tolerant

distributed computing using reflection and replication,”

Proceedings of the International Conference on

Advances in Computing, Communication and Control

,Mumbai, India Pages: 251-256 ,: 2009

[6] X. China, “Token-Based Sequential Consistency in

Asynchronous Distributed System ,” 17 th Internaional

Conference on Advanced Information Networking and

Applications (AINA'03),March 27-29, ISBN: 0-7695-

1906-7

[7] A. Shye, , J. Blomstedt, , T. Moseley,V. Reddi, , and

Daniel A. Connors, “PLR: A Software Approach to

Transient Fault Tolerance for Multicore Architectures”

Pp135-148.

[8] V. Agarwal, Fault Tolerance in Distributed Systems, I.

Institute of Technology Kanpur,

www.cse.iitk.ac.in/report-repository, 2004. ,

[9] H. Jung, D. Shin, H. Kim, and Heon Y. Lee, “Design and

Implementation of Multiple FaultTolerant MPI over

Myrinet (M3) ,” SC|05 Nov 1218,2005, Seattle,

Washington, USA Copyright 2005 ACM.

[10] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson.

A survey of rollback-recovery protocols in message

passing systems. Technical Report CMU-CS-96-81,

School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, USA, October 1996.

[11] L. Alvisi and K. Marzullo. Message logging :

Pessimistic, optimistic, and causal. In Proceedings of the

15th International Conference on Distributed

Computing,Systems (ICDCS 1995), pages ,229–236.

IEEE CS Press, May-June 1995.

[12] J. Walters and V. Chaudhary,” Replication-Based Fault

Tolerance for MPI Applications,” Ieee Transactions On

Parallel And Distributed Systems, Vol. 20, No. 7, July

2009

[13] M Chtepen, F.. Claeys, B. Dhoedt, , and P.

Vanrolleghem,” Adaptive Task Checkpointing and

Replication:Toward Efficient Fault-Tolerant Grids”, IEE

Transactions on Parallel and Distributed Systems, Vol.

20, No. 2, Feb 2009

[14] S. Jafar, A. Krings, and T. Gautier,” Flexible Rollback

Recovery in Dynamic Heterogeneous Grid Computing”,

IEEE Transactions On Dependable and Secure

Computing, Vol. 6, No. 1, Jan-Mar 2009

[15] X. Yang, Y. Du, Panfeng W. Fu, and Jia “FTPA:

Supporting Fault-Tolerant Parallel Computing through

Parallel Recomputing,” Ieee Transactions On Parallel

And Distributed Systems, Vol. 20, No. 10, October 2009

[16] S. Gorender, and M Raynal, “An Adaptive Programming

Model for Fault-Tolerant Distributed Computing” Ieee

Transactions On Dependable And Secure Computing,

Vol. 4, No. 1, January-March 2007.

[17] A. Luckow B. Schnor, „“Adaptive Checkpoint

Replication for Supporting the Fault Tolerance of

Applications in the Grid,“ Seventh IEEE International

Symposium on Network Computing and Applications,

2008 IEEE.

[18] A. Bouteiller, F. Cappello, T. H Krawezik, Pi Lemarinier,

F Magniette, “MPICH-V2: a Fault Tolerant MPI for

Volatile Nodes based on Pessimistic Sender Based

Message Logging, ” SC’03, NoV 15-21, 2003, Phoenix,

Arizona, USA Copyright 2003 ACM 1-58113-695-

1/03/001

[19] I. Saha, D. Mukhopadhyay and S. Banerjee, “Designing

Reliable Architecture For Stateful Fault Tolerance,”

Proceedings of the Seventh International Conference on

Parallel and Distributed Computing,Applications and

Technologies (PDCAT'06) 2006 .

[20] N. Gorde, S. Aggarwal, “A Fault Tolerance Scheme for

Hierarchical Dynamic Schedulers in Grid” International

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 1, January 2017

48

Conference on Parallel Processing Workshops, 2008

IEEE

[21] Y. Li, , Z. Lan, , P. Gujrati and , X. Sun, , “Fault-

AwareRuntime Strategies for High-Performance

Computing,” IEEE Transactions on Parallel And

Distributed Systems, Vol. 20, No. 4, April 2009

[22] G. Jakadeesan, D. Goswami, “A Classification-Based

Approach to Fault-Tolerance Support in Parallel

Programs”, International Conference on Parallel and

Distributed Computing, Applications and Technologies,

2009 IEEE.

[23] D.K. Gifford, “Weighted voting for replicated data,” In

SOSP ’79: Proc. of the seventh ACM symposium on

Operating systems principles, pages 150–162, 1979.

[24] J. Osrael, L. Froihofer, K.M. Goeschka, S. Beyer,P.

Gald´amez, , and F. Mu˜noz. “A system architecture for

enhanced availability of tightly coupled distributed

systems,” In Proc. of 1st Int. Conf. on Availability,

Reliability, and Security.IEEE, 2006

[25] J Maccormick1, C Thekkath, M.Jager,K. Roomp, and L.

Peterson , “Niobe: A Practical Replication Protocol.”

ACM Journal Name, Vol. V, No. N, Month 20YY.

[26] Cao Huaihu, Zhu Jianming, “An Adaptive Replicas

Creation Algorithm with Fault Tolerance in the

Distributed Storage Network” 2008 IEEE..

[27] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg.

The Primary-Backup Approach. In Sape Mullender,

editor, Distributed Systems, pages 199-216. ACM Press,

1993.

[28] V.K Garg,. “Implementing fault-tolerant services using

fused state machines,” Tech-nical Report ECE-PDS-

2010- 001, Parallel and Distributed Systems

Laboratory,ECE Dept. University of Texas at Austin

(2010).

[29] N. Xiong, M. Cao, J. He and L. Shu, “A Survey on

Faulttolerance in Distributed Network Systems,” 2009

International Conference on Computational Science,

978- 0-7695-3823-5/09

[30] D. Tian , K. Wu X. Li, “A Novel Adaptive Failure

Detector for Distributed Systems,” Proceedings of the

2008 International Conference on Networking,

Architecture, and Storage ©2008 , ISBN: 978-0-7695-

3187-8

IJCATM : www.ijcaonline.org

