
International Journal of Computer Applications (0975 – 8887) 

Volume 157 – No 2, January 2017 

29 

Autoregressive Hidden Markov Model based Speech 

Enhancement using Sparsity 

A. Gayathri 
PG Scholar, Department of 
ECE, DVR and Dr. HS MIC 

College of Technology 
Kanchikacherla, A.P, India. 

 

G. Chenchamma, PhD 
Professor, Department of ECE, 
DVR and Dr. HS MIC College of 

Technology 
Kanchikacherla, A.P, India. 

 

K. V. V. Kumar 
Assistant Prof., Department of 

ECE, DVR and Dr. HS MIC 
College of Technology 

Kanchikacherla, A.P, India. 
 

 
ABSTRACT 
Speech enhancement is required to enhance the quality of 

speech corrupted by the background noise and can be used in 

many applications such as hearing aids, mobile 

communication etc. In this paper a speech enhancement 

method is presented in which first Autoregressive (AR) model 

is applied for the noisy speech signal to find the speech 

parameters and then Hidden Markov model is applied to 

model those parameters. Later, the sparsity is encouraged into 

the model by adding the regularization parameter. The 

objective results for the proposed method and Wiener filter 

are compared. Speech quality in non-stationary noise 

conditions is observed through listening. The average log-

likelihood score is obtained for different noises and observed 

that the performance is improved compared to the reference 

methods. 

Keywords 
Speech enhancement, non-stationary noise, sparse 

autoregressive hidden markov model (SARHMM). 

1. INTRODUCTION 
In general, speech enhancement is an efficient approach to 

improve the speech signal corrupted by background noise. 

The speech enhancement is trade-off between the reduction of 

noise level and speech distortion. Therefore, the trade-off is 

chosen according to the particular application for the best 

speech quality. The aim of speech enhancement is to improve 

the quality and intelligibility of degraded speech. The 

characteristics of the speech signal depends on the nature and 

characteristics of the noise signal and changes with the time 

when it is corrupted by the noise. The design of algorithm 

differs from the application to application and so the 

performance of the algorithm can also differ for each 

application. The nature of the noise is a predominant factor 

which decides the speech enhancement method. Therefore, a 

good noise model is important to know the performance of 

speech enhancement system and also to analyze how well a 

speech enhancement method works with different types of 

noise. Noise may be different based on various statistical, 

spectral or spatial properties. A noise is said to be non-

stationary if it‟s spectral properties change with time. It is 

difficult to analyze the non-stationary noises as noise changes 

with the surrounding environment. Over the years, many 

speech enhancement algorithms have been proposed. But still 

the research has been continued to improve the quality of the 

speech signal. The spectral subtraction algorithm does not 

require prior information and is very simple to implement. 

The Wiener filtering algorithm derives the enhanced signal in 

an optimal way but it requires prior information of speech and 

noise. The above two algorithms do not perform well in non-

stationary environments. Later Autoregressive Hidden 

Markov models (ARHMM) and codebooks have been 

proposed and used successfully to model the statistics of 

speech and noise for speech enhancement in non-stationary 

environments. These methods modeled the speech and noise 

signals as AR processes and their spectral characteristics are 

modeled by considering signal gain as a deterministic 

parameter instead of random variable. The gain variances of 

the speech and noise are modeled accurately which can play 

an important role in speech enhancement for non-stationary 

noise environments. 

ARHMM is further improved and the speech and noise gains 

are considered as random processes that describe the power 

levels of speech and noise [9]. By learning the speech and 

noise characteristics on-line, prior information of the gains 

can be obtained the more accurately. The combinations of 

speech and noise spectral shapes results in ambiguity to 

distinguish speech spectral shapes and noise spectral shapes. 

Therefore, it is difficult to separate the speech and the noise 

components. This problem is known as ambiguity problem. 

The ambiguity problem increases with the number of states of 

HMM and the Gaussian mixture components per state of the 

HMM. This problem will be less if only few states are 

considered and number of Gaussian mixture components per 

state is low. But using only small number of states and 

restricting the number of noise environments do not perform 

well for speech enhancement [8]. Thus, the ambiguity 

problem limits the overall performance of the ARHMM 

model. Besides this problem ARHMM has another problem 

known as inherent problem that does not model the spectral 

fine structure of speech. The model parameters of the 

ARHMM are estimated by maximizing the likelihood. The 

solution to ambiguity problem is to introduce sparsity to 

ARHMM model. In this paper, sparse ARHMM is used to 

improve the performance which is limited by ARHMM. 

This paper is organized as follows.  In Section 2, we present 

Autoregressive Hidden Markov Model. Signal model of 

ARHMM for speech and noise is provided in Section 3. In 

Section 4, we present Parameter Estimation. In Section 5, we 

present Speech and Noise Estimation of ARHMM using 

Sparsity. Simulation results are provided in Section 6. 

Conclusion is provided in Section 7. 

2. AUTOREGRESSIVE HIDDEN 

MARKOV MODEL 
Autoregressive Hidden Markov model (ARHMM) is a class 

of Hidden Markov model which is particularly applicable for 

speech processing. For ARHMM, the observation vectors are 

drawn from an autoregression process [4], [5]. 

Consider the observation vector, 
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 𝑂 =  𝑥0, 𝑥1, 𝑥2, … 𝑥𝐾−1  (1) 

The elements 𝑥𝑖  could be the speech waveform samples. 

The components of 𝑂 are assumed to be from an 

autoregressive Gaussian source. 

 𝑥𝑘 = −  𝑎𝑖𝑥𝑘−𝑖 + 𝑒𝑘

𝑝

𝑖=1

 (2) 

where 𝑒𝑘 , 𝑘 = 0,1,2, … 𝐾 − 1 are Gaussian, independent, 

identically distributed random variables with zero mean and 

variance 𝜎𝑒
2 and 𝑎𝑖 , 𝑖 = 1,2, … 𝑝, are autoregression or 

prediction coefficients. For large value of 𝐾, the density 

function is given as follows: 

 𝑓 0 =  2𝜋𝜎𝑒
2 −𝑘 2 exp −

1

2𝜎𝑒
2 𝛿 0, 𝑎   (3) 

where 

 𝑎 =  1, 𝑎1, 𝑎2, … 𝑎𝑝 
′
,    𝑎0 = 1  (4) 

If 𝑟𝑎(𝑖) is the autocorrelation of the autoregressive 

coefficients, 

 𝑟𝑎 𝑖 =  𝑎𝑛𝑎𝑛+𝑖

𝑝−𝑖

𝑛=0

, 1 ≤ 𝑖 ≤ 𝑝 (5) 

If 𝑟(𝑖) is the autocorrelation of the observation samples, 

 𝑟 𝑖 =  𝑥𝑛𝑥𝑛+𝑖

𝑘−𝑖−1

𝑛=0

, 0 ≤ 𝑖 ≤ 𝑝 (6) 

𝛿 0, 𝑎  is a residual energy resulting from inverse filtering the 

data 𝑥𝑖  with an all-zero filter defined by 𝑎. 

To separate the signal level from the spectral shape, gain 

normalization is used. 

where 𝜎𝑒0
2  is the minimum linear prediction residual energy 

per sample. 

The elements of 𝑂 , 𝑥 𝑘 = 𝑥𝑘 𝜎𝑒0 , still satisfy the 

autoregressive relationship 

 𝑥 𝑘 = −  𝑎𝑖𝑥 𝑘−𝑖 + 𝑒 𝑘

𝑝

𝑖=1

 (8) 

where variance of 𝑒 𝑘  is unity. 

The probability density function for the output of an all-pole 

system defined by 𝑎, with zero mean and unit variance 

Gaussian independent and identically distributed (i.i.d) 

sequence can be given as follows: 

 𝑓 𝑂  =  2𝜋 −𝑘 2 exp −
1

2
𝛿 𝑂 , 𝑎   (9) 

This type of pdf is often referred to as a „gain -independent‟ 

pdf. 

Assume a mixture density of the form 

 𝑏𝑗  0 =  𝐶𝑗𝑘 𝑏𝑗𝑘  0 

𝑀

𝑘=1

 (10) 

where 

 𝑏𝑗𝑘  0 =  2𝜋 −𝑘 2 exp −
1

2
𝛿 𝑂, 𝑎𝑗𝑘    (11) 

𝑎𝑗𝑘  is the autoregression vector. 

Autocorrelation sequence for the 𝑗th state, 𝑘th mixture 

component is of the form, 

 r 𝑗𝑘 =
 𝛾𝑡 𝑗, 𝑘  . r𝑡

𝑇
𝑡=1

 𝛾𝑡 𝑗, 𝑘 𝑇
𝑡=1

 (12) 

where r𝑡 =  r𝑡 0 , r𝑡 1 , … , r𝑡(𝑝) ′  is the autocorrelation 

vector for 𝑡th frame. 

𝛾𝑡 𝑗, 𝑘  is defined as the probability of being in state 𝑗 at the 

time 𝑡 and using mixture component 𝑘. 

 𝛾𝑡 𝑗, 𝑘 =  
𝛼𝑡 𝑗 𝛽𝑡 𝑗 

 𝛼𝑡 𝑗 𝛽𝑡 𝑗 
𝑁
𝑗 =1

  
𝐶𝑗𝑘 𝑏𝑗𝑘  𝑂𝑡 

 𝐶𝑗𝑘 𝑏𝑗𝑘  𝑂𝑡 
𝑀
𝑘=1

  (13) 

 Note that r 𝑗𝑘  is a weighted sum of the normalized 

autocorrelation of the frames in the observation sequence. A 

set of normal equations can be solved from r 𝑗𝑘 , to obtain the 

corresponding autoregressive coefficient vector a 𝑗𝑘  for 𝑘th 

mixture of state 𝑗. 

3. SIGNAL MODEL OF ARHMM 
Assuming that the clean speech signal is corrupted by an 

uncorrelated additive noise, the noisy speech signal can be 

modeled as follows: 

 𝑌𝑡 = 𝑋𝑡 + 𝑊𝑡  (14) 

where 𝑌𝑡 , 𝑋𝑡  and 𝑊𝑡  are random vectors which represents  

frame segments of the noisy speech, clean speech and noise 

signals respectively denoting 𝑡 as the index of the speech 

frame. 

Consider, each frame contains 𝐾 signal samples, i.e., 𝐲𝑡 =
 𝑦𝑡 0 , 𝑦𝑡 1 , … 𝑦𝑡 𝐾 − 1  ,  𝐱𝑡 = {𝑥𝑡 0 , 𝑥𝑡 1 , … 𝑥𝑡 𝐾 −
1 }, and 𝐰𝑡 = {𝑤𝑡 0 , 𝑤𝑡 1 , … 𝑤𝑡 𝐾 − 1 } . 

3.1 Speech Model 
Let, 𝑥0

𝑇−1 = {𝑥0, 𝑥1, … 𝑥𝑇−1} denote a 𝑇-frame clean speech 

sequence from frame 0 to 𝑇 − 1 frame and 𝑝 𝑥0
𝑇−1  be the 

probability density function of the model for the clean speech 

sequence 𝑥0
𝑇−1. 

The statistics of the clean speech frame sequence 𝑥0
𝑇−1 are 

modeled by an 𝑁  state ARHMM model and is given as 

follows: 

 𝑝 𝑥0
𝑇−1 =   𝑎 𝑠 𝑡−1𝑠 𝑡𝑝𝑠 𝑡 (𝑥𝑡)

𝑇−1

𝑡=0𝑠 0
𝑇−1

 (15) 

where 𝑠 0
𝑇−1 =  𝑠 𝑡 𝑡=0,1,…,𝑇−1 denotes a sequence of speech 

ARHMM states and 𝑠 𝑡 ∈  1,2, … , 𝑁   denotes the state of 

speech at frame 𝑡. 𝑎 𝑠 𝑡−1𝑠 𝑡  is the state transition probability 

from state 𝑠 𝑡−1 at frame 𝑇 − 1 to 𝑠 𝑡  at frame 𝑡 and 𝑎 𝑠 −1𝑠 0  is 

probability of the initial state 𝑠 0. 𝑝𝑠 𝑡 (𝑥𝑡) is probability density 

function of the clean speech frame 𝑥𝑡  for given state 𝑠 𝑡 . 

 𝑝𝑠 𝑡
 𝑥𝑡 =  𝑝𝑠 𝑡

 𝑔 𝑡
′  

∞

−∞

𝑝𝑠 𝑡 (𝑥𝑡 |𝑔 𝑡
′ )𝑑𝑔 𝑡

′  (16) 

where 𝑔 𝑡
′ = log(𝑔 𝑡) and 𝑔 𝑡  denotes the linear speech gain, 

which is the variance of the prediction error of AR model. 

 𝑂 = 𝑂 𝜎𝑒0  (7) 
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Now consider, the speech gain 𝑔 𝑡  as a stochastic process and 

model the probability density function (pdf) 𝑝𝑠 𝑡
 𝑔 𝑡

′   of  𝑔 𝑡  as 

a state-dependent log-normal distribution: 

 𝑝𝑠 𝑡
 𝑔 𝑡

′  =
1

 2𝜋𝜎 𝑠 𝑡
2

exp  −
 𝑔 𝑡

′ −  𝑢 𝑠 𝑡 + 𝑞 𝑡  
2

2𝜎 𝑠 𝑡
2   (17) 

where 𝑢 𝑠 𝑡 + 𝑞 𝑡  denotes a mean value composed of a global 

average 𝑢 𝑠 𝑡  and a local bias 𝑞 𝑡 , 𝜎 𝑠 𝑡
2  denotes variance. 

The parameters 𝑢 𝑠 𝑡  and 𝜎 𝑠 𝑡
2  are time-invariant and can be 

estimated off-line together with the other speech ARHMM 

model parameters using training of speech data. The 

parameter 𝑞 𝑡  is used to compensate for the speech-gain bias, 

which can be estimated and updated on-line. 

𝑝𝑠 𝑡 (𝑥𝑡 |𝑔 𝑡
′ ) is the pdf of the clean speech vector 𝑥𝑡 , given the 

speech gain 𝑔 𝑡
′ . 

Assume speech to be a zero-mean 𝑝 th order Gaussian AR 

processes and the conditional probability density function can 

be described as follows: 

 𝑝𝑠 𝑡
 𝑥𝑡  𝑔 𝑡

′  =
exp  −

1
2𝑔 𝑡

𝑥𝑡
#𝑫 𝑠 𝑡

−1𝑥𝑡 

 2𝜋𝑔 𝑡 
𝐾 2  𝑫 𝑠 𝑡  

1 2 
 (18) 

where # denotes Hermitian transposition, 𝑫 𝑠 𝑡 =  𝑨 𝑠 𝑡
# 𝑨 𝑠 𝑡 

−1
 is 

the covariance matrix of the AR process, 𝑨 𝑠 𝑡  is a 𝐾 × 𝐾 lower 

triangular Toeplitz matrix in which the first column is 

 𝛼 0, 𝛼 1, … , 𝛼 𝑝 , 0, … 0 
𝑇

, where 𝛼 1, … , 𝛼 𝑝  constitute the speech 

AR coefficients and 𝛼 0 = 1. 

3.2 Noise Model 
Now the noise is modeled similar to the speech to capture the 

high diversity and variability of acoustical noises in a non-

stationary environment. Thus, an ARHMM is used for the 

noise that is nearly identical to the ARHMM for the speech. 

The noise model parameters are labelled as „..‟, in contrast to 

the overbar „-‟ for speech model parameters. The probability 

density function of the noise frame 𝜔𝑡  for given state 𝑠 𝑡  is 

𝑝𝑠 𝑡 (𝜔𝑡) and is given as follows: 

 𝑝𝑠 𝑡
 𝜔𝑡 =  𝑝 𝑔 𝑡

′  

∞

−∞

𝑝𝑠 𝑡 (𝜔𝑡 |𝑔 𝑡
′ )𝑑𝑔 𝑡

′  (19) 

Where 𝑔 𝑡
′ = log(𝑔 𝑡) and 𝑔 𝑡  denotes the linear noise gain, 

which is the variance of the prediction error of AR model. The 

noise gain can be modeled as follows: 

 𝑝 𝑔 𝑡
′  =

1

 2𝜋𝜎 2
exp  −

 𝑔 𝑡
′ − 𝑢 𝑡 

2

2𝜎 𝑠 𝑡
2   (20) 

The mean value 𝑢 𝑡  is a time-varying parameter that can be 

estimated and updated on-line together with the parameter 

𝑞 𝑡 .The conditional probability density of the noise, is defined 

similarly to that of conditional probability density function of 

the speech. 

3.3 Noisy Speech Model 
The probability density function of the noisy speech sequence 

𝑦0
𝑇−1 can be derived based on the speech and noise ARHMM 

models as follows: 

 𝑝 𝑦0
𝑇−1 =   𝑎 𝑠𝑡−1𝑠𝑡

𝑝𝑠𝑡
(𝑦𝑡)

𝑇−1

𝑡=0𝑠0
𝑇−1

 (21) 

where 𝑠0
𝑇−1 =  𝑠𝑡 𝑡=0,1,…,𝑇−1 denotes sequence of noisy 

speech states and 𝑠𝑡 =  𝑠 𝑡 , 𝑠 𝑡  denotes the noisy speech state 

for frame 𝑡, which is a composite state of speech and noise. 

𝑎 𝑠𝑡−1𝑠𝑡
= 𝑎 𝑠 𝑡−1𝑠 𝑡𝑎 𝑠 𝑡−1𝑠 𝑡  is the transition probability from the 

composite state 𝑠𝑡−1 at frame 𝑡 − 1 to the composite state 𝑠𝑡  

at frame 𝑡, and 𝑝𝑠𝑡
(𝑦𝑡) denotes the pdf of the noisy speech 𝑦𝑡  

for a given composite state 𝑦𝑡 . Note that there are 𝑁 × 𝑁  
states in the noisy speech model. 

The joint speech and noise density 𝑝𝑠𝑡
(𝑦𝑡) can be written as 

 𝑝𝑠𝑡
 𝑦𝑡 =  𝑝𝑠𝑡

(𝑦𝑡 , 𝑔 𝑡
′ , 𝑔 𝑡

′ )  𝑑𝑔 𝑡
′  𝑑𝑔 𝑡

′  (22) 

=  𝑝𝑠 𝑡
 𝑔 𝑡

′  𝑝 𝑔 𝑡
′  𝑝𝑠𝑡

(𝑦𝑡 |𝑔 𝑡
′ , 𝑔 𝑡

′ )  𝑑𝑔 𝑡
′  𝑑𝑔 𝑡

′  

where the pdf 𝑝𝑠𝑡
(𝑦𝑡 |𝑔 𝑡

′ , 𝑔 𝑡
′ ) is a Gaussian distribution with 

zero mean and covariance 𝑫𝑠𝑡
= 𝑔 𝑡𝑫 𝑠 𝑡 + 𝑔 𝑡𝑫 

𝑠 𝑡  that can be 

given as follows: 

 𝑝𝑠𝑡
 𝑦𝑡  𝑔 𝑡

′ , 𝑔 𝑡
′  =

exp  −
1
2 𝑦𝑡

#𝑫𝑠𝑡

−1𝑦𝑡 

 2𝜋 𝐾 2  𝑫𝑠𝑡
 

1 2 
 (23) 

The pdf in equation (22) can be approximated as follows: 

𝑝𝑠𝑡
(𝑦𝑡 , 𝑔 𝑡

′ , 𝑔 𝑡
′ ) ≈ 𝑝𝑠𝑡

(𝑦𝑡 , 𝑔 𝑡
′ , 𝑔 𝑡

′ )𝛿 𝑔 𝑡
′ − 𝑔  𝑡

′  𝛿 𝑔 𝑡
′ − 𝑔  𝑡

′   (24) 

where 𝛿 .   is a Dirac delta function and  𝑔  𝑡
′ , 𝑔  𝑡

′   are the 

optimal speech and noise gains. 

  𝑔  𝑡
′ , 𝑔  𝑡

′  = arg max
𝑔 𝑡

′ ,𝑔 𝑡
′

log 𝑝𝑠𝑡
(𝑦𝑡 , 𝑔 𝑡

′ , 𝑔 𝑡
′ ) (25) 

Therefore, according to the obtained optimal speech and noise 

gain pair  𝑔  𝑡
′ , 𝑔  𝑡

′   , the pdf 𝑝𝑠𝑡
 𝑦𝑡  of noisy speech in (22) can 

be approximated as 

 𝑝𝑠𝑡
 𝑦𝑡 ≈ 𝑝𝑠𝑡

(𝑦𝑡 , 𝑔 𝑡
′ , 𝑔 𝑡

′ ) (26) 

4. PARAMETER ESTIMATION 
The time-invariant parameters are estimated off-line and time-

variant parameters are estimated and updated online. 

4.1 Off-line Parameter Estimation 
ARHMM parameters are commonly estimated using the 

Baum-Welch approach that is based on the expectation 

maximization (EM) algorithm. The EM algorithm iterates 

between the expectation (E) step and the maximization (M) 

step of the 𝑄 function. The 𝑄 function can be split into 

separate terms for the three types of model parameters 

𝜃 =  𝜋, 𝐴, 𝐵 :  

1. The initial distribution of states  𝜋 . 

2. The state transition probability matrix  𝐴 . 

3. The observation probability matrix   𝐵 . 

If the speech model is taken as an example, then the function 

𝑄 can be given as follows: 

 𝑄 𝜃, 𝜃′ =  log 𝑝 𝑠 𝑡 |𝛰, 𝜃 𝑝 𝑠 𝑡\𝛰, 𝜃′ 

𝑠 𝑡

 (27) 
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=  log 𝜋𝑠 0𝑝 𝑠 𝑡 |𝑂, 𝜃′ 

𝑠 𝑡

+   log 𝑎 𝑠 𝑡−1𝑠 𝑡𝑝 𝑠 𝑡 |𝛰, 𝜃′   

𝑇−1

𝑡=0𝑠 𝑡

+   log 𝑝𝑠 𝑡
 𝑥𝑡 𝑝 𝑠 𝑡 |𝑂, 𝜃′   

𝑇−1

𝑡=0𝑠 𝑡

 

where 𝑠 𝑡  denotes state of speech and 𝑂is observation 

sequence, 𝑂 =  𝑥𝑡 𝑡=0
𝑇−1 and  𝜃 represents model parameters 

and 𝜃′ previous estimation of model parameters 𝜃. 

As the three types of model parameters can be optimized 

independently, we can encourage sparsity for the transition 

probability term and the observation probability term to derive 

the SARHMM. 

First, the sparsity is induced to the transition probabilities and 

update equation can be derived for the transition probabilities. 

The sparsity for the transition probabilities 𝑎 𝑠 𝑡−1𝑠 𝑡  of the 

ARHMM can be encouraged by introducing the 𝑙𝑝  norm 

𝐻 𝐴  to the second term of equation (27), and then 

maximizing 

 
  𝑙𝑜𝑔 𝑎 𝑠 𝑡−1𝑠 𝑡𝑝 𝑠 𝑡 |𝛰, 𝜃′   − 𝜂1𝐻 𝐴 

𝑇−1

𝑡=0𝑠 𝑡

 
(28) 

=    log

𝑇−1

𝑡=0

𝑎 𝑖𝑗 𝑝(𝑠 𝑡−1 = 𝑖, 𝑠 𝑡 = 𝑗|𝛰, 𝜃′ )

𝑁 

𝑗

𝑁 

𝑖

− 𝜂1𝐻 𝐴  

where 𝜃′  represents previous parameters estimation of 

SARHMM, 𝐴 is the matrix of transition probabilities, 

𝐻 𝐴 =  𝐴 1,𝑝1
=    𝑎 𝑖𝑗

𝑝1
𝑗  

1 𝑝1 

𝑖  is 𝑙𝑝  regularization norm.  

Although the 𝑙1 norm encourages sparsity, we cannot directly 

use the 𝑙1 norm, because the transition probability 𝐴 and the 

observation probability 𝐵 are stochastic matrices. Their  

entries are non-negative and the summation of each row must 

be 1, thus 𝑙1 regularization norm is meaningless. The  𝑝1 in 

the 𝑙1 norm is a regularization parameter, which encourages 

sparsity for 0 ≤ 𝑝1 ≤ 1. The equation of transition 

probabilities of SARHMM can be updated by setting the 

derivation of equation (28) to zero and satisfying the 

constraints  𝑎 𝑖𝑗 = 1𝑁 
𝑗  and 𝑎 𝑖𝑗 ≥ 0 for each state 𝑖. 

𝑎 𝑖𝑗

=
max  𝑝 𝑠 𝑡−1 = 𝑖, 𝑠 𝑡 = 𝑗 𝛰, 𝜃′ − 𝜂1𝐴 

𝑖𝑗 , 0𝑇−1
𝑡=0  

 max  𝑝 𝑠 𝑡−1 = 𝑖, 𝑠 𝑡 =  𝛰, 𝜃′ − 𝜂1𝐴 
𝑖 , 0𝑇−1

𝑡=0  𝑁 


 
(29) 

where the maximization operation max (.,0) is added to make 

sure that all the transition probabilities are greater than zero 

and 𝐴 
𝑖𝑗  is the regularization term for the transition probability 

and can be given as 

𝐴 
𝑖𝑗 = 𝑎 𝑖𝑗 ∇𝑎 𝑖𝑗

𝐻 𝐴 = 𝑎 𝑖𝑗  𝑎 𝑖𝑗 /   𝑎 𝑖
𝑝1



 

1 𝑝1 

 

𝑝1−1

 (30) 

where  ∇ is a differential operator. 

From the equation (29) it can be observed that the low 

transition probabilities are rapidly driven to zero and strong 

transition probabilities are enforced. Thus, it is ensured that 

only a few states have a significant probability for transition. 

Second, the sparsity can also be encouraged to the observation 

probability 𝑝𝑠 𝑡
 𝑥𝑡  of speech ARHMM by introducing the 𝑙𝑝  

norm 𝐻 𝐵  to the third term of equation (14).  

   𝑙𝑜𝑔 𝑝𝑠 𝑡
 𝑥𝑡 𝑝 𝑠 𝑡\𝛰, 𝜃′   −

𝑇−1

𝑡=0𝑠 𝑡

𝜂2𝐻 𝐵  (31) 

where 𝐻 𝐵 =  𝐵 1,𝑝2
=    𝑝𝑠 𝑡

𝑝2
𝑡  𝑥𝑡  

1 𝑝2 

𝑠 𝑡 , 𝐵 is the 

observation probability matrix and 𝑝2 is regularization 

parameter. A regularization term 𝐵 𝑠 𝑡 ,𝑥𝑡
 for the observation 

probability of speech SARHMM can be given as 

 
𝐵 𝑠 𝑡 ,𝑥𝑡

= 𝑝𝑠 𝑡
 𝑥𝑡 ∇𝑝𝑠 𝑡

 𝑥𝑡 𝐻 𝐵  (32) 

= 𝑝𝑠 𝑡
 𝑥𝑡 

 
 
 
 

𝑝𝑠 𝑡
 𝑥𝑡 

  𝑝𝑠 𝑡

𝑝2
𝑡  𝑥𝑡  

1 𝑝2 

 
 
 
 
𝑝2−1

 

The update equations of the training parameters of the 

observation probability of SARHMM can be derived by using 

the regularization term 𝐵 𝑠 𝑡 ,𝑥𝑡
 of equation (32).The parameters 

of the observation probability term in the equation (27) are 

𝜃 =  𝜇 𝑠 , 𝜎𝑠 
2, 𝛼 𝑠 , 𝑞 𝑟 , which represent the mean of the speech-

gain model, the variance of the speech-gain model, the AR 

coefficients of speech-gain model and the gain bias of speech 

model, respectively. The speech gain bias is assumed to be a 

constant for each speech training utterances. Thus 𝑞 𝑟  denotes 

the speech gain bias of the 𝑟th utterance. Therefore, the third 

term in the equation (27) can be written as the auxiliary 

function Θ  𝜃 |𝜃  (𝑗−1) . 

Θ  𝜃 |𝜃   𝑗−1  =

   𝜔  𝑠 𝑡 𝑡  𝑝𝑠 𝑡  𝑔 𝑡
′ |𝑥𝑡 , 𝜃  (𝑗−1)  log𝑝𝑠 𝑡

 𝑥𝑡 |𝑔 𝑡
′ , 𝜃′ +𝑠 𝑟

log𝑝𝑠 𝑡
 𝑔 𝑡

′ |𝜃   𝑑𝑔 𝑡
′   

(33

) 

where  𝜔  𝑠 𝑡  represents the posterior state probability. 

In the above equation 𝑗 denotes the iteration index, 𝑟 denotes 

the index of the speech utterance in the database,  𝑠 0
𝑇−1, 𝑔 0

𝑇−1  

denote the missing data of the EM algorithm, that are the 

sequence of the underlying states and speech gains. 

 𝜔  𝑠 𝑡 = 𝑝  𝑠 𝑡 |𝑥0
𝑇−1, 𝜃   𝑗−1   (34) 

The posterior state probability 𝜔  𝑠 𝑡  can be estimated by the 

forward-backward algorithm which is used for HMMs. 

The sparsity can be encouraged to the observation 

probabilities by applying the regularization term 𝐵 𝑠 𝑡 ,𝑥𝑡
 to 

posterior state probability 𝜔  𝑠 𝑡 . The auxiliary function 

Θ  𝜃 |𝜃  (𝑗−1)  then becomes  auxiliary function Θ  𝜃 |𝜃  (𝑗−1) . 

Θ  𝜃 |𝜃  (𝑗−1) 

=    max 𝜔  𝑠 𝑡 

𝑡𝑠 𝑟

− 𝜂2𝐵 𝑠 𝑡 ,𝑥𝑡
, 0  𝑝𝑠 𝑡  𝑔 𝑡

′ |𝑥𝑡 , 𝜃  (𝑗−1)  log𝑝𝑠 𝑡
 𝑥𝑡 |𝑔 𝑡

′ , 𝜃′  

+ log𝑝𝑠 𝑡
 𝑔 𝑡

′ |𝜃   𝑑𝑔 𝑡
′  

(35) 

where 𝜂2 is a regularization parameter. 

The max operation is used in the above equation in order to 

ensure that the posterior state probabilities are nonnegative. 

The update equations of the parameters for the 𝑗th iteration 

can be obtained by differentiating equation (35) with respect 

to the model parameters and setting the derivative to zero. 

The update equation of mean of the speech-gain model is,  
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𝜇 𝑠 
 𝑗  

=
  max 𝜔  𝑠 𝑡 −𝜂2𝐵 𝑠 𝑡 ,𝑥𝑡

,0  𝑔 𝑡
′ 𝑝𝑠 𝑡

 𝑔 𝑡
′ |𝑥𝑡 ,𝜃  (𝑗−1) 𝑑𝑔 𝑡

′ −𝑞 𝑟𝑡𝑟

  max 𝜔  𝑠 𝑡 −𝜂2𝐵 𝑠 𝑡 ,𝑥𝑡
,0 𝑡𝑟

  (36) 

The update equation of variance of the speech-gain model is, 

𝜎𝑠 
2 𝑗  

=
  max 𝜔  𝑠 𝑡 −𝜂2𝐵 𝑠 𝑡 ,𝑥𝑡

,0   𝑔 𝑡
′ −𝜇 𝑠 

 𝑗  
−𝑞 𝑟 𝑝𝑠 𝑡

 𝑔 𝑡
′ |𝑥𝑡 ,𝜃  (𝑗−1) 𝑑𝑔 𝑡

′
𝑡𝑟

  max 𝜔  𝑠 𝑡 −𝜂2𝐵 𝑠 𝑡 ,𝑥𝑡
,0 𝑡𝑟

  
(37) 

The autocorrelation sequence of the speech is estimated to 

learn the AR coefficients 𝛼 𝑠  of each state. The update 

equation of gain bias of speech model and the update equation 

of autocorrelation sequence is given in the equation (38) and 

(39) respectively. 

𝜇 𝑠 
 𝑗  

=

  
max 𝜔  𝑠 𝑡 −𝜂 2𝐵 𝑠 𝑡 ,𝑥𝑡

,0 

𝜎
𝑠 
2 𝑗    𝑔 𝑡

′ −𝜇 𝑠 
 𝑗  

 𝑝𝑠 𝑡
 𝑔 𝑡

′ |𝑥𝑡 ,𝜃  (𝑗−1) 𝑑𝑔 𝑡
′

𝑡𝑟

  
max 𝜔  𝑠 𝑡 −𝜂 2𝐵 𝑠 𝑡 ,𝑥𝑡

,0 

𝜎
𝑠 
2 𝑗  𝑡𝑟

  (38) 

𝑟 
𝛼 𝑠 

(𝑗 ) 𝑖 
=

  max 𝜔  𝑠 𝑡 −𝜂2𝐵 𝑠 𝑡 ,𝑥𝑡
,0 𝑟 𝑥𝑡

 𝑖   𝑔 𝑡
′  

−1
𝑝𝑠 𝑡

 𝑔 𝑡
′ |𝑥𝑡 ,𝜃  (𝑗−1) 𝑑𝑔 𝑡

′
𝑡𝑟

  max 𝜔  𝑠 𝑡 −𝜂2𝐵 𝑠 𝑡 ,𝑥𝑡
,0 𝑡𝑟

  
(39) 

where 𝑟 𝑥𝑡
 𝑖  denotes the autocorrelation sequence of the 

speech  observations 𝑥𝑡  and 𝑖 denotes the index of the 

autocorrelation sequence.  

Now, Levinson-Durbin recursion algorithm is applied to 

obtain the AR coefficients  𝛼 𝑠 . 

The noise SARHMM can be obtained by encouraging the 

sparsity to transition probabilities and observation 

probabilities in a manner similar to that for the speech 

SARHMM. For the training of the noise SARHMM, 

independence is assumed between the noise gain and spectral 

shape. The training parameters are 𝜃 =  𝑎 𝑠 , 𝜎𝑠 
2, 𝛼 𝑠  , which are 

transition probability, the variance of noise gain model and 

the AR coefficients of noise gain model, respectively. The 

noise training data set is normalized by the long-term 

averaged noise gain, and then the transition probability can be 

optimized using the standard Baum Welch algorithm. The 

noise gain variance 𝜎𝑠 
2 can be estimated as the sample 

variance of the logarithm of the excitation variances after the 

normalization, and the estimation and update process for the 

noise AR coefficients 𝛼 𝑠  are similar to speech AR coefficients 

𝛼 𝑠 : first autocorrelation sequence of the noise is estimated, 

and then the Levinson-Durbin recursion algorithm is applied 

to update the noise AR coefficients 𝛼 𝑠 . 

4.2 Online Parameter Estimation 
The time-varying parameters  𝑞 𝑡 , 𝑢 𝑡  as defined in (17) and 

(20) are to be estimated on-line using the observed noisy 

speech. The recursive EM algorithm is applied to perform the 

on-line parameter update. That is, the parameters are updated 

recursively for each observed noisy speech segment and the 

likelihood score is improved on average. The update 

equations for  𝑞 𝑡 , 𝑢 𝑡  can be given as follows: 

 𝑞  𝑡 = 𝑞  𝑡−1 +
1

Ξ𝑡
′  

𝜔 𝑠𝑡 

Ω𝑡𝜎 𝑠 𝑡
2

𝑠𝑡

 𝑔  𝑡
′ − 𝑢 𝑠 𝑡 − 𝑞  𝑡−1  (40) 

 𝜇  𝑡 = 𝜇  𝑡−1 +
1

Ξ𝑡
 

𝜔 𝑠𝑡 

Ω𝑡
𝑠𝑡

 𝑔  𝑡
′ − 𝜇  𝑠 𝑡  (41) 

where  Ξ𝑡  and Ξ𝑡
′  are two nondecreasing normalization factors 

that control the impact of the previous noisy segments to one 

new noisy segment, which is because the parameters are 

considered time-varying. Therefore, the normalization factors 

are calculated by recursive summation of the past values: 

 Ξ𝑡
′ = 𝑝𝑞 Ξ𝑡−1

′ +  
𝜔 𝑠𝑡 

Ω𝑡𝜎 𝑠 𝑡
2

𝑠𝑡

 (42) 

Ξ𝑡 = 𝑝𝜇 Ξ𝑡−1 + 1 

where 0 ≤ 𝑝𝑞  and 𝑝𝜇 ≤ 1 are forgetting factors. Thus, 

𝑝𝑞 = 𝑝𝜇 = 1  implies there is no forgetting, and the equations 

of  𝜔 𝑠𝑡  and Ω𝑡  are defined later. 

5. SPARSE ARHMM SPEECH 

ENHANCEMENT 
The traditional ARHMM method estimates the speech 

directly. This results in inherent problem besides the 

ambiguity problem. Inherent problem is that the spectral fine 

structure of voiced speech is not obtained. Due to this 

problem, the noise cannot be removed between the speech 

harmonics. Therefore, the perceptual quality of the enhanced 

speech signal in voiced segments will be poor. In sparse 

ARHMM (SARHMM) speech enhancement, the speech is not 

directly estimated to solve the inherent problem. First we 

estimated the noise power spectrum using SARHMM 

approach [8]. Then the clean speech spectrum is estimated 

from the noisy speech using a Bayesian estimator. Finally, the 

enhanced speech can be obtained by applying the inverse 

Fourier transform to the estimated speech spectrum. 

5.1 Noise Estimation 
Given noisy observations 𝑦0

𝑡  , minimizing the expected value 

of  𝑓  ω𝑡 − 𝑓 ω𝑡  
2
 results in the minimum mean square 

error (MMSE) estimator of function 𝑓 𝜔𝑡 . 

 𝑓  ω𝑡 = 𝐸 𝑓 ω𝑡 |𝑦0
𝑡  (43) 

                                               =  𝑓 ω𝑡 𝑝 ω𝑡 |𝑦0
𝑡 𝑑ω𝑡  

   where  .   denotes the vector norm, 𝐸 .   indicates the 

statistical expectation. 𝑝 ω𝑡 |𝑦0
𝑡  is the posterior noise pdf 

given the noisy observations, and can be given as follows: 

 𝑝 ω𝑡 |𝑦0
𝑡 =

𝑝 ω𝑡 , 𝑦0
𝑡 

𝑝 𝑦0
𝑡 

=
𝑝 ω𝑡 ,𝑦𝑡 |𝑦0

𝑡−1 

𝑝 𝑦𝑡 |𝑦0
𝑡−1 

 (44) 

The numerator of equation (44) can be expressed by speech 

and noise gains given a composite state 𝑠𝑡  using the Markov 

assumption. 

 𝑝 ω𝑡 ,𝑦𝑡 |𝑦0
𝑡−1 =  𝛾 𝑠𝑡 𝑝𝑠𝑡

 ω𝑡 ,𝑦𝑡 

𝑠𝑡

 (45) 

=  𝛾 𝑠𝑡  𝑝𝑠𝑡
 𝑦𝑡 , 𝑔 𝑡

′ , 𝑔 𝑡
′  𝑝𝑠𝑡

 ω𝑡 |𝑦𝑡 , 𝑔 𝑡
′ , 𝑔 𝑡

′  𝑑𝑔 𝑡
′ 𝑑𝑔 𝑡

′

𝑠𝑡

 

where 𝛾 𝑠𝑡  denotes the probability of being in the composite 

state 𝑠𝑡  given all past noisy observation up to frame 𝑡 − 1, 

which can be defined by 

 𝛾 𝑠𝑡 = 𝑝 𝑠𝑡 |𝑦0
𝑡−1 =  𝑝 𝑠𝑡−1|𝑦0

𝑡−1 𝑎𝑠𝑡−1𝑠𝑡

𝑠𝑡−1

 (46) 

where 𝑝 𝑠𝑡−1|𝑦0
𝑡−1  is the forward probability at frame 𝑡 − 1 , 

which can be obtained by the forward algorithm of HMM. 

Based on the equation (24), the equation (45) can be rewritten 

as follows: 
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𝑝 ω𝑡 ,𝑦𝑡 |𝑦0
𝑡−1 

≈  𝛾 𝑠𝑡 

𝑠𝑡

𝑝𝑠𝑡
 𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′  𝑝𝑠𝑡

 ω𝑡 |𝑦𝑡 , 𝑔  𝑡
′ , 𝑔  𝑡

′   (47) 

The denominator of equation (44) can be written as follows: 

 𝑝 𝑦𝑡 |𝑦0
𝑡−1 =  𝑝 ω𝑡 ,𝑦𝑡 |𝑦0

𝑡−1 𝑑ω𝑡 , (48) 

≈   𝛾 𝑠𝑡 

𝑠𝑡

𝑝𝑠𝑡
 𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′  𝑝𝑠𝑡

 ω𝑡 |𝑦𝑡 , 𝑔  𝑡
′ , 𝑔  𝑡

′  𝑑ω𝑡 , 

=  𝛾 𝑠𝑡 𝑝𝑠𝑡
 𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′  𝑠𝑡

. 

Substituting the equations (47) and (48) in (44), 

 

𝑝 ω𝑡 |𝑦0
𝑡 

=
 𝛾 𝑠𝑡 𝑠𝑡

𝑝𝑠𝑡
 𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′  𝑝𝑠𝑡

 ω𝑡 |𝑦𝑡 , 𝑔  𝑡
′ , 𝑔  𝑡

′  

 𝛾 𝑠𝑡 𝑝𝑠𝑡
 𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′  𝑠𝑡

 
(49) 

The equations of  𝜔 𝑠𝑡  and Ω𝑡  are defined as follows: 

 𝜔 𝑠𝑡 = 𝛾 𝑠𝑡 𝑝𝑠𝑡
 𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′   (50) 

 Ω𝑡 = 𝑝 𝑦𝑡 |𝑦0
𝑡−1 =  𝜔 𝑠𝑡 

𝑠𝑡

 (51) 

Now, substituting the equations (50) and (51) in (49), the 

posterior noise pdf 𝑝 ω𝑡 |𝑦0
𝑡  can be rewrite as follows: 

 𝑝 ω𝑡 |𝑦0
𝑡 =

1

Ω𝑡
 𝜔 𝑠𝑡 

𝑠𝑡

𝑝𝑠𝑡
 ω𝑡 |𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′   (52) 

From the above equation, the equation (43) can be written as 

 𝑓  ω𝑡 =  𝑓 ω𝑡 𝑝 ω𝑡 |𝑦0
𝑡 𝑑ω𝑡  (53) 

            =
1

Ω𝑡
 𝜔 𝑠𝑡 

𝑠𝑡

 𝑓 ω𝑡 𝑝𝑠𝑡
 ω𝑡 |𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′  𝑑ω𝑡  

                     =
1

Ω𝑡
 𝜔 𝑠𝑡 

𝑠𝑡

𝐸𝑠𝑡
 𝑓 ω𝑡 |𝑦𝑡 , 𝑔  𝑡

′ , 𝑔  𝑡
′   

Let 𝑊𝑡 𝑘  denote the 𝑘th spectral magnitude of the noise ω𝑡 . 

Using 𝑊𝑡
2 𝑘 = 𝑓 ω𝑡 , the power spectrum 𝜆  𝑡 𝑘  of the 

noise ω𝑡  can be estimated as follows: 

 
𝜆  𝑡 𝑘 =

1

Ω𝑡
 𝜔 𝑠𝑡 

𝑠𝑡

𝐸𝑠𝑡
 𝑊𝑡

2 𝑘 |𝑌𝑡(𝑘), 𝑔  𝑡
′ , 𝑔  𝑡

′   
(54) 

where 𝑘 is the index of the frequency bins, 𝑊𝑡 𝑘  and 𝑌𝑡(𝑘) 

are the 𝑘th spectral amplitude of noise ω𝑡  and noisy speech 𝑦𝑡  

respectively. 

According to the ARHMM signal model, the MMSE 

estimation of noise power spectrum for composite state 𝑠𝑡  is 

given by 

𝐸𝑠𝑡
 𝑊𝑡

2 𝑘 |𝑌𝑡(𝑘), 𝑔  𝑡
′ , 𝑔  𝑡

′  =   1 − 𝐻𝑠𝑡
 𝑘  𝑌𝑡(𝑘) 

2
+

                                                    𝐻𝑠𝑡
 𝑘 𝜆 𝑠𝑡 

 𝑘   
(55) 

where, 

 𝜆 
𝑠𝑡 

 𝑘 =
𝑔  𝑡

   𝑗 
𝑝 
𝑗 =0 𝛼 𝑠𝑡 

 𝑗 exp(−2𝜋𝑗𝑘)/𝑘 
2 (56) 

 𝜆 𝑠 𝑡 𝑘 =
𝑔  𝑡

  𝛼 𝑠𝑡 
 𝑗 

𝑞 
𝑗 =0 exp(−2𝜋𝑗𝑘)/𝑘 

2 (57) 

𝛼 𝑠𝑡 
 𝑗  and 𝛼 𝑠𝑡 

 𝑗  are the 𝑗th AR coefficients of speech and 

noise models, respectively; 𝑝  and 𝑞  are the order of speech 

and noise AR coefficients, respectively. 

Now, substituting equation (55) in equation (54), the final 

estimation of noise power spectrum 𝜆  𝑡 𝑘 can be obtained. 

 𝜆  𝑡 𝑘 =
1

Ω𝑡
 𝜔 𝑠𝑡 

𝑠𝑡

𝐸𝑠𝑡
 𝑊𝑡

2 𝑘 |𝑌𝑡(𝑘), 𝑔  𝑡
′ , 𝑔  𝑡

′   (58) 

=
1

Ω𝑡
 𝜔 𝑠𝑡    1 − 𝐻𝑠𝑡

 𝑘  𝑌𝑡(𝑘) 
2

+ 𝐻𝑠𝑡
 𝑘 𝜆 𝑠𝑡 

 𝑘  

𝑠𝑡

 

5.2 Speech Estimation 
In traditional ARHMM the spectral fine structure of voiced 

speech is not obtained. This results in the presence of clearly 

audible noise in the voiced segments of the estimated speech. 

Therefore, the perceptual quality of the speech will be reduced 

if the speech is directly estimated. In order to solve this 

problem, Forward-backward algorithm is used in which 

speech is indirectly estimated. 

All the above mathematical analysis can be represented in 

terms of block diagram as shown as in the Fig 1. 

The noisy speech signal is taken as the input and is divided 

into blocks of frames having the frame length of 32ms where 

the sampling frequency is 8KHz. Now each frame is 

multiplied by the sampling window. Here, hamming window 

is used with the 50% overlap in order to avoid the loss of 

speech information in between the frames.  

 

Fig 1: Block diagram of ARHMM based speech 

enhancement using sparsity 

Now, each windowed set of speech samples is auto-correlated 

to give a set of (p + 1) coefficients, where p is the order of the 

desired LPC analysis. This is referred as AR model from 

which the speech parameters are obtained and then Hidden 

Markov model is applied to model those parameters. The 

above two steps constitute to form ARHMM model. Later, the 

sparsity is encouraged into the model by adding the 

regularization parameter to form SARHMM. Finally, the 

enhanced speech signal is obtained. 

6. SIMULATION RESULTS 
In this section, the simulation results for the proposed speech 

enhancement method is compared with the Wiener filter 

method. The objective results are obtained. Log-likelihood 

Scores for different noise signals is obtained. 

The objective quality measures are given as follows: 



International Journal of Computer Applications (0975 – 8887) 

Volume 157 – No 2, January 2017 

35 

6.1 Signal to Noise Ratio (SNR) 
Signal to noise ratio is defined as follows: 

 𝑆𝑁𝑅 = 10log 
10

 
 𝑥2(𝑛)𝑁

𝑛=1

  𝑥 𝑛 − 𝑥 (𝑛) 2𝑁
𝑛=1

  (59) 

where 𝑥(𝑛) is the original speech signal and 𝑥 (𝑛) is enhanced 

speech signal [1]. 

6.2 Segmental SNR (𝐒𝐍𝐑𝐬𝐞𝐠) 
Segmental Signal to Noise ratio can be evaluated either in 

time or frequency domain. But time domain measure is the 

simplest objective measure used to evaluate speech 

enhancement algorithms [6]. It can be defined as follows: 

 𝑆𝑁𝑅𝑠𝑒𝑔 =
1

𝐿
 10. log 

10
 

 𝑥2(𝑛)𝑁𝑙 +𝑁−1
𝑛 =𝑁𝑙

  𝑥 𝑛 −𝑥 (𝑛) 2𝑁𝑙 +𝑁−1
𝑛 =𝑁𝑙

 𝐿−1
𝑙=0   (60) 

where  𝑥(𝑛) is the original speech signal and 𝑥 (𝑛) is the 

enhanced speech signal. 𝑁 is the frame length, 𝑀 is the 

number of frames. 

6.3 Log-likelihood Ratio (LLR) 
Log-likelihood ratio for the speech segment is based on the 

assumption that over the short time intervals speech can be 

represented by an all-pole linear predictive coding model of 

the form [6], 

 𝑥 𝑛 =  𝑎𝑘𝑥 𝑛 − 𝑘 + 𝐺𝑢 𝑛 

𝑝

𝑘=1

 (61) 

where, 𝑎𝑘    (𝑎1, 𝑎2, … , 𝑎𝑝) are the coefficients of all-pole 

filter, 𝐺 is the filter gain and 𝑢 𝑛  is a unit variance white 

noise excitation. 

The LLR measure is defined as follows: 

 𝑑𝐿𝐿𝑅 𝑎𝑥 , 𝑎𝑥  = log
𝑎𝑥 

𝑇𝑅𝑥𝑎𝑥 

𝑎𝑥
𝑇𝑅𝑥𝑎𝑥

 (62) 

where  𝑎𝑥
𝑇 denotes the vector with the LPC coefficients of 

clean speech signal, 𝑎𝑥 
𝑇 denotes the vector with the 

coefficients of the enhanced speech signal, 𝑅𝑥  is the auto 

correlation matrix of the clean speech signal. The Log-

likelihood ratio values were limited to the range of [0, 2]. 

6.4 Perceptual Evaluation of Speech      

Quality (PESQ) 
PESQ measure is currently the most reliable measure for 

assessment of overall quality of speech processed by noise-

reduction algorithms [6]. The final PESQ sore is computed as 

a linear combination of the average disturbance value 𝑑𝑠𝑦𝑚  

and the average asymmetrical disturbance value 𝑑𝑎𝑠𝑦𝑚   [6]as 

follows: 

 𝑃𝐸𝑆𝑄 = 4.5 − 0.1. 𝑑𝑠𝑦𝑚 − 0.0309𝑑𝑎𝑠𝑦𝑚  (63) 

The range of the PESQ score is -0.5 to 4.5, although for most 

cases the output range will be a MOS-like score, i.e., a score 

between 1.0 and 4.5. 

6.5 Spectrograms 
The time varying spectral characteristics of the speech signal 

can be graphically displayed through the spectrograms. The 

spectrogram is a two dimensional graphical pattern in which 

the vertical dimension corresponds to the frequency and 

horizontal dimension corresponds to the time. The darkness of 

the pattern indicates the energy present in the speech signal. 

6.6 Mean Square Error (MSE) 
The mean square error is defined as the mean square value of 

the error signal which is the difference between the signal 

implied and the true but unknown signal. The value of the 

mean square error should be minimum [7]. 

 𝑀𝑆𝐸 = 𝐸   𝑥 𝑛 − 𝑥  𝑛  
2
  (64) 

where  𝑥 𝑛  is the input signal and 𝑥  𝑛  is the estimated 

signal. 

6.7 Log-likelihood (LL) Score 
The log-likelihood score of the estimated speech and noise 

models is evaluated using the true speech and noisy signals in 

order to evaluate the modeling accuracy [10]. The LL score of 

the estimated speech model for the 𝑛th block is defined as 

follows: 

 𝐿𝐿 𝑥𝑛 = log  
1

Ω𝑛
 𝜔𝑛 𝑠 𝑓𝑠 

𝑠

 𝑥𝑛 |𝑔  𝑛   (65) 

where  𝜔𝑛 𝑠  is the state probability given the observations 

𝑦0
𝑛  and 𝑓𝑠  𝑥𝑛 |𝑔  𝑛  is the density function evaluated using the 

estimated speech gain  𝑔  𝑛 .  

The signal to noise ratio (SNR) for different noise signals car, 

train and airport noises with input SNR of 0dB, 5dB,10dB and 

15dB is obtained as shown in Fig 2. 

 

Fig 2: Signal to noise ratio for speech degraded with 0dB 

car noise 

The Mean squared error (MSE) for different noise signals car, 

train and airport noises with input SNR of 0dB, 5dB,10dB and 

15dB is obtained as shown in Fig 3. 

 

Fig 3: Mean square error for speech degraded with 15dB 

train noise 
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Fig 4: LPC Spectrums for different SNR values of Car 

noise 

The Timing diagrams comparison for Wiener filter and LPC 

can be shown in Fig 5. 

 

 

 

 

Fig 5: Timing diagrams comparison for LPC and Wiener 

filter. 

The comparison of Wiener filter and LPC for the speech 

signal degraded with different noises in terms of segmental 

SNR can be shown in Table 1. 

Table 1. Comparison of Wiener filter and LPC in terms of 

Segmental SNR (dB) 

Noise (dB) 
Wiener 

Filter 

Linear Prediction 

Coding (LPC) 

Airport-0 -1.508 25.420 

Airport-5 -0.035 26.915 

Airport-10 1.552 27.118 

Airport-15 2.182 33.712 

Car-0 -0.634 15.794 

Car-5 0.348 22.102 

Car-10 0.524 20.461 

Car-15 2.755 25.630 

Train-0 0.524 14.150 

Train-5 0.044 16.258 

Train-10 1.590 18.574 

Train-15 2.202 21.703 

 

Fig 6: Segmental SNR(dB) Comparison of LPC and 

Wiener filter for the speech degraded with Car noise. 

The Spectrograms comparison for Wiener filter and LPC can 

be shown in Fig 7. 
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Fig 7: Spectrograms comparison for LPC and Wiener 

filter 

The comparison of Wiener filter and LPC for the speech 

signal degraded with different noises in terms of Log-

likelihood ratio LLR (dB) can be shown in Table 2. 

The comparison of Wiener filter and LPC in terms of 

Perceptual evaluation of speech quality PESQ (MOS) can be 

shown in Table 3. 

Table 2. LLR (dB) Comparison for Wiener filter and LPC  

Noise (dB) 
Wiener 

Filter 

Linear Prediction 

Coding (LPC) 

Airport-0 1.446 1.550 

Airport-5 1.304 1.498 

Airport-10 0.932 1.233 

Airport-15 0.994 1.254 

Car-0 1.504 1.668 

Car-5 1.185 1.338 

Car-10 1.343 1.550 

Car-15 1.018 1.293 

Train-0 1.343 1.421 

Train-5 1.578 1.638 

Train-10 1.317 1.467 

Train-15 1.347 1.428 

Table 3. PESQ (MOS) Comparison for Wiener filter and 

LPC 

Noise (dB) 
Wiener 

Filter 

Linear Prediction 

Coding (LPC) 

Airport-0 1.472 1.238 

Airport-5 1.492 2.039 

Airport-10 2.025 1.112 

Airport-15 2.249 1.029 

Car-0 1.165 1.980 

Car-5 1.694 1.644 

Car-10 1.921 1.377 

Car-15 2.265 1.106 

Train-0 1.921 1.263 

Train-5 1.680 1.254 

Train-10 2.008 1.103 

Train-15 2.004 1.056 

 

Log-likelihood scores for the speech signal degraded with the 

car noise and airport noise with input SNR values of 0dB, 

5dB, 10dB and 15dB for Gaussian mixtures 2, 4, 8 and 16 

with states 2 and state 3 can be shown in Table 4 and Table 5 

respectively. 

Log-likelihood scores for the speech signal degraded with the 

car and airport noises with input SNR values of 0dB, 5dB, 

10dB and 15dB for Gaussian mixtures 2, 4, 8 and 16 with 

states 2 and state 3 can be shown in Fig 8, Fig 9 and Fig 10, 

Fig 11 respectively. 

Table 4. Log-likelihood Scores for state 2 and state 3 for 

the speech degraded with Car noise 

Noise (dB) 
Gaussian 

mixture 
State 2 State 3 

Car-0 2 2047.8 2080.8 

 4 2118.0 2155.3 

 8 2140.8 2164.8 

 16 2230.9 2254.9 

Car-5 2 1887.7 1992.5 

 4 1958.4 2026.8 

 8 2070.8 2126.5 

 16 2167.6 2187.2 

Car-10 2 1614.7 1585.2 

 4 1669.7 1797.0 

 8 1965.3 1884.4 

 16 1982.8 2006.4 

Car-15 2 1388.8 1506.2 

 4 1562.0 1571.8 

 8 1681.2 1690.2 

 16 1761.7 1723.9 

 

Fig 8: Log-likelihood scores for speech degraded with Car 

noise for State 2. 
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Fig 9: Log-likelihood scores for speech degraded with Car 

noise for State 3. 

Table 5. Log-likelihood Scores for state 2 and state 3 for 

the speech degraded with Airport noise. 

Noise (dB) 
Gaussian 

mixture 
State 2 State 3 

Airport-0 2 1881.5 1958.1 

 4 1894.6 2039.0 

 8 2063.0 2109.7 

 16 2117.9 2153.7 

Airport-5 2 1583.0 1560.5 

 4 1617.9 1705.3 

 8 1764.2 1720.2 

 16 1902.9 1918.6 

Airport-10 2 1451.8 1497.1 

 4 1602.4 1582.1 

 8 1790.5 1714.2 

 16 1920.6 1908.2 

Airport-15 2 1239.8 1252.2 

 4 1351.5 1256.0 

 8 1569.5 1642.4 

 16 1591.3 1653.6 

 

Fig 10: Log-likelihood scores for speech degraded with 

Airport noise for State 2. 

 

Fig 11: Log-likelihood scores for speech degraded with 

Airport noise for State 3. 

It is observed that the log-likelihood score is decreased as the 

SNR value of the noise increased. 

7. CONCLUSION 
This work has presented a speech enhancement method in 

which first AR model is applied for the noisy speech signal to 

find the speech parameters and then Hidden Markov model is 

applied to model those parameters to form ARHMM model. 

Later, the sparsity is encouraged into the model by adding the 

regularization parameter to form SARHMM to overcome the 

ambiguity and inherent problems in ARHMM. The objective 

results for the proposed method and Wiener filter are 

compared. Speech quality in non-stationary noise conditions 

is observed through listening. The average log-likelihood 

score is obtained for different noises and observed that the 

performance is improved compared to the reference methods. 

The present work can be used for different signals and can be 

used in real time applications like hearing aids. 
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