
International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 2, January 2017

21

A Review: TCP Variants with MANET
Jaydevsinh B. Vala

Master of Computer Engineering,
Department of Computer Engineering

Atmiya Institute of Technology & Science,
Rajkot- 360005,
Gujarat, India

Hiren V. Mer
Assistant Professor,

Department of Computer Engineering
Atmiya Institute of Technology & Science,

Rajkot- 360005,
Gujarat, India

ABSTRACT

TCP- Transmission Control Protocol is a connection oriented

and reliable transport layer protocol of TCP/IP protocol suite.

TCP provided process-to-process, stream and full duplex

communication. TCP also provides flow control, error

correction and congestion control. Congestion is the traffic

jam of the packets in the network. It occurs when the load in

the network is higher than of its capacity to handle. This paper

explains basic congestion control mechanisms used by TCP.

This paper also discuss some of the possibilities of future

research work in TCP congestion control. This all TCP

variants have been proposed to improve TCP congestion

control mechanisms. This paper explores some of the most

widely used TCP variants conceptually.

Keywords

TCP, Tahoe, Reno, NewReno, Vegas, BuS, ELFN

1. INTRODUCTION
Congestion is situation in a computer network when the

number of outstanding packets becomes difficult to handle by

the internetworking devices. An intermediate device like

router, switch has a limited amount of memory-buffer and

processing capabilities. Congestion occurs when we force a

network and its devices to work beyond their capacities.

When a router is supplied more than of its capacity to process,

router suffer from an traffic jam kind of situation which is

called congestion. As a result, Router may discard few

packets which is the side effect of it[1].

TCP variants can be broadly classified into two major

categories based on their strategies of congestion control.

Table 1 Categories of TCP Variants

Reactive TCP Variants Proactive TCP Variants

Based on Congestion

detection.

Based on congestion

avoidance.

Detect congestion after

causing it.

Detect congestion before

causing it.

Packet loss is the

feedback signal.

Packet delay is the feedback

signal.

Corse – grained timers. Fine-grained timers.

TCP Tahoe, TCP Reno,

TCP NewReno are

examples.

TCP Vegas is an example.

Less accurate Round

Trip Time estimation.

More accurate Round Trip

Time estimation.

This paper explore reactive TCP-Tahoe, Reno, New Reno and

proactive TCP-Vegas. Some of the most widely used TCP

variants.TCP variants for adhoc networks are also discussed.

2. TCP CONGESTION CONTROL
TCP performs congestion control in three phases:- Slow Start,

Congestion Avoidance, Congestion Detection. TCP uses

acknowledgement to check packet loss and find packet delay.

An Acknowledgement method can be either cumulative or

selective. A cumulative acknowledgement with 2001 informs

the sender that the bytes around 2000 sequence number have

been received successfully. Receiver may send a cumulative

acknowledgement for few segments together to reduce

acknowledgement overhead. A selective acknowledgement

informs the sender about outorder delivery of segments and so

sender can further send only the missing segments[2].

2.1 Sender Sliding Window
TCP maintain two sliding windows variables - C_window-

congestion window and R_window-receiver’s advertised

window. Sender estimate and change the size of C_window as

per the congestion situation of the network. Receiver

advertises the capacity at which it can receive segments in the

form of R_window. Receiver sends R_window as a part of

TCP header field called window size. Sender selects the

minimum of C_window and R_window to reduce possibility

of congestion as well as the possibility of overwhelming the

receiver.

Window = Min (C_Window, R_Window) 1)

TCP sliding window is a byte oriented. Sender side it supports

open, close operations while receiver side it supports open and

close operation based on basis of sliding window concept. In

our discussion we assume that R_window>>C_window for all

the cases.

So Window = C_Window[2].

2.2 Slow Start – Exponential Increase
TCP starts the transmission with initially very small

C_window,1-2 Sender Maximum Segment Size. The purpose

of slow start is not to overwhelm the network without

knowing the current situation. Slow start increases the size of

C_window by 1 with every successfully received ACK-

acknowledgement. So after every RTT-Round Trip Time,

C_window gets doubled. TCP sets ssthresh – Slow Start

Threshold value. TCP continues in Slow Start until

C_window ≥ ssthresh[2].

2.3 Congestion Avoidance – Additive

Increase
TCP enters into congestion avoidance phase once C_window

becomes greater than or equal to ssthresh. TCP still continue

to increase the rate of sending by increasing C_window but

not as fast as it does in slow start. In Congestion avoidance,

TCP increments C_window by 1 with every RTT, So it is

called additive increase. C_window= C_window +

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 2, January 2017

22

1/C_window per Round. TCP continues in this phase until

retransmission times out. On retransmission times out, TCP

sets ssthresh to half of the C_window, sets C_window to 1

and starts slow start phase again.

The above policies were purposed in the initial standard of

TCP; later on many TCP variants have modified them while

keeping the basis intact[2].

3. TCP TAHOE
TCP Tahoe has introduced a fast retransmission phase over

the slow start and congestion avoidance. Tahoe states that it is

possible to detect congestion even before RTO-

Retransmission Timer times out. Whenever receiver receives

an out of order segment, it sends a duplicate ACK

immediately. Sender Tahoe process counts the number of

such duplicate ACKs. On receiving 3 same duplicate ACKs,

Tahoe considers a packet loss and switches to slow start

phase. This early retransmission is called fast retransmission.

Figure 1. TCP Tahoe

SS-Slow Start, CA-Congestion Avoidance

TO-Time Out, FT- Fast Retransmission

Initially ssthresh=16 and so on round 4, SS phase completes

and CA phase is started. On round 8, retransmission time out

occurs which sets ssthresh to half of the current C_window. so

ssthresh becomes initially 10. On round 13, SS phase ends and

CA round starts. On round 15, three duplicate ACKs cause

fast retransmission in which ssthresh is set to 6 and SS phase

starts. Tahoe treats time outs as well as 3 Duplicate ACKs

same way.

4. TCP RENO AND TCP NEW RENO
Tahoe switched to slow start phase in both the cases,

retransmission time outs and fast retransmission.

Retransmission time out is stronger possibility of congestion

and moving to slow start phase is required. But receiving 3

duplicate ACKs is a weaker possibility of congestion. With 3

duplicate ACKs, it is necessary to slow down the rate, but not

completely because there are still packets are delivered in the

network and so duplicate ACKs are received. TCP Reno

focuses on this logic. Reno introduced a Fast Recovery phase

other than of slow start, congestion avoidance and fast

retransmission[3].

In case of Retransmission time out occurrence, ssthresh is set

to half of the current C_window, C_window is set to 1 and

new slow start phase starts. In case of 3 duplicate ACKs,

ssthresh is set to half of the current C_window, C_window to

ssthresh+3 and starts congestion avoidance phase. Here

C_window is set to ssthresh+3 because 3 out of order

segments are delivered which caused 3 duplicate ACKs. This

phase is known as congestion detection with multiplicative

decrease.

Once Reno detects 3 duplicate ACKs, it immediately halves

the C_window and starts fast recovery phase. Reno stays in

the fast recovery phase until a fresh ACK, acknowledges

some of the sent data and then switches to congestion

avoidance phase. Fast recovery is something between slow

start and congestion avoidance where Reno stays until it

detects that receiver has started receiving something.

Figure 2. TCP Reno

SS-Slow Start, CA-Congestion Avoidance

TO-Time Out, FT- Fast Retransmission, MD-Multiplicative

Decrease

Figure 2 shows behavior of Reno, Initially ssthresh=16 and so

on round 4, SS phase completes and CA phase is started. On

round 8, Reno receives 3 duplicate ACKs, which sets ssthresh

to 10, C_window to 10 and starts congestion avoidance phase.

On round 13, a conventional time out is detected which starts

slow start phase and then congestion avoidance phase from

round 17[3].

Reno performs good when it is one packet loss in a window of

outstanding packets. This is because Reno comes out of the

fast recovery phase once it receives a fresh ACK. Reno

doesn’t care whether the new ACK, acknowledge all the

outstanding packets or not. So if there are multiple packet

losses in a single window,it not perform well. NewReno has

modified fast recovery phase. NewReno stays in the fast

recovery phase until all the outstanding packets are

acknowledged successfully. Each ACK which acknowledges

some of the packets in middle of the window is known as

Partial ACK. An ACK which acknowledges all the

outstanding packets of a window is a full ACK. Reno comes

out of the fast recovery on receiving a partial ACK while

NewReno considers partial ACK as a possibility of further

loss of packets and keeps staying in the fast recovery phase

until a Full ACK comes.

Reno and NewReno perform very well as compared to Tahoe

but they are able to detect only one packet loss per RTT. This

limitation can be overcome with TCP SACK and TCP

FACK[3].

5. TCP VEGAS
Vegas is a proactive TCP variant, which detects congestion

before congestion occurs. It uses packet delay as a primary

feedback signal. Vegas performs 40% to 70% better than

Reno in throughput as well as one half to one fifth of

reduction in retransmission requirements. Vegas check the

beginning of congestion by observing the difference between

the expected rate and actual rate. Vegas is based on five

techniques to improve performance by increasing throughput

and decreasing spurious retransmissions[4].

Accurate RTT Calculation

Course grained timers are used one per connection and they

are not accurate with reference of individual segments. It is

based on using fine-grained timers. Whenever it sends a

segment, it stores current system clock as a time stamp for a

segment. So it is possible to calculate exact RTT for each

successfully acknowledged segment. its RTT calculation

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 2, January 2017

23

provides more accurate time out calculation which can be

used to decide whether to retransmit a segment or not more

precisely.

Retransmission Requirement Detection

If Vegas specific retransmission detection fails, it follows the

conventional time out and 3 duplicate ACKs based

retransmission scheme. It extends the 3 duplicate ACKs based

retransmission scheme as follow.

1. On receiving 1st duplicate ACK, Vegas find the difference

between the current time and the sent time stamp of a segment

which is requested with duplicate ACK. If the difference is

more than the coarse grained time out value, Vegas

immediately retransmits the requested segment by a duplicate

ACK without waiting for 2 more duplicate ACKs. When

losses are too high or window is too small, sender will never

receive 3 duplicate ACKs which will cause time out. This is

one of the major issues of Reno which is solved by Vegas.

2. on receiving a fresh ACK – non duplicate ACK, if it is 1st

or 2nd ACK after a retransmission, Vegas checks whether the

time interval since the segment was sent is larger than the

time out or not. If it is,it retransmit the segment. This catches

any other lost segment previous to the retransmission without

waiting for a duplicate ACK. This strategy is used to identify

multiple segment losses in a window.

Later, sender sends segment 13. It gets lost and after some

time sender gets ACK asking for segment 13. At this point the

time difference between sent time of segment 13 and arrival

time of acknowledgement asking for segment 13 is larger than

time out time and so sender immediately resends segment 13.

After retransmission of segment 13,Vegas checks the time

difference between sent time of segment 15 which was lost

and arrival time of acknowledgement asking for segment 15.

As it is larger than time out time, Vegas immediately resends

segment 15 too[4].

Reduction in Window Size

The windows size should be decreased only if the losses have

occurred due to current sending rate not because of any higher

previous sending rate. Vegas compares the time of

retransmission of last segment and time at which windows

was modified last. When the retransmitted packet was sent

before the decrease, it will not decrease window size on

receiving any duplicate ACK for that segment because packet

loss was with reference of previous window size. This scheme

reduces unnecessary slow down of the sending rate[4].

Modified Congestion Avoidance

Vegas compares measured throughput rate with the expected

throughput rate. it believes that the number of outstanding

bytes is directly proportional to the throughput. So if it

increases windows size, number of outstanding bytes

increases and subsequently throughput should.The primary

goal of Vegas is to manage right amount of extra bytes. If

Vegas sends too much extra bytes, it may cause congestion.

Vegas calculates the BaseRTT which is RTT of a segment

when there was no congestion. BaseRTT can be minimum of

all the measured RTT times. Practically it is the RTT of the

first segment sent on a connection. At any moment, expected

throughput is,

Expected = WindowSize / BaseRTT (5)

WindowSize is the current congestion window size which we

assume to be equal to the number of bytes in transit. Vegas

calculates the actual – current throughput per round as,

Actual = WindowSize / Average Measured RTT (6)

Expected throughput represents available bandwidth in

absence of congestion. Actual throughput represents current

bandwidth being used by the connection. Vegas measures the

difference between Expected and Actual throughputs and

changes the congestion window C_window accordingly. Let,

Diff = Expected – Actual (7)

Modified Slow Start

The conventional slow start doubles the C_window every

RTT which is quite aggressive way because of exponential

increase. Being a proactive variant, Vegas doubles the

C_window every other RTT only[4].

6. TCP for MANETs

TCP-F:

TCP-F means TCP-Feedback. If any intermediate node

detects route failure, it immediately informs the source to

avoid unnecessary starting of congestion control using a RFN

– Route Failure Notification message. RFN message is

propagated towards the source. Mean while if any

intermediate node finds an alternative route, it diverts packets

to new path and discards RFN message. If no alternative route

is available, RFN message reaches to the source. On receiving

a RFN message, source immediately enters into the freeze –

snooze state. In freeze state, source stops further transmission,

saves the transmission status (window, RTOs etc) and starts a

RFT – Route Failure Timer. TCP remains in the freeze state

until it receives a RRN – Route Re-establishment Notification

message or RFT times out. TCP changes its state from freeze

to active on receiving a RRN message and continue with the

transmission status which was saved earlier. TCP also

changes its state from freeze to active on RFT time out but it

retransmits all the unacknowledged packets immediately

which may cause burst of traffic [5].

TCP with ELFN:

 ELFN - Explicit Link Failure Notification based scheme is

similar to TCP-F but it involves real interaction between TCP

and routing protocol. When a node detects route failure, it

sends a ELFN message to the source. ELFN message is

similar to “host unreachable” message of ICMP – Internet

Control Message Protocol. On receiving ELFN message,

source enters into freeze – standby mode by pausing

transmission. Source periodically get information about route

reestablishment. If acknowledgement of probe message is

received, TCP leaves the standby mode and resumes

transmission. Route failure message of DSR- Dynamic Source

Routing algorithm is piggybacked to carry route failure

message information for TCP. ELFN message contains source

and destination addresses and port numbers as well as TCP

segment’s sequence number. ELFN performs poor when load

is high because of probing based nature [5].

TCP BuS:

BuS Stands for Buffering Capability and Sequencing

Information. TCP BuS uses a reactive ABR – Associative

Based Routing protocol. TCP BuS is based on following four

improvements [6].

1. Explicit Notification: - A node which detects route failure

is called PN – Pivot Node. PN informs the source about route

failure and route re-establishment with a ERDN - Explicit

Route Disconnection Notification message and ERSN -

Explicit Route Successful Notification message respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 2, January 2017

24

On receiving ERDN message, source freezes transmission and

on receiving ERSN message, source resumes transmission [6].

2. Extending Timeout Values: - Route re-establishment

process is called RRC – Route Reconstruction Phase. During

RRC phase, all the packets which are at any node between

source and PN are buffered. Source TCP may get timeouts for

buffered packets due to lack of acknowledgements. So on

receiving ERDN message, source TCP increases RTO (mostly

doubles) for these buffered packets [7].

3. Selective Retransmission Requests: - There may be loss of

some packets in the path from source to PN. These packets

can be selectively retransmitted to buffer missing packets.

Buffered packets are not forwarded until a new route is

established between PT and destination [7].

4. Avoid Unnecessary Fast Retransmission: - There may be

loss of some packets in the path from PN to Destination.

There are already few next packets which are buffered in the

path from source to PN. On new route establishment,

destination informs source about the lost packets. The

buffered packets reach to the destination before those

retransmitted lost packets. Because of out-of order delivery,

destination generates duplicate acknowledgements for fast

retransmissions. Source avoids such unnecessary fast

retransmission [8].

ECIA based TCP:

ECIA stands for Exploiting Cross-layer Information

Awareness. ECIA is an improvement over TCP – ELFN. Loss

of data packets and acknowledgements may cause

retransmission time outs. ECIA suggests two mechanisms

called EPLN – Early Packet Loss Notification and BEAD –

Best Effort Acknowledgement Delivery. Conceptually ECIA

is similar to TCP BuS but it doesn’t focus on buffered

packets. When an intermediate node detects a route failure, it

informs the sequence number of every lost packet to the

sender via EPLN. Source disables RTO for these packets and

retransmits from lowest sequence numbered packet once new

route is established. Similarly, intermediate node informs the

destination regarding lost acknowledgements via BEAD.

Destination resends the acknowledgement with the highest

sequence number by following cumulative acknowledgement

concept. The DSR – Dynamic Source Routing protocol is

modified to implement ECIA based scheme [8].

Preemptive Routing Based Schemes:

Preemptive routing tries to predicate route failure based on the

signal strength variations. This prevents all of sudden

disconnection and loss of packets. When an intermediate node

detects signal strength which is below a primitive threshold, it

informs source to start route discovery phase. Ping-pong

based small messages are proposed to measure signal strength

of a transmission between two nodes. DSR and AODV

protocols are modified for preemptive routing. In signal

strength based link management, a node can try to increase

transmission range of a node so that the packets in transit can

reach to the destination. RFP – Route Failure Prediction

mechanism maintains history of signal strengths to find the

speed at which two nodes are moving away from each other.

This information is used to predicate by which time a route

may get failed. To avoid all of sudden disconnection, source is

informed in advance to start route discovery [8].

 TCP-F and ELFN based TCP both are based on route

reestablishment after route failure. TCP – F allows

intermediate node to continue with any alternative path if it

knows while ELFN doesn’t. In both the schemes, it is possible

that the new path is longer and so time out occurs. It is also

possible that the bandwidth of new path is not suitable with

the old value of congestion window which was calculated at

the time of old path. TCP-F is non-probing based while ELFN

is probing based. ELFN is simulation based on modification

of DSR routing protocol while TCP-F scheme is emulation

with any of the existing the routing protocol [10].

TCP BuS and ECIA based schemes try to avoid unnecessary

fast retransmissions. TCP BuS focuses on managing the

buffered packets while ECIA focuses on sharing information

about lost packets and acknowledgements. While TCP-F and

ELFN inform only source about the route failure, TCP Bus

and ECIA inform both source and destination. Preemptive

Routing Based Schemes focus on informing source about the

route failure before it actually occurs [10].

C3 TCP:

C3 stands for Cross-layer Congestion Control. In a wireless

multi-hop network, source’s link layer buffers packets while

other transmissions are going on. Source has to wait for the

channel access until the medium becomes free. Available

wireless channel bandwidth is shared by all the nodes which

are located in the transmission range of the source as well as

of the destination. A node follows medium access mechanism

with CSMA/CA protocol with addition of RTS-CTS signaling

packets based MACA protocol [10].

Source

Destination

Other Node

Data

RTS

CTS

Backoff Data

ACK

Tin Tout

Td Ttr

Packet Arrival Time Transmission Begin Time

Queuing + Medium Access Delay Actual Transmission Time

Tend
Transmission End Time

Fig. 3 Medium Access and Data Delivery Process

Fig 3 shows medium access and data delivery process with

reference of the link layer. Every node has a buffer queue

where it stores incoming packets until medium becomes free

to access. Packets may be originated by the same node or

received for the forwarding purpose from the neighboring

nodes. Suppose at time Tin, a new packet becomes ready to

send. Source senses the energy of the channel and finds it

busy because of other node’s communication. Source enters

into the waiting state by following exponential backoff

mechanism of CSMA/CA. after back off time out; Source

finds the medium free and sends RTS-Request to Send to the

destination. Destination sends CTS – Clear to Send back to

the source. On arrival of CTS, source sends data frame and on

receiving of data frame, destination acknowledges source.

Based on this concept, C3 TCP estimates bandwidth and

delay. This information is used for the congestion control

purpose [9].

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 2, January 2017

25

Adhoc TCP:

The congestion window defines the tolerable transmission rate

for a connection based on a route status through which it is

associated. Route failures damage the relationship between

congestion window and tolerable transmission rate. Adhoc

TCP is a thin layer between IP and TCP [10]. Various states

of Adhoc TCP are shown in figure

Disconnected

Congested

Connected

Loss

(1) (1) (1)

(2)

(2)

(3) (4)

(5)

(6)

(7)

Fig 4. Adhoc TCP

1) Receive Destination Unreachable ICMP Message

2) Receive ECN

3) TCP Transmits a packet

4) New ACK

5) 3 Duplicate ACKs or RTO expiration

6) Receive Duplicate or New ACK

7) Retransmission

Adhoc TCP has four states: Normal (Connected), Congestion

Control (Congested), Persistent (Disconnected) and

Retransmit (Loss). Adhoc TCP listens to ICMP – Internet

Control Message Protocol messages to put sender TCP in

persistent state (freeze state until a new route is established).

Adhoc TCP listens ECN – Explicit Congestion Notifications

to put sender TCP in congestion control state. On occurrence

of 3 duplicate acknowledgements or RTO time out, sender

TCP enters into the retransmission state [10].

7. CONCLUSION
In the client –server era, most of the research work is going on

towards improving the performance at the sender side. Sender

and receiver communicate using network. Sender focused

improvement is easy to adopt by doing necessary changes at

the servers without expecting clients-receivers to be upgraded.

A novel scheme can be introduced in which user can use the

four reserved bits of TCP header to send messages to the

sender. Receiver assistant congestion controls schemes can be

more advantageous in interactive applications. A perfect

combination of all the three congestion control feedbacks –

packet loss, packet delay and explicit notifications by

intermediate routers improves the TCP performance

drastically.here can do work on congestion control on

MANET by different variants.

8. REFERENCES
[1] M. Allman, V. Paxson and W. R.Stevens, “TCP

congestion control”, in IETF RFC, 2581, 1999.

[2] V. Jacobson, “Modified TCP congestion avoidance

algorithm. nd2endinterest mailing list”, in Tech. Report

in IEICE Transactions on Communications, 2007, E90-

B(3):516-52, 1990.

[3] T. Bonald, “Comparison of TCP Reno and TCP Vegas:

efficiency and fairness”, in Performance Evaluation, Vol.

36-37, pp. 307-332, 1999..

[4] K. Fall and S. Floyd, “Simulation-based comparisons of

Tahoe, Reno, and SACK TCP”, in ACM Computer

Communication Review, Vol 26, pp. 5-12, 1996.

[5] V. Jacobson, “Congestion avoidance and control”, in

SIGCOMM Symposium on Communications

Architectures and Protocols, pp. 314– 329, 1999.

[6] J. Hoe, “Improving the start-up behavior of a congestion

control scheme for TCP”, in Proceedings of SIGCOMM

Symposium, pp. 270-280, 1996.

[7] Ha, S., Rhee, I. and Xu, L. (2008). CUBIC: A new TCP-

friendly ighspeed TCP variant. ACM SIGOPS Operating

Systems Review. 42(5), 6474.

[8] Y. -C. Lai and C.-L. Yao, “Performance comparison

between TCP Reno and TCP Vegas”. Computer

Communication, 25: 1765-1773. 2002.

[9] Molia,Hardik k and Rashmi Agrawal,”A conceptual

exploration on TCP Variants”,2014 2nd international

conference on emerging technology trends in

Electrionics communication and Networking,2014

[10] Molia,Hardik k and Rashmi Agrawal,”A comprehensive

study of cross layer approaches for improving TCP

performance in wireless networks”,2015 international

conference on computing and communication

technologies,2015

IJCATM : www.ijcaonline.org

