
International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

32

A Comparative Study on the Implementation of Matrix

Addition in Sequential and Parallel Computing

Paradigms

M. V. Rajesh
Assoc. Prof & HOD in IT

Pragati Engineering College
Andhra Pradesh, INDIA

Ch. Venkata Ramana
Asst. Prof in IT

Pragati Engineering College
Andhra Pradesh, INDIA

B. Preethi Devi
Asst. Prof in IT

Pragati Engineering College
Andhra Pradesh, INDIA

ABSTRACT

Operations on matrices are very basic and common in many

fields of computer science and information technology, like

Image Processing, Graph Algorithms, etc. This paper presents

a comparative analysis of the implementation of additions of

two matrices with large dimensions both in sequential and

parallel computing paradigms. It provides a case study on the

implementation of addition of two matrices with large

dimensions in C language, Java Language and CUDA C

Language implementations.

General Terms

Matrix operations, Java Programming, CUDA Programming,

GPU Computing.

Keywords

C Implementation, CUDA C Implementation, GPGPU

Computing, Java Implementation, Matrix Addition, Parallel

Implementation, Sequential Implementation.

1. INTRODUCTION
This paper analyzes the implementation of basic addition

operation of two matrices on various programming platforms

like C programming, Java programming and CUDA C

programming.

The essential condition for the addition of two matrices is that

they must have an equal number of rows and columns. The

addition of two matrices A and B will be a matrix which has

the same number of rows and columns as same as A and B.

The addition operation on matrices say A and B,

denoted A + B, is computed by adding corresponding

elements of A and B [1]. Matrices, being the organization of

data into columns and rows, can have many applications in

representing demographic data, in computer and scientific

applications, among others.

 In the field of computing, matrices are used in various

applications like message encryption, to create three-

dimensional graphic images, realistic looking motion on a

two-dimensional computer screen and also in the algorithms

for the calculation of Google page rankings [2] .

A comparative study is performed to analyze the performance

of matrix addition using C language, java language

implementation under sequential computing paradigm and

CUDA C implementation under parallel computing paradigm.

CUDA C implementation using the GPGPU Computing
exhibits very much improved performance with respect to the

time spent for performing the operations i.e., core logic for

addition of two matrices.

2. C LANGUAGE IMPLEMENTATION
C programming language is an imperative and

procedural language. It was designed to provide low-level

access to memory; language constructs that map efficiently to

machine instructions, and to require minimal run-time

support. C is useful for many software development areas, for

example in system programming which was formerly coded in

assembly language [3].

C language supports dynamic memory allocation using which

blocks of memory of any custom defined size can be

requested at run-time using library functions such

as malloc from a region of memory called the heap; these

blocks can be subsequently released for reuse by calling the

library function realloc or free[3].
In the below implementation memory for the matrices i.e.,

two-dimensional arrays is allocated dynamically as the

dimensions of the matrices is large i.e., 10000 by 10000.

Arrays are initialized with certain specific default values.

Finally using a nested for loop the two input matrices are

added to compute the sum of two matrices.

clock_t and clock () are defined in time.h, which are useful to

compute the number of clock ticks since the start of execution

of the program.

CLOCKS_PER_SEC is constant defined in time.h, which is

useful to find number of clocks makes one second there by to

covert the number of clocks to time in seconds.

Source Code:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

void Initialize_matrix(float A[], int m, int n) {

 int i, j;

 for (i = 0; i < m; i++)

 for (j = 0; j < n; j++)

 A[i*n+j] = i+j;

} /* Read_matrix */

float * Add_matrix(float A[], float B[],float C[],int m, int

n) {

 int i, j;

 for (i = 0; i < m; i++)

 for (j = 0; j < n; j++)

 C[i*n+j] = A[i*n+j]+B[i*n+j];

 return C;

}

https://en.wikipedia.org/wiki/Matrix_addition#cite_note-1
https://en.wikipedia.org/wiki/Matrix_addition#cite_note-1
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Run-time_system
https://en.wikipedia.org/wiki/Run-time_system
https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/Malloc
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/Malloc
https://en.wikipedia.org/wiki/Malloc
https://en.wikipedia.org/wiki/Malloc
https://en.wikipedia.org/wiki/Malloc

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

33

int main() {

 clock_t CPU_time_1 = clock();

 int m, n;

 float *h_A, *h_B, *h_C;

 float *d_A, *d_B, *d_C;

 size_t size;

 m = 10000; //number of rows

 n = 10000; //number of columns

 printf("m = %d, n = %d\n", m, n);

 size = m*n*sizeof(float);

 h_A = (float*) malloc(size);

 h_B = (float*) malloc(size);

 h_C = (float*) malloc(size);

 printf("Enter the matrices A and B\n");

 Initialize_matrix(h_A, m, n);

 Initialize_matrix(h_B, m, n);

 printf("CPU start time is : %ld \n", CPU_time_1);

 clock_t CPU_time_3 = clock();

 printf("AddMatrix start time is : %ld \n", CPU_time_3);

 Add_matrix(h_A, h_B,h_C,m,n);

 clock_t CPU_time_4 = clock();

 printf("AddMatrix end time is : %ld \n", CPU_time_4);

 free(h_A);

 free(h_B);

 free(h_C);

 clock_t CPU_time_2 = clock();

 printf("CPU end time is : %ld", CPU_time_2);

 printf("\n CLOCKS_PER_SEC is %ld seconds",

(CLOCKS_PER_SEC));

 printf("\n Core Execution TIme is %ld milli seconds",

((CPU_time_4-CPU_time_3)*1000/CLOCKS_PER_SEC));

 printf("\n Total Execution TIme is %ld milli seconds",

((CPU_time_2-CPU_time_1)*1000/CLOCKS_PER_SEC));

 printf("\n MATRIC ADDITION SUCCESSFULLY

COMPLETED ");

 return 0;

3. JAVA LANGUAGE

IMPLEMENTATION
Java is a an object oriented programming language for

general-purpose computing that is concurrent, class-based,

object-oriented, and specifically designed to be platform

independent. Java achieves the concept of "write once, run

anywhere" (WORA) philosophy, meaning that compiled Java

code can run on all platforms that support Java without the

need for recompilation. Java applications are normally

compiled into byte code, which is an intermediate

representation that can run on any Java virtual machine (JVM)

regardless of computer architecture[4].

Java provides dynamic memory allocation using which blocks

of memory of arbitrary size can be requested at run-time using

the new operator.

In the below implementation memory for the matrices i.e.,

two-dimensional arrays is allocated dynamically as the

dimensions of the matrices is large i.e., 10000 by 10000.

Arrays are initialized with certain specific default values.

Finally using a nested for loop the two input matrices are

added to compute the sum of two matrices.

System.currentTimeMillis () method is used to obtain the

current system time in milli seconds, so as to compute the

accurate time spent for the execution of core logic of the

program along with total time spent.

Source Code:

import java.lang.*;

public class AddMatrices

{

 public static void main(String args[])

 {

 long lStartTime = System.currentTimeMillis();

 int m=10000, n=10000;

 int h_A[][], h_B[][], h_C[][];

 h_A = new int[m][n];

 h_B = new int[m][n];

 h_C = new int[m][n];

 System.out.println("Number of rows = " + m + "

Number of Columns = " + n);

 Initialize_matrix(h_A, m, n);

 Initialize_matrix(h_B, m, n);

 long lStartTime1 = System.currentTimeMillis();

 Add_matrix(h_A, h_B,h_C,m,n);

 long lEndTime1 = System.currentTimeMillis();

 long lEndTime = System.currentTimeMillis();

 long output = lEndTime - lStartTime;

 long output1 = lEndTime1 - lStartTime1;

 System.out.println("Elapsed time in milliseconds: " +

output);

 System.out.println("### Core Elapsed time in

milliseconds: " + output1);

 System.out.println("\n MATRIC ADDITION

SUCCESSFULLY COMPLETED ");

 }

 static void Initialize_matrix(int A[][], int m, int n)

 {

 int i, j;

 for (i = 0; i < m; i++)

 for (j = 0; j < n; j++)

 A[i][j] = i+j;

 }

 static int [][] Add_matrix(int A[][], int B[][],int

C[][],int m, int n)

 {

 int i, j;

 for (i = 0; i < m; i++)

 for (j = 0; j < n; j++)

https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Dynamic_memory_allocation

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

34

 C[i][j] = A[i][j]+B[i][j];

 return C;

 }

}

4. CUDA C LANGUAGE

IMPLEMENTATION
CUDA is an acronym for Compute Unified Device

Architecture is a parallel computing platform and application

programming interface (API) model created by Nvidia [1]. It
allows the software development to use a CUDA-enabled

graphics processing unit (GPU) for general purpose

processing – which is termed as GPGPU (General-Purpose

computing on Graphics Processing Units). The CUDA

platform is a software layer that gives direct access to the

GPU's virtual instruction set and parallel computational

elements, for the execution of program kernels. The CUDA

platform can be worked with programming languages such as

C, C++, and FORTRAN [6].

In November 2006, NVIDIA introduced CUDA®, a general

purpose parallel computing platform and programming model

that allows and facilitates the parallel compute engine in

NVIDIA GPUs to solve many complex computational

problems in a more efficient way than on a CPU. CUDA

provides a software environment that allows developers to use

C language for developing parallel computing applications

[5].

CUDA C is an extension for C which allows the programmer

to define CUDA C functions, called kernels, that, when

called, are executed N times in parallel by N different CUDA

threads, as opposed by a single thread of execution like

regular C functions. A kernel is defined using the __global__

declaration syntax and the number of CUDA threads that

execute that kernel for a given kernel call is specified using a

new <<<...>>> execution configuration syntax. Each thread

executing the kernel is given a unique thread ID that is

accessible within the kernel through the built-in threadIdx

variable [5].

In the below implementation memory for the matrices i.e.,

two-dimensional arrays is allocated dynamically on the host

memory as the dimensions of the matrices is large i.e., 10000

by 10000. Arrays are initialized with certain specific default

values. Data contained in the arrays are transferred to the

device memory using cudaMalloc() and cudaMemcpy().

Finally using a kernel function launched the two input

matrices are added to compute the sum of two matrices.

Matrix_Addition<<<(m*n/1024), 1024>>>(d_A, d_B, d_C,

m, n);

With the help of gettimeofday() & clock(), time spent for

core logic execution on the GPU device and as a whole

program execution time is measured.

Source Code:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <cuda_runtime.h>

#include <sys/time.h>

__global__ void Matrix_Addition(int A[], int B[], int C[], int

m, int n) {

 int threadIndex_ij = blockDim.x * blockIdx.x + threadIdx.x;

 /* The test shouldn't be necessary */

 if (blockIdx.x < m && threadIdx.x < n)

 C[threadIndex_ij] = A[threadIndex_ij] +

B[threadIndex_ij];

} /* Mat_add */

void Initialize_matrix(int A[], int m, int n) {

 int i, j;

 for (i = 0; i < m; i++)

 for (j = 0; j < n; j++)

 A[i*n+j] = i+j;

}

double cpuSecond() {

 struct timeval tp;

 gettimeofday(&tp,NULL);

 return ((double)tp.tv_sec + (double)tp.tv_usec*1.e-6);

}

/* Host code */

int main() {

 clock_t CPU_time_1 = clock();

 printf("CPU start time is : %ld \n", CPU_time_1);

 int m, n;

 int *h_A, *h_B, *h_C;

 int *d_A, *d_B, *d_C;

 size_t size;

 double iStart,iElaps;

 m = 10000;

 n = 10000;

 printf("Number of Rows = %d, Number of Cols = %d\n", m,

n);

 size = m*n*sizeof(int);

 h_A = (int*) malloc(size);

 h_B = (int*) malloc(size);

 h_C = (int*) malloc(size);

 Initialize_matrix(h_A, m, n);

 Initialize_matrix(h_B, m, n);

 /* Allocate matrices in device memory */

 cudaMalloc(&d_A, size);

 cudaMalloc(&d_B, size);

 cudaMalloc(&d_C, size);

 /* Copy matrices from host memory to device memory */

 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

 clock_t CPU_time_3 = clock();

 /* Invoke kernel */

 iStart = cpuSecond();

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/GPGPU
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Matrix_addition#cite_note-1
https://en.wikipedia.org/wiki/Matrix_addition#cite_note-1

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

35

 Matrix_Addition<<<(m*n/1024), 1024>>>(d_A,

d_B, d_C, m, n);

 /* Wait for the kernel to complete */

 cudaThreadSynchronize();

 iElaps = cpuSecond() - iStart;

 clock_t CPU_time_4 = clock();

 /* Copy result from device memory to host memory */

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

 /* Free device memory */

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

 /* Free host memory */

 free(h_A);

 free(h_B);

 free(h_C);

 clock_t CPU_time_2 = clock();

 printf("CPU end time is : %ld", CPU_time_2);

 printf("\n CLOCKS_PER_SEC is %ld seconds",

(CLOCKS_PER_SEC));

 printf("\n Total Core Logic Execution TIme is %g

milli seconds", (double)((CPU_time_4-

CPU_time_3)*1000/CLOCKS_PER_SEC));

 printf("\n\nCore LOGIC Time elapsed %f sec\n",

iElaps);

 printf("\n Total Execution TIme is %ld milli seconds",

((CPU_time_2-CPU_time_1)*1000/CLOCKS_PER_SEC));

 printf("\n MATRIC ADDITION SUCCESSFULLY

COMPLETED ");

 return 0;

}

5. RESULTS
The results of the above three implementations to compute the

addition of two matrices of dimensions 10000 by 10000,

executed on the below computing environment are as below.

C Language Computing Environment:

Intel(R) Core(TM)2 Duo CPU E4600 @ 2.40GHz

Ubuntu 14.04 64 bit Operating System, 2 GB RAM

gcc version 4.8.4 – C Compiler

Java Language Computing Environment:

Intel(R) Core(TM)2 Duo CPU E4600 @ 2.40GHz

Ubuntu 14.04 64 bit Operating System, 2 GB RAM

JDK 8 – Java Compiler

CUDA C Language Computing Environment:

Intel(R) Core(TM)2 Duo CPU E4600 @ 2.40GHz

Ubuntu 14.04 64 bit Operating System, 2 GB RAM

NVIDIA GeForce GT 710 – 2 GB - GPU Card

nvcc – CUDA C Compiler

Fig.1 Graphical representation of Program Execution

Time

It can be observed that the overall time taken for the execution

of the complete program got decreased very much in CUDA

C execution, as compared to C and Java language

implementations.

It can be observed that the actual time taken for the execution

of core logic of computing the addition of two matrices of

each 10000 × 10000 got drastically decreased in CUDA C, as

compared to C and Java implementations. The reason for this

steep decrease is the execution of addition of each element of

one matrix with the corresponding element of other matrix,

being carried by a separate thread and the ability to execute all

those GPU threads concurrently.

So in summary it can be analyzed and understood that the

computation time taken in case CUDA C implementation

which works on parallel computing environment is

tremendously less as compared to normal C and Java

implementations which work on sequential computing

environments.

6. CONCLUSION
Among the above three implementations of performing matrix

addition operation both under sequential and parallel

computing paradigms, it can be concluded that especially for

computation intensive applications like matrix operations,

implementations on parallel computing environments like

GPGPU Computing using CUDA C are very fast and

effective. In the similar pattern many matrix operations and

related algorithms can be analyzed between sequential and

parallel computing environments.

S.No Implementation

Code

Time taken

for core logic

execution (in

milli seconds)

Time taken

for complete

code

execution (in

milli

seconds)

1 C Language 1476 3516

2 Java Language 777 3657

3 CUDA C 0.004 1267

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 4, January 2017

36

In addition to the this kind of comparative analysis, under the

parallel computing paradigm i.e., GPGPU Computing, it can

also be compared between various parallel implementation

configurations with variations in terms of number of thread

blocks and the threads per block being used for cuda c kernel

executions.

7. REFERENCES
[1] https://en.wikipedia.org/wiki/Matrix_addition.

[2] https://www.reference.com.

[3] https://en.wikipedia.org/wiki/C_(programming_language

).

[4] https://en.wikipedia.org/wiki/Java_(programming_langua

ge).

[5] https://docs.nvidia.com/cuda/cuda-c-programming-

guide/.

[6] https://en.wikipedia.org/wiki/CUDA.

IJCATM : www.ijcaonline.org

https://en.wikipedia.org/wiki/Matrix_addition
https://www.reference.com/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://en.wikipedia.org/wiki/CUDA

