
International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 6, January 2017

29

Determining Appropriate Cache-size for Cost-effective

Cloud Database Queries

Ruchi Nanda
The IIS University

Jaipur, India

Swati V. Chande
International School of

Informatics and Management
 Jaipur, India

Krishna S. Sharma
The IIS University

 Jaipur, India

ABSTRACT

Retrieving results from the cache is one of the prominent

techniques to improve the query response time and reducing

load on the back-end database servers. One of the important

factors that influences the performance of cache system the

most, is the size of the cache. In cloud-based systems,

memory is scalable and hence, size of the cache is not a

critical issue. However, when the cache is overpopulated with

queries and their results, in that case, the query response time

increases. This is due to the fact that time for searching the

cache for the desired results increases. In this paper, an

appropriate cache size is calculated in terms of the number of

queries, for the database-size under consideration.

This paper also describes the set-up of Virtual Machine

Creation (VMC) cloud, using Cloud Virtual Machine Creation

(CVMC) algorithm. This facilitates the deployment of

database in cloud-based systems. An appropriate cache-size

for cloud-based system is determined through experimentation

using Apache HBase.

Keywords

Caching, NoSQL datastores, NoSQL database, HBase, Cache-

size, Cloud-based systems, cloud datastores, Query Response

Time

1. INTRODUCTION
Caching is one of the techniques to reduce the processing time

of the queries by storing them in memory. The data retrieval

from cache is considerably faster than main memory or disks.

Caching reduces the load on servers, which facilitates

reduction in the overall response time of queries. It is

beneficial if some data is accessed more frequently than the

remaining data. In case of uniform access to data, caching is

not beneficial [1]. If the cache exceeds its limit, cache

replacement algorithm makes space for the new data by

evicting old data.

In cloud-based systems, memory is scalable and inexpensive

and therefore size of the cache is not considered to be a

critical performance issue. Large number of results can be

cached economically and the size of the cache and its eviction

policy are therefore not critical [2]. However, if cache is

overloaded with many queries and their results, it would be

difficult to retrieve the results efficiently. Hence the question

arises “What is the best-suitable cache-size in case of cloud-

based systems?” In [3] the cache-based framework is

proposed by the authors that caches query and results. A least

recently used queries and their results are evicted, if the cache

exceeds its limit, so that a new query and its results could be

stored. This paper deals with how to decide the parameter

„cache-size‟ by conducting experiments.

The cache-size depends on the database-size [1]. For the

database-size under consideration, the best suited cache-size

can be determined in terms of the number of queries stored in

it, by performing two sets of experiments on the underlying

database. The cache-size is calculated meticulously by

considering the following queries:

 Exact cache-hit queries

 Different percentages of cache-hit queries.

The first contribution of this paper lies in the development of

VMC cloud, which allocates infrastructure to the client, by

means of a virtual machine. The second contribution, which is

equally important, lies in determining the best suitable cache-

size for cloud database queries.

The paper is organized as follows:

Section II contains the study of IaaS cloud development. In

section III set up of the cloud is explained that includes

description and implementation of the CVMC algorithm. The

concept of caching is discussed in Section IV followed by

related work in Section V. The experimental setup,

experiments conducted and results obtained are discussed in

Section VI and finally the last section contains the

conclusions drawn from the present work.

2. CLOUD SET-UP
With the emergence of cloud computing technology,

virtualization becomes a key component in the cloud-based

systems. Cloud offers infrastructure, platform and software as

three basic services on subscription basis to the clients. These

services are provided using virtualization technology, which is

implemented by hypervisor or Virtual Machine Monitor.

Hypervisor distributes the hardware resources among all the

virtual machines.

Infrastructure as a Service (IaaS) is the most important service

for accessing the cloud resources, such as memory, network,

processing, computing server, storage. In the present work, a

Virtual Machine Creation (VMC) cloud has been developed,

which is responsible for allocating virtual machine to the

client. The Cloud Virtual Machine Creation (CVMC)

algorithm, described below, is used for this purpose.

The CVMC algorithm accepts „UserID‟ and „password‟ as

input from the client. If the client is an authorized customer of

cloud resources, it allocates Kernel-based Virtual Machine

(KVM) image on cloud server.

The client assigns a name to the virtual machine image and

also specifies size of the memory, number of virtual CPUs

and hard disk space as desired. The VMC cloud automatically

creates a virtual machine image on the server, based on the

client‟s requirements. The client can access the machine using

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 6, January 2017

30

Virtual Network Computing (VNC). Algorithm 1 describes

CVMC algorithm.

Algorithm 1: CVMC Algorithm

For creating VMC server, some prerequisites [4] are required

to be accomplished on the machine, which are as follows:

 Installation of virtualization packages on the system

 Service “libvirtd”, for managing different activities

of the server

 FTP server, for keeping the operating system files,

that are to be installed on the VM

 Creation of kickstart file for Network Installation

server, that performs partitioning according to the

clients requirements and install OS on client VM.

CVMC algorithm is implemented in Python and the cloud

environment is set as shown in Figure 1. It consists of the host

machine, with the operating system - Red Hat Enterprise

Linux 6 (RHEL6). The hypervisor, Kernel-based Virtual

Machine (KVM) is chosen to be installed. The standalone

Apache HBase database is deployed on top of hypervisor.

Figure 1: Cloud Environment for the Study

3. PRIOR RELATED WORK ON

CACHING
Caching systems have been proposed by the researchers to

retrieve data rapidly. Cache stores data, which can be a web

page, fragment of a web page, query or results. This paper

deals with the caching of query and its results. Size of the

cache is one of the important factors that influence the

caching mechanism. If the cache is big in size, it will take

more time to search results. The small sized cache causes

frequent execution of cache replacement algorithms. In both

of the cases, performance of the cache is degraded.

Cache-size is an important parameter for determining the

caching efficiency and different caching frameworks have

been proposed in literature to built for peer-to-peer systems,

location-based services, web information retrieval, mobile

computing, and cloud databases ([5]-[9]). Packer [1] observed

that the optimal buffer cache size is between 10% and 15% of

the database size and in some cases up to 20% of the database

size. A large number of results can be cached economically

and hence the cache size is not a critical issue [2]. Ding et al.

[7] varied the cached-entries from 5% to 20% of the total

number of moving objects. They experimentally proved that

when the percentage of cached-entries is 20% of total number

of objects, then the disk page accesses is almost negligible.

Chockler et al. [8] preferred to set the cache size equal to the

total memory allocated for data cache by the service provider.

Ilayaraja et al. [10] set the cache-size to 10% of the database

size, which was 50 in number of objects. Dong et al. [9]

varied the cache-size based on system administrator‟s

experience.

However, cloud-based caching does not require a limit on the

cache capacity, as the size of the cache is infinite. A cache

policy was designed with the aim to minimize the cost of a

cloud-based system, instead of maximizing the hit ratio [11].

As the unlimited cache size is impractical in deployment

scenarios, Kiani et al. [12] focused on cache replacement

policies. The authors considered size of the cache in terms of

the number of items.

RHEL 6 KERNEL

HBase

VM 1

Guest OS

Client 1

VM 2

Guest OS

HOST MACHINE

KVM

Client 2

VM 3

Guest OS

Input: UserId

 Password

vmimage_name

 size_of_ram # in MB

 No_of_cpu

 hardDisk_size # in GB

Output: KVM virtual machine image

--

Begin

While connect to the server:

 Check the login details of the client

 If client is valid:

 Create a KVM client as vmimage_name

 Specify the server location containing an installable operating system image

 Create disk image space on hard disk as hardDisk_size

 Set path to the assigned disk space to create virtual machine image

Configure virtual processors as No_of_cpu

 Allocate memory as size_of_ram

 EndIf

End While

End

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 6, January 2017

31

The present paper considers the cache-size in terms of the

number of queries. Experiments were conducted for

determining an appropriate cache-size for the available

database-size. Cache-size was varied from 10% to 30% of the

size of the database.

4. INVESTIGATION OF CACHE-SIZE
Caching is one of the techniques which reduces load on

database servers and improves query response time. The

performance improvement provided by the cache is measured

in terms of cache-hit and cache-miss ratio. The cache-hit ratio

is defined as the percentage of all the requests handled by

cache [13]. It is calculated by using the relation:

Cache Hit Ratio =
Requests handled by cache

Total number of requests
∗ 100 (1)

Cache provides high performance improvement in the

following two cases: First, if the ratio of cache hit is high and

second, if the service time difference between a cache hit and

miss is also high [13]. The calculation of performance

improvement provided by the cache is made by using the Eq.

2:

PI = CHT − CMT (2)

where, PI is the performance improvement provided by the

cache.

 CHT is the service time of a cache hit

 CMT is the service time of a cache miss

The objective of the paper is, to evaluate the cache size where,

all the queries approaching the cache are answered in

reasonable time. Since, the queries can hit as well as miss the

cache, the best-suitable cache-size is calculated after

examining response time of the exact 100% cache-hit queries

and varying percentages of cache-hit and cache-miss queries.

For determining cache-size, client and server side scripts are

written using Python socket programming [3]. The client

script generates client queries from a text file, which are sent

to the server socket, where the query is checked in the cache.

If it is found there, then its results are retrieved from cache,

otherwise the results are retrieved from the underlying cloud

HBase datastore, using HappyBase API. New query and its

results are stored in the cache for future access. In case, cache

exceeds its maximum limit, the least recently used query and

its result are evicted.

5. EXPERIMENTS & RESULTS

5.1 Experimental Set-up
The experiment was performed on VMC cloud server having

Intel Core 2 Duo processor, 2.40 GHz CPU and 4 GB RAM,

running RHEL 6 operating system. The underlying datastore

used for testing the framework was Apache HBase-0.94 [14].

HappyBase-0.3 version was used to interact with Apache

HBase. It offers a rich set of Pythonic APIs, on using which a

Python program is executed on Apache HBase.

5.2 Experiment Evaluation
In order to evaluate cache-size, a subset of 1000 records of

popular dataset, BookCrossing (BX) prepared by Cai-Nicolas

Ziegler, DBIS Freiburg [15], was used and converted into

HBase schema.

Two experiments were conducted to investigate the best

suitable cache-size:

Experiment 1: To investigate the best suitable cache-size

when Exact Cache-hit queries approach cache
The purpose of this experiment was to determine

experimentally the suitable cache-size, by using a set of 100%

cache-hit queries. The cache-size, ranging from 10% to 30%

of the database size is taken, in order to observe the variations

in query response time with respect to cache-size. A set of 10

queries that are 100% cache-hit, are prepared. The experiment

is executed first, for cache-size having 100 queries, when the

cache is full. The test is run 3 times, so as to minimize the

environment factors [16]. For each run of the test, the

response time of the queries is calculated. Similarly, for each

cache-size, the experiment is conducted. Table 1 shows the

response time of the queries in run one, two and three for

different cache sizes.

Table 1: Query Response Time of Exact Cache-hit Queries

using Different Cache sizes in Run 1, 2 and 3 of the

experiment

 100 150 200 250 300

QRT

(Run 1) 0.00029 0.00026 0.00028 0.00035 0.00036

QRT

(Run 2) 0.00031 0.00028 0.00027 0.00035 0.00034

QRT

(Run 3) 0.00026 0.00024 0.00028 0.00031 0.00047

Figure 2: Query Response Time of Exact Cache-hit

Queries using different Cache-sizes

Figure 2 shows the graphical representation of the query

response time of exact cache-hit queries in each run of the

experiment. The QRT is higher comparatively for 100 queries

in all the runs of the experiment. For cache-size of 150

queries, it is reduced in all the three runs. Afterwards it starts

increasing, but thereafter it increases in the first and third run,

whereas in second run it is observed to decrease up to 200

cache-size and then increases for higher cache-sizes.

The average query response time of the queries is calculated

from the results of three runs. Table 2 shows the average

query response time of the queries processed in the cache. It

also depicts the relative change (RC) in percentage, in the

QRT on cache-based system as compared to the QRT taken

on non-cache datastore. The average QRT of non-cache

HBase is 0.11400 seconds.

Observations from Experiment 1:
The query response time is slightly higher at cache-size of

100. At cache size 15%, it is reduced and remains almost

constant till cache size is 20%. Thereafter, it starts increasing

0.00000

0.00010

0.00020

0.00030

0.00040

0.00050

100 150 200 250 300

A
ve

ra
ge

 Q
R

T

Cache size

Optimum Cache-size in 3 runs

QRT (Run 1)

QRT (Run 2)

QRT (Run 3)

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 6, January 2017

32

from cache size 20% to 25%. There is almost a reduction of

99.76% in the response time when the cache size changes

from 150 to 200. Figure 3 depicts observations pictorially.

The x-axis of this diagram represents the different cache-sizes

and the y-axis shows the average query response time. The

lowest average QRT is observed at cache-size 150 and 200.

After that, it starts increasing for cache-sizes 250 and 300.

Table 2: Average Query Response Time for Different

Cache sizes

 Cache-

size:

100

(10%)

Cache-

size:

150

(15%)

Cache-

size:

200

(20%)

Cache-

size:

250

(25%)

Cache-

size:

300

(30%)

Avg. QRT : with

cache (sec.)
0.00029 0.00026 0.00027 0.00034 0.00039

RC in QRT for

cache as

compared to

non-cache(in %)

-99.75 -99.77 -99.76 -99.70 -99.70

Hence the cache size of 150 (i.e., 15%) or 200 (i.e., 20%) of

the database-size can be chosen for cloud-based systems. This

experiment considered a set of exact cache-hit queries. But,

practically it is not possible that 100% cache-hit queries

approach the cache. Hence, in the following experiment the

cache-size for different percentage of cache-hit queries is

investigated.

Figure 3: Average Query Response Time of Exact Cache-

hit Queries, using different Cache-sizes

Experiment 2: To investigate the best suitable cache-size

when Different Percentages of Cache-hit queries approach

cache

The purpose of this second experiment was to assess the

cache-size obtained in the first experiment, using the queries

having different percentages of exact cache-hit, i.e., from

100% to 10%. Hence, the experiment that meticulously

checks the differences in the query response time, was

executed on the tests conducted on three different cache-sizes

150, 200 and 250. The cache-size, for which the overall query

response time is the least, is considered as an appropriate

cache-size for cloud-based systems.

For the experiment taking cache-size of 150 queries, the

cache-hit queries ranges from 100% to 10%. 10 queries are

chosen to warm up the query cache. For each percentage of

exact cache-hit, 5 query sets are prepared, except for 100%.

For 100% cache-hit queries, only 1 query set is prepared. In

all 46 query sets were prepared.

Each query set contains 10 queries that match in percentage

with some exact hit and the remaining in the percentage with

cache miss. In all 460 queries were processed by the

framework having cache-size 150. The experiment was run 5

times for each percentage of exact cache-hit queries, so as to

minimize environmental factors. The system was restarted in

each run of the experiment, so that there will be no influence

of operating system and internal database cache [17]. The

cache starts populating from 90% cache-hit queries and when

reached 20% cache-hit, the least recently used algorithm starts

execution.

The query response time is calculated in each run of the

experiment for different cache-hit percentages. Similar

procedure is followed for conducting experiments using the

cache-size 200 and 250. In cache having size 200, cache

eviction started from the first run of 10% cache-hit run.

However in, cache having size 250, no replacement was

observed. In all, 1380 queries were processed in the

experiment.

Table 3 shows the average query response time and the

relative change in QRT, in percentage, from cache-size 150 to

200 and from cache-size 200 to 250 for each percentage of

cache-hit queries. It provides a comparative analysis on the

different percentages of exact cache-hit queries.

Table 3: Average Query Response Time and Percentage Change from cache 150 to 200 and for Percentage Change from 200 to

250.

 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

QRT(150) 0.00004 0.08741 0.09525 0.10081 0.10786 0.10877 0.11966 0.11634 0.12420 0.12232

QRT(200) 0.00003 0.08744 0.09732 0.10399 0.10727 0.11736 0.12483 0.11854 0.12295 0.12273

QRT(250) 0.00002 0.08832 0.09483 0.10776 0.10949 0.11497 0.11958 0.11942 0.12363 0.12367

Relative

change in %

from 150 to

200

-25.00 0.03 2.17 3.15 -0.55 7.90 4.32 1.89 -1.01 0.34

Relative

change in %

from 200 to

250

-33.33 1.01 -2.56 3.63 2.07 -2.04 -4.21 0.74 0.55 0.77

0.00000
0.00010
0.00020
0.00030
0.00040
0.00050

100 150 200 250 300

A
v
er

a
g
e

Q
R

T
 (

se
c.

)

Cache-size

Optimum Cache-Size

QRT

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 6, January 2017

33

Figure 3: Average Query Response Time of Different Cache-hit Percent Queries using different Cache-sizes

Observations from Experiment 2:

It is observed that the average query response time (QRT)

almost linearly increases as the percentage of exact cache-hit

queries decreases from 100% to 40%. The reason is, with the

increase in cache-miss percentage, the cache takes more time

to retrieve the cache-miss query results from the database for

the first-time. For cache-hit queries below 40% the QRT

remains almost constant.

The change in query response time, from cache-size 150 to

200 and then from 200 to 250, shows, that query response

time increases when the size of the cache increases. For

cache-size 150, the average query response time is lower in

every percentage of cache-hit, except for 60% and at 20%.

This reduction is due to the fact that cache eviction starts from

20% cache-hit, and hence, it takes slightly higher time as

compared to other cache-size.

The average QRT for cache-size 150 is comparatively less as

compared to the average QRT in case of cache sizes 200 and

250. The percentage difference between cache-sizes 150 and

200 shows that only at three hits QRT is decreased. From

cache-size 200 to 250, it is observed that QRT is increased

almost in every percentage hit.

Hence, this experiment shows that cache-size of 15% of the

database may be considered as the best-suitable cache size for

cloud-based systems having the database-size under

consideration. The average values of query response time in

all the five runs of the experiment for the three cache-sizes are

plotted in the graph shown in Figure 3.

The figure 3 depicts that average response time is very small

for 100% cache-hit and starts increasing with the decrease in

the percentage of cache-hit queries. It is almost constant for

cache-size 15% of the database-size.

6. CONCLUSIONS
In cloud-based systems, memory is scalable and therefore it is

not a critical issue. However, if the cache becomes overloaded

with queries and their results, the search time increases. This

results in performance degradation of the cache system. This

paper provides a technique to find out the best-suitable cache-

size in terms of the number of queries. The performance of

cloud database with cache is most cost effective when the

cache-size is kept at about 15% of the database size. The work

can be further extended by including parameters like:

 types of queries: the considered operation in the

present work is scan queries. The queries involving

„AND‟ operator are treated as the most expensive

queries. Hence, these are more suitable candidates

for caching.

 database-size: as the size of the data is enormous in

almost all application domains, therefore, larger

database size can be taken up for further

investigations.

 query-set size: the number of queries in each set can

be varied to obtain optimum performance.

The paper also presents CVMC algorithm, using which

clients can access the cloud infrastructure through virtual

machine. The clients can further install software or

deploy database on cloud-based systems.

7. REFERENCES
[1] A. N. Packer 2001. Configuring and tuning databases on

the Solaris platform. Prentice Hall PTR.

[2] X. Long, and T. Suel 2006. Three-level caching for

efficient query processing in large web search engines.

World Wide Web, 9(4), 369-395.

[3] R. Nanda, K. S. Sharma, S. Chande 2016. Enhancing the

Query Performance of NoSQL Datastores using Caching

Framework. International Journal of Computer Science

and Information Technologies, Volume 7, Issue 5

(September-October 2016), 2332-2336, 0975-9646.

[4] Red-Hat Inc., libvirtd(8) - Linux man page. Online

Available: http://linux.die.net/man/8/libvirtd.

Retrieved on 18 July 2016.

[5] K. Raichura, N. Padhariya, and K. Atkotiya 2014. Cache-

Based Query Optimization In Mobile Ad-Hoc

Networks,” International Journal of Technology

Enhancements and Emerging Engineering Research, vol.

3(2), pp.226-232, 2014.

[6] O. D. Sahin, A. Gupta, D. Agrawal, and A. El Abbadi

2004. A peer-to-peer framework for caching range

queries. In Proc. Data Engineering. IEEE, pp. 165-176.

[7] H. Ding, A. Yalamanchi, R. Kothuri, S. Ravada, and P.

Scheuermann 2006. QACHE: query caching in location-

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

0.14000

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

A
v
er

a
g
e

Q
R

T
 (

se
c.

)

Cache -hit Percentage

Average Response Time of Queries For Different Cache-hit in all 5 Runs at each cache-

size

QRT(150)

QRT(200)

QRT(250)

International Journal of Computer Applications (0975 – 8887)

Volume 157 – No 6, January 2017

34

based services. Progress in Spatial Data Handling.

Berlin, Heidelberg: Springer, pp. 99-116.

[8] G. Chockler, G., Laden, and Y. Vigfusson 2010. Data

caching as a cloud service. In Proc. of the 4th

International Workshop on Large Scale Distributed

Systems and Middleware ACM, pp. 18-21.

[9] F. Dong, K. Ma, and B. Yang. 2015. Cache system for

frequently updated data in the cloud. WSEAS

Transactions on Computers, vol. 14, pp. 163-170.

[10] N. Ilayaraja, F. M. Jane, I. Thomson, C. V. Narayan, R.

Nadarajan and M. Safar 2011. Semantic Data Caching

Strategies for Location Dependent Data in Mobile

Environments. In International Conference on Digital

Information and Communication Technology and Its

Applications (pp. 151-165). Springer Berlin Heidelberg.

[11] N. Le Scouarnec, C. Neumann and G. Straub 2014.

Cache policies for cloud-based systems: To keep or not

to keep. In IEEE 7th International Conference on Cloud

Computing (pp. 1-8). IEEE.

[12] S. L. Kiani, A. Anjum, N. Antonopoulos, K. Munir and

R. McClatchey 2012. Context caches in the Clouds.

Journal of Cloud Computing: Advances, Systems and

Applications, 1(1), 1.

[13] D. Wessels 2001. Web caching, O'Reilly Media, Inc.

[14] Userguide HappyBase [Online]Available:

http://happybase.readthedocs.io/en/latest/user.html

[15] C. N. Ziegler, S. M. McNee, J. A. Konstan and G.

Lausen 2005. Improving recommendation lists through

topic diversification. In Proceedings of the 14th

international conference on World Wide Web, ACM, 22-

32.

[16] M. Perrin 2015. Time-, Energy-, and Monetary Cost-

Aware Cache Design for a Mobile-Cloud Database

System. Doctoral dissertation, University of Okalahoma.

[17] B. J. Sandmann 2014. Implementation of a Segmented,

Transactional Database Caching System. Journal of

Undergraduate Research at Minnesota State University,

Mankato, vol. 6(1), pp. 21.

IJCATM : www.ijcaonline.org

