
International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 10, January 2017

1

CPU Efficiency Enhancement through Offload

Naeem Akhter

Assistant Comp. Programmar,
University of Sargodha

Sargodha, Pakistan

Iqra Sattar
Lecturer, University of Lahore,

Sargodha Campus,
Sargodha, Pakistan

Furqan-ur-Rehman
Assistant Network Admin.

UCA, University of Sargodha,
Sargodha, Pakistan

ABSTRACT

There are several causes of slowness in personal computers.

While working on a PC to regularly execute jobs of similar

nature, it is essential to be aware of the reasons of slowness to

achieve the optimal CPU speed. A CPU being the most

important unit of the whole system must be offloaded from

unnecessary jobs which are not required at that moment. The

checklist for ensuring the optimal PC speed is a long one but

the paper discusses some major factors of PC slowness. It is

empirically discussed how a PC user can offload the CPU to

achieve optimal CPU speed. It is quantitatively proved that

offloading can speedup the CPU upto a significant level.

Keywords
Bubble Sort, Selection Sort, Gadgets, Offloading, Concurrent

execution.

1. INTRODUCTION
It is factually evident that CPUs have the tendency to become

more efficient in terms of speed and getting cheaper in terms

of cost at an amazing rate[1]. It was first observed in 1965 by

Gordon Moore, and is known as Moore’s Law. Computers in

the past were very slow in speed[2]. Only one program could

have been run on those computers. But today’s Operating

Systems can manage execution of multiple programs

concurrently. While working on a single-user computer with

Windows Operating System various activities can be

performed concurrently like, Installing a program, Creating or

copying files, Downloading Programs, Printing various

documents, Listening music, Running anti-virus program in

the background and Typing texts etc.

CPU is the most important component of a whole computer

system. Its speed is decreasing in parallel with the increasing

number of concurrent processes. For example, a large number

of tabs open in a browser, few of them may be auto-refreshing

or live updates i.e. live news, cricinfo.com, weather updates

etc. slows down CPU speed. Similarly, if there are a large

number of add-ons in the browser, they always start popping

or downloading at the opening of the browser, also suck CPU

speed. Running too many applications at a time, takes a lot of

memory, the resultant swapping also consumes a bit of CPU

ticks. An Anti-virus program configured to run scans in the

background is another source of keeping CPU under burden.

Some rogue programs i.e heavy-duty videos also eat up CPU

speed after encountering an error. Having too many programs

at start-up also decreases the CPU speed, because all of them

try to run when we start our computer. Another cause of low

CPU speed is the use of too many gadgets at the Windows

desktop i.e. Calendar, Picture Puzzle, Clock, Windows Media

etc., Slide Show, Feed Headlines and Weather.

If a set of jobs with similar nature and computational

requirement is required to execute on a single-user computer

repeatedly, it will be an obvious need to enhance or maximize

CPU speed. One way to enhance CPU speed is by disabling

few operating system services which are not required for the

solution of problem(s) in-hand. We can disable unwanted

Operating System services from “System Configurations”.

The aim of the research is to analyze CPU speed whether it

can be optimized by offloading from unnessary applications

which share CPU ticks with computational jobs during

execution. Difference of CPU speed has been calculated

mathematically and the results have been displayed in tables

and graphs. Rest of the paper comprises of: 2. Related Work

3. Methodology 4. Experiments 5. Results and Discussion 6.

Conclusion 7. Future Work 8. References.

2. RELATED WORK
In [3] Sumit Basu etc have identified the various causes of

slowness in personal computers. They have analyzed that

slowness in personal computers may occur due to CPU,

memory, IO, Handle Count, Page Faults and Thread Count.

But one of the major causes of slowness is “One of the top

two processes” out of the multiple processes running on a

personal computer. It was observed in 28 cases out of the total

31 cases analyzed. They also concluded that the top process

caused slowness in 26 out of 31 cases. In [4] it is mentioned

that “Most determining factor in the speed of a PC is how

much weight it carries”. Moreover:

“More than 60% of application programs most PC

user install on a Personal Computer firstly, also

install considerable number of unnecessary

background tasks which suck up process and

memory resources, sometimes so badly that a PC

grinds to a half as a result. For example, the PC on

which this document was written has 32 background

tasks that I disabled because they either were totally

unnecessary by any criteria, or they provide features

I will personally never ever use. 32! Imagine if all

those 32 programs were running right now, all

sucking up CPU time and Memory space.”

In [5] D. Cotroneo etc have stated that concurrent execution

of multiple processes on a PC causes system hang. There are

two ways aspects of system hang, processes waiting for

resources for an unlimited time and processes encountering

infinite loops. The researchers have proposed framework

which avoids system hang by self-handling methodology. It

improved performance overhead upto 0.6%.

3. METHODOLOGY
Research is a systematic and logical pursuit for new and

meaningful information on a particular subject[6]. CPU Speed

calculation is undoutebdly, a machine dependent assignment.

It is compulsory duty of the researcher to explicitly describe

the formal description of the system used for the research

purpose. It will not only eliminate the question marks on the

research but also provide the researchers an easy way to

reverify the research results. Following is the data set and jobs

on which experiments have been conducted.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 10, January 2017

2

3.1 Dataset
Three integer arrays of 1000, 1500 and 2000 sorted in

descending order used for the following three jobs one by one,

i.e. firstly, the following three jobs were executed on array of

1000 size, secondly, 1500 size and thirdly on the array with

the size of 2000 integer.

3.1.1 Job 1: Sort using Bubble Sort Algorithm.

3.1.2 Job 2: Sort using Selection Sort Algorithm.

3.1.3 Job 3: Multiply each item of the array by 2.

The above mentioned three jobs were run on the machine in

the following situations separately and difference has been

calculated.

3.1.4 With Load: Executing the jobs concurrently with

the following:

3.1.4.1 2 instances of VLC player each running video

media file (.mp4) of 50 minutes duration.

3.1.4.2 Windows Gadgets (Clock, Calendar, CPU Meter,

Feed Headline, Currency, Slide Show, Weather, Picture

Puzzle, Windows Media) running on the desktop.)

3.1.5 With Offload: Running all the jobs after closing all

windows gadgets and both VLC player instances (offloading

the CPU).

A program was developed in C# to calculate CPU time

consumed by all three jobs, separately on the above

mentioned data (1000, 1500 and 2000 integers) in both ‘with

load’ and ‘off load’ scenarios. Operating system used for the

experiments is Windows 7 Service Pack 1, (64 bit), formal

description of the machine is as under:

 Core(TM)2 Duo, Intel(R)

 T7100 @ 1.80GHz (CPU)

 RAM 2.00 GB

The results were calculated, tabulated and presented in the

form of graphs using MS Excel version 2010.

4. EXPERIMENTS & RESULTS
To achieve high accuracy in calculating CPU time of specific

piece of code ‘Stopwatch’ can be used. But 100% accuracy is

not guaranteed. Thomas Maierhofer [7] states that result of

Stopwatch may be 25%-30% different when we repeatedly

execute the same code on the same computer. To achieve

more accuracy, program was executed five (5) times and

average of the five (5) outputs have been calculated. Pankaj

Sareen in [8] has also done the same in his sorting

algorightms comparison.

Table – 1 Execution of Jobs on 1000 integers

Details

CPU Time Consumption in Microseconds

Job 1 Job 2 Job 3

With

Load

With

Off-

Load

With

Load

With

Off-

Load

With

Load

With

Off-

Load

1st Run 51312 47187 22288 17522 1208 1046

2nd Run 50787 48943 22156 19012 1632 1007

3rd Run 50950 38863 19575 21807 1136 1142

4th Run 52524 45582 24306 15521 1420 749

5th Run 52776 47629 21184 15687 1174 911

Avg 51670 45641 21902 17910 1314 971

Diff. 6029 3992 343

Saving 11.67% 18.23% 26.10%

Graph – 1.1 Execution of Jobs on 1000 integers

Graph – 1.2 CPU Speed Enhancement on 1000 integers

On input 1000 integers, in the first job CPU time saving of

6929 microsecond(11.67%), second job 3992 (18.23%) and

third job 343 microseconds (26.10%) was noted.

Table – 2 Execution of Jobs on 1500 integers

Detail

s

CPU Time Consumption in Microseconds

Job 1 Job 2 Job 3

With

Load

With

Off-

Load

With

Load

With

Off-

Load

With

Load

With

Off-

Load

1st Run 115365 95899 35936 39149 1632 1078

2nd Run 109325 88261 38553 33716 1260 1054

3rd Run 107408 91902 50356 38102 1133 1087

4th Run 97579 89916 33760 34055 1385 1103

5th Run 101446 99335 38319 34713 1093 1079

Avg 106225 93063 39385 35947 1301 1080

Diff. 13162 3438 220
Saving 12.39% 8.73% 16.91%

0

10000

20000

30000

40000

50000

60000

Job 1 Job 2 Job 3

51670

21902

1314

45641

17910

971

With Load With Offload

0.00 10.00 20.00 30.00

Job 1

Job 2

Job 3

11.67%

18.23%

26.10%

http://www.codeproject.com/script/Membership/View.aspx?mid=3921144

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 10, January 2017

3

Graph – 2.1 Execution of Jobs on 1500 integers

Graph – 2.2CPU Speed Enhancement on 1500 integers

On input 1500 integers, in the first job CPU time saving of

13162 microsecond(12.39%), second job 3438 (8.73%) and

third job 220 microseconds (16.91%) was noted.

Table – 3 Execution of Jobs on 2000 integers

Details

CPU Time Consumption in Microseconds

Job 1 Job 2 Job 3

With

Load

With

Off-

Load

With

Load

With

Off-

Load

With

Load

With

Off-

Load

1st Run 205920 173142 72197 60949 1148 1112

2nd Run 198860 180103 71057 65942 1440 1129

3rd Run 208665 172898 78356 60780 1203 1075

4th Run 217854 160497 65852 62768 1191 1095

5th Run 208341 160208 69755 58289 1228 1074

Avg 207928 169370 71443 61746 1242 1097

Diff. 38558 9698 145
Saving 18.54% 13.57% 11.67%

Graph – 3.1 Execution of Jobs on 2000 integers

Graph – 3.2 CPU Speed Enhancement on 2000 integers

On input 2000 integers, in the first job CPU time saving of

38558 microsecond(18.54%), second job 9698 (13.57%) and

third Job 145 microseconds (11.67%) was noted.

Table – 4 CPU Time Savings of all jobs on all inputs

Input

CPU Time Consumption in Microseconds

Job 1 Job 2 Job 3

With

Load

With

Off-

Load

With

Load

With

Off-

Load

With

Load

With

Off-

Load

1000 51670 45641 21902 17910 1314 971

1500 106225 93063 39385 35947 1301 1080

2000 207928 169370 71443 61746 1242 1097

Total 365822 308073 132730 115602 3857 3148

Diff. 57749 17128 708

Saving 15.79% 12.90% 18.36%

0

20000

40000

60000

80000

100000

120000

Job 1 Job 2 Job 3

106225

39385

1301

93063

35947

1080

With Load With Offload

0 5 10 15 20

Job 1

Job 2

Job 3

12.39%

8.37%

16.91%

0

50000

100000

150000

200000

250000

Job 1 Job 2 Job 3

207928

71443

1242

169370

61746

1097

With Load With Offload

0 5 10 15 20

Job 1

Job 2

Job 3

18.54%

13.57%

11.67%

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 10, January 2017

4

Graph – 4 CPU Time Savings of all jobs on all inputs

5. DISCUSSION
Three jobs were defined and experiments were conducted on

three input (1000, 1500 and 2000 integers) values. First job is

performance of Bubble Sort. Its performance in terms of CPU

time consumption decreases with the increase of input size.

The results of first job show that the saving of CPU time

increased gradually with the increase in input value i.e.

Input 1000 = 11.67%

Input 1500 = 12.39%

Input 2000 = 18.54%

From these result it can be estimated that with the further

increase of input value i.e. 5000 or 8000 integers the saving of

CPU time will increase accordingly. A clear pattern can be

noted that as biger the input as much the saving of CPU. If we

analyze the CPU time saving of second job, the following

savings were noted:

Input 1000 = 18.23%

Input 1500 = 8.73%

Input 2000 = 13.57%

CPU time saving is noted on all three inputs but there is no

regularity or pattern as was found in the case of first job. It is

due to the nature of Selection Sort algorithm used for the

second job. It behaves differently on various input sizes in

terms of CPU time consumption. As Jehad Hammad in [9]

discusses in his comparative study on HornerEval, Linear

Search, Towers, Binary Search, Insertion, Max, Min,

MaxMin, Merge, Quick, SelectionSort, Heap, Bubble and

Gnome Sorting algorithms on 5000, 10000, 20000 and 30000

input values that Selection sort is quicker than bubble sort and

gnome sort. He has further analyzed a drawback of selection

sort which continues sorting the items if they are already

arranged, while gnome and bubble sort algorithms swap the

items if required. Results in terms of CPU time saving of third

job are opposite to first job:

Input 1000 = 26.10%

Input 1500 = 16.19%

Input 2000 = 11.67%

This job is of very short size as compared to other two jobs. In

the case of job 3, the CPU time saving decreased with the

increasing input value. Summing up the discussion it can be

concluded that in job1 the dominant factor is the job itself. For

job2 the dominant factors were both ‘the load’ and job itself.

But in case of job3, the dominant factors was ‘the load’ only.

6. CONCLUSION
Offloading the CPU from unnecessary programs increases

CPU efficiency and saves CPU time upto significant amount

of time. The amount of time saved depends upon the nature

and size of jobs to be executed i.e. the dominant factor may be

the computation jobs or may be the ‘burden’ (irrelevant

programs) running concurrently or both the ‘jobs’ and the

‘load’. The most important outcome of this research is the

quantitative measures which indicate how a PC user can

improve the efficiency of CPU or save CPU energy waisted

by the ‘load’. The message to the PC users is clear that they

should offload the CPU by closing all the programs and

disable all the windows services not required during the

execution of computation jobs in hand to achieve optimized

CPU efficiency.

7. FUTURE WORK
i. In future, experiment on more CPU offload

scenarios can be conducted to recommend CPU

efficiency enhancements for PC users in varying

perspectives.

ii. CPU time consumption of major Windows Services

can be calculated separately running concurrently

with a task set.

iii. Experiment can be conducted usig variety of

machines in order to calculate CPU efficiency.

8. REFERENCES
[1] Douglas M. Pase and Matthew A. Eckl A “Comparison

of Single-Core and Dual-Core Opteron” , IBM xSeries

Performance Development and Analysis, 3039

Cornwallis Rd., Research Triangle Park, NC 27709-

2195.

[2] Omer, M.A., Zwaid, M. J. (2011) “CPU Scheduling” A

Project submitted to Republic of Iraq, Scientific

Research, University of Baghdad, College of Science,

Department of Computer Sciences.

[3] Basu, S., Dunagun, J., Smith, G. (2011), “Why Did My

PC Suddenly Slow Down?”, Microsoft Research, One

Microsoft Way, Redmond, WA 98052.

[4] “Speed Up your PC – The Ultimate Guide to drastically

Improving Your PC Speed & Performance - The Science

of Improving PC Speed”, AnswersThatWork.com, 26-

March-2011.

[5] D. Cotroneo, R. Natella, S. Russo. (2009) “Assessment

and improvement of hang detection in the Linux

operating system,” In SRDS, New York, USA, pp. 288-

294.

[6] Rajasekar, S., Philominathan, P., Chinnathambi, V.

(2013), “Research Methodology”, arXiv.org > physics >

arXiv: physics/0601009v3.

[7] Thomas Maierhofer Performance Tests: Precise Run

Time Measurements with

System.Diagnostics.Stopwatch. (2010),

[8] Sareen, P. Comparison of Sorting Algorithms (On the

Basis of Average Time), International Journal of

Advanced Research in Computer Science & Software

Engineering, Vol. 3, Issue 3 (2013).

[9] Hammad, J. A Comparative Study between Various

Sorting Algorithms, International Journal of Computer

Science and Network Security (IJCSNS), Vol 15, No. 3

(2015).

0 10 20 30

Job
1

Job
2

Job
3

11.67%

18.23%

26.1%

12.39%

8.73%

16.91%

18.54%

13.57%

11.67%

Input 2000 Input 1500 Input 1000

IJCATM : www.ijcaonline.org

https://arxiv.org/
https://arxiv.org/list/physics/recent

