
International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

11

Transaction Overhead Reduction by Server Localization

in Bank Database Management Systems

K. Sriraghav
Student

SSN College of Engineering

R. Vijayaraghavan
Student

SSN College of Engineering

S. Shriram
Student

SSN College of Engineering

Shomona Gracia Jacob, PhD
Associate Professor

SSN College of Engineering

ABSTRACT
Server localization refers to introduction of local servers that

are connected to a main centralized server. The banking

system currently prevailing in the country maintains two

databases: one for transaction management while the other is

maintained for backup. The transactional data from various

branches across the country is maintained by a centralized

server. In this scenario, given one centralized server, the

access overhead becomes too high since all the branches

access the main server only. As a part of day-end closing, the

database in the main server is duplicated. The proposed

system introduces an algorithm named Transaction Overhead

Reduction by Localization of Servers (TORLS) – where

servers are locally placed - region wise and they contain local

databases pertaining to that region. Hence, for intra-regional

transactions, it is sufficient that the local servers alone are

accessed. For inter-regional transactions, the two region-

based local servers are accessed via the main server. The

measure of decrease in the overhead is calculated as the

number of intra-regional transactions. The duplication server

is optional since the integration of local server databases will

constitute the main database. The main database is updated at

the end of each day thus alleviating the need for duplication.

General Terms
Transaction management, Banking data

Keywords
Server localization, access overhead, inter-regional

transactions, intra-regional transactions, replication

1. INTRODUCTION
There are two kinds of databases used in general - centralized

and distributed databases. A centralized database is generally

located and maintained in a single location which is a

computer system server in most of the cases. Banking systems

use a server CPU. All of the information stored on the

centralized server is accessible from a large number of

different locations. Centralized Database (CDB) is easily

accessible to the end-user due to the simplicity of having a

single database design. Also, data kept in the same location

can easily be changed, re-organised, mirrored, or analysed.

But the main disadvantage of CDB is that a large number of

simultaneous transactions access the server data leading to

server trafficking.

On the other hand, a distributed database system (DDB)

consists of a number of sites that have minimal or no

knowledge about the other sites in the network. These sites

usually share no physical components. The distributed

databases store data across multiple computers and hence they

improve performance at end-user worksites by allowing

transactions to be processed on many machines, instead of

being limited to a single site. DDB allows transparency to be

achieved across various levels and hence it promotes

increased reliability and availability. Distributed query

processing has proved to improve the performance of the

system. It also ensures ACID properties that any database

must support. Distributed databases usually rely on replication

to support increased availability and reliability metrics.

Taking into account the pros and cons of the centralized and

distributed databases; the idea of server localization is

proposed in this paper that combines the features of both CDB

and DDB. The proposed idea reduces the server overload and

increases the throughput while maintaining concurrency and

parallelism.

1.1 Existing Banking System:
The hierarchy of organization present in a general banking

system in India is as given below:

There will be a Head Office present in any of the main cities

in the nation. A main centralized server will be located in this

Head Office. There will be many regions based on the

geographic zones. Each region will have many branches under

its control.

The banking operations can be related to the database

operations as follows:

1. CREATE – Create a table for each branch in the

database server.

2. INSERT – Create a new tuple in the branch table

feeding in the customer details, after he opens an

account in that particular branch.

a. A sample SQL query can be:

INSERT INTO branchname VALUES (ac_no, cust_id,

custname, age, gender, bal, passwd);

3. UPDATE – For each transaction, the values in the

database has to be updated.

a. If an amount ‘x’ has to be transferred from

‘ac_A’ of ‘branch_from’ to ‘ac_B’ of

‘branch_to’ , the following queries have

to written in the banking software:

i. UPDATE branch_from set bal = bal- x

where ac_no=”ac_A”;

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

12

ii. UPDATE branch_to set bal = bal + x where

ac_no=”ac_B”;

4. RETRIEVE – For processing customer queries which

include balance enquiry,

a. The banking software implements the

query.

 i. SELECT bal from branchname where

ac_no= account_number;

5. DELETE – Delete the whole tuple of the customer after

he closes the account in a particular branch.

a. A sample SQL query will be:

 i. DELETE FROM branchname where ac_no=

account_number;

A transaction in a general banking system can be broadly

classified as –

1. Inter-regional transactions – transactions involving

branches from different regions

2. Intra-regional transactions - transactions involving

branches from the same region.

2. CURRENT SCENARIO
The software used in most of the banking organizations

currently has two main servers - one for access and other for

duplication - they use centralized server. The replication

server replicates the database available in the main server as a

backup, at the end of each day. Several branches across the

country may access this centralized server for each and every

transaction. As every transaction requires the execution of

three sub operations for its processing, the access overhead on

the server is usually high. So if the connection is maintained

with the main server, other transactions will be queued to get

processed until the current transaction is completed. This

occurs irrespective of the region from which the transaction

occurs. Consequently, the overload on the server and the

waiting time of the other transactions becomes very high.

The access overhead in the main server due to the transactions

has to be computed for both intra-regional and inter-regional

transactions. Note that there are no local servers in each

region to store the transaction data pertaining to that region.

So for each transaction, the main server is accessed.

Irrespective of intra-regional or inter-regional transactions, the

banking software at one branch updates the main server with

the changes in its table. For a transaction involving more than

one region, the databases of the other branch in the main

server has to be updated, as shown in the UPDATE operation

above.

The diagram depicts the structure of the existing system. All

the regions have to access the main server for all types of

transactions.

An important thing to note is that if the banking systems use a

centralized server, there will be no difference between inter-

regional and intra-regional transactions, as all the transactions

invariably access the main server.

2.1 Pitfalls in the existing system:
Usage of centralized servers for banking software suffers from

the following disadvantages.

 Even for intra-regional transactions, the

centralized server has to be accessed.

 When there are many transactions queued

at the server to be processed, the waiting

time of the transactions become high.

 Access overhead on the server whenever

multiple simultaneous transactions try to

access transactional data on the server.

 Bottlenecks occur as a result of high

network traffic.

Fig 1: Structure of the existing banking system

3. MOTIVATION
A banking transaction consists of a series of operations to be

performed on a database. The important issue in transaction

management is that if a database was in a consistent state

prior to the initiation of a transaction, then the database should

return to a consistent state after the transaction is completed.

This should be done irrespective of the fact that transactions

were successfully executed simultaneously or there were

failures during the execution. Above all this, it must be

ensured that a transaction does not lead to inconsistency of

data.

Usually, a banking transaction involves three operations

namely, retrieval of account information from the server,

manipulation of data depending upon the type of transaction

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

13

and updating the changes to the server. For every transaction

that is processed in any branch the centralized server is

accessed. Since a large number of transactions try to access

the server simultaneously, it adds to a large increase in the

overhead thereby causing server overload.

4. PROPOSED SYSTEM
The existing system has many disadvantages that open a wide

area for improvement. The proposed idea focuses on reducing

the overhead access of the main server by introducing

localised servers, i.e., placing servers locally (region-

wise).The introduction of servers locally means that a second

tier in the hierarchy of the existing system is inserted.

4.1 Local Servers
The local server placed in each of the regions has the database

pertaining to that region alone. The transactions which happen

in that region update the corresponding local server which in

turn updates the main server at the end of the day. When the

databases of each of the local servers are integrated, the

original databases are retrieved. Hence the duplication server

is an optional server.

Since the database pertaining to that region is stored in that

local server, it is sufficient if the intra-regional transactions

access the local servers alone, hence avoiding the accessing of

main server as in the existing system, whereas in the case of

inter-regional transactions the main server is accessed via the

local servers.

4.2 Operations in the proposed system:
1. The branch initiating the transaction will first check

if the transaction is inter-regional or intra-regional.

2. If the transaction is intra-regional

a. The regional server is accessed and the

tables of ‘m’ branches involved in the

transaction are updated.

b. As a part of day-end closing, check these

transactions and make an entry of these

transactions in the main server.

3. If the transaction is inter-regional

a. The banking software in the branch

initiating transaction will first find the

region in which the other branch is

located.

b. The local server is accessed through the

main server, i.e. the tuples are retrieved

from each of the local server.

c. After the transaction is completed, each of

the local servers is updated.

4. As a part of day-end closing, the databases from

each of the local server are updated on to the main

server. The duplication server is optional.

Fig 2: Localization of servers in the structure of the banking system

The following algorithm is used to process both inter-regional

and intra-regional transactions in the proposed system:

4.3 Algorithm
TORLS - Perform transaction initiated by the source branch

Input: Transaction details - Source_Account_no A1,

Destination_Account_ no A2, amount Amt

Values known: Branch code of the source branch B

Procedure

Obtain the values of b1 and b2 as branch codes of A1 and A2

respectively;

if (b1==B&&b2==B)

goto intra;

else

goto inter;

intra: do

(i) Obtain the account details of the account no A1

and A2 from the regional server

 (ii) Update the balance values of both the accounts as

UPDATE B set bal = bal- x where

ac_no=”A1”;

 UPDATE B set bal = bal + x where

ac_no=”A2”;

 Where B is a table on the regional server.

inter: do

 (i) Obtain the account details of the account no A1

from the current regional server

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

14

 (ii) Using the branch code of the destination branch A2, find

out the region to which the account belongs. Let the region

code be R2 and branch code isB2.

 (iii) Initiate a tuple_retrieval_request command to the main

server.

(iv) The main server fetches the current value of R2.B2 which

will be updated as:

UPDATE B set bal = bal- x where ac_no=”A1”;

UPDATE R2.B2 set bal = bal + x where ac_no=”A2”;

5. MATHEMATICAL MODEL

5.1 Existing system
In the existing system, the main server has to be accessed in

case of both inter-regional and intra-regional transactions. The

access overhead in the main server due to the transactions has

to be computed for both intra-regional and inter-regional

transactions. Note that there are no local servers in each

region to store the transaction data pertaining to that region.

Case 1: For intra-regional transactions

A single intra-regional transaction needs ‘m’ main server

accesses.

If there are tintra intra-regional transactions totally,

The total number of main server accesses = tintra*m --- [1]

Here an access denotes an atomic transaction involving data

in the access server.

Case 2: For inter-regional transactions

An inter-regional transaction involving ‘m’ branches from

different regions requires ‘m’ main server accesses.

If there are tinter inter-regional transactions totally,

The total number of main server accesses = tinter*m --- [2]

Summing up the intra-regional and inter-regional transactions

in the bank,

The access overhead of the main server will be = tintra*m +

tinter*m

 =m (tintra + tinter) ----------------------- [3]

5.2 Proposed system:
In the proposed system, there are local servers located at each

regional office. The data and the transactions of the region are

stored in the regional server.

The access overhead of the main server in case of both intra-

regional and inter-regional transactions is computed as

follows:

Case 1: For intra-regional transactions

The local server located at each region will have transactional

databases of each and every branch under its control. A copy

of the same data will be maintained in the main server.

However, banking software need not access the main server

for the processing of an intra-regional transaction.

So, the total number of main server accesses = 0 --------- [4]

Case 2: For inter-regional transactions

If an inter-regional transaction involves ‘m’ branches across

different regions, the data in the regional server of the branch

initiating the transaction is not sufficient. Further, it does not

have the knowledge of the data and the transactions stored in

other regional servers. The system does not allow local server

– local server communication. So the main server access is

mandatory in this scenario.

So for a single inter-regional transaction to be processed, ‘m’

tables in the main server have to be processed.

Hence if there are tinter inter-regional transactions totally,

The total number of main server accesses = tinter*m --- [5]

Summing up the intra-regional and inter-regional transactions

in the bank,

The access overhead of the main server will be = 0 + tinter*m

 = tinter * m -------------------------- [6]

5.3 Increase in efficiency:
The decrease in the number of access overhead values of the

main server in the existing system and the proposed system,

‘d’ is to be calculated.

 From equations [3] and [6],

 d= m (tintra + tinter) - tinter * m = tintra*m

% increase in

efficiency=
d

number of access overhead values of the main server in the existing system

 * 100

 = [(tintra*m) / m (tintra + tinter)] * 100

 = [tintra / (tintra + tinter)] * 100 ---[7]

In most of the cases, it is likely that m takes a value of 2.

In the following situations, the efficiency will be increased:

1. Whenever tintra is higher and tinter value is lower

2. Difference between Numerator and denominator in

equation [7] is as low as possible

6. EXPERIMENTAL SETUP AND

RESULTS
For various values of tintra and tinter, the number of main server

accesses is computed and hence the % reduction in transaction

overhead is calculated as shown in the table below:

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

15

Table 1: Test cases for main server accesses

TEST CASES FOR MAIN SERVER ACCESSES

Inter-regional

Transactions

Intra-regional

transactions

Main Server access

before localization

Main Server access

after localization

% reduction

75 25 100 75 25

65 35 100 65 35

55 45 100 55 45

45 55 100 45 55

35 65 100 35 65

25 75 100 25 75

15 85 100 15 85

Fig 3: Count of Main Server Access for various test case values

A graph is plotted based upon the above test cases and the

results obtained. The following points are evident from the

graph:

1. Irrespective of the presence or absence of regional

servers in the banking system, the banking software

deployed in each branch accesses the main server for the

inter–regional transactions.

2. The localization of server decreases the number of

accesses in the centralized server and thereby reduces the

transaction overhead in the main server.

3. Localization of servers renders the use of replication

server as optional, which in the case of existing system is

mandatory.

7. DISCUSSION AND SCOPE FOR

FUTURE WORK
The advantages of the proposed system over the existing

system include: Foremost, the overhead in accessing the main

server is reduced. Since only the inter-regional transactions

needs to access the main server, the number of transactions by

which the overhead gets reduced is equal to the number of

intra-regional transactions. Secondly, data integrity is not lost

as the databases are duly updated after every transaction.

Moreover, the backup of original data exists i.e., the main

server database is updated at the end of each day and that

constitutes the integration of all local databases thus

alleviating the need for a duplication server. In case of failure

of a local server, the previously updated database is obtained

from the main server and the transactions are executed again.

One point to note is that though the installation of the servers

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Main Server access
before localisation

Main Server access
after localization

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 3, January 2017

16

locally is expensive, it is a one-time investment. Here the

trade-off is between efficiency in network bandwidth

utilisation and the cost of server localization.

8. CONCLUSION
The existing banking system in India uses a centralized server

where the transactional data of all the branches are

maintained. The access overhead on the main server becomes

very high. Also whenever there are multiple transactions

accessing the data on the server simultaneously, the waiting

time of the transactions in the queue maintained at the server

also increases. So the idea of localisation of servers is

proposed where the banking software in the branch initiating

the transaction accesses the regional server for intra-regional

transactions. But for inter-regional transactions, the branch

accesses the regional server via the main server. So the server

trafficking is considerably reduced. The theoretical ideas

presented in this article have been applied to real-world data

modelling. But the trade-off between efficiency in network

bandwidth utilisation and cost of server localisation has to be

considered.

9. REFERENCES
[1] Srivastava, A., Shankar, U. and Tiwari, S.K., 2012.

Transaction Management in Homogenous Distributed

Real-Time Replicated Database Systems. International

Journal of Advanced Research in Computer Science and

Software Engineering, 2(6), pp.190-196.

[2] Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C.,

Furman, J.J., Ghemawat, S., Gubarev, A., Heiser, C.,

Hochschild, P. and Hsieh, W., 2013. Spanner: Google’s

globally distributed database. ACM Transactions on

Computer Systems (TOCS), 31(3), p.8.

[3] Elmasri, R., 2008. Fundamentals of database systems.

Pearson Education India.

[4] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D.,

Lorie, R. A., & Price, T. G. (1979, May). Access path

selection in a relational database management system. In

Proceedings of the 1979 ACM SIGMOD international

conference on Management of data (pp. 23-34). ACM.

[5] Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D.,

Eswaran, K. P., Gray, J. N., Griffiths, P. P., ... & Putzolu,

G. R. (1976). System R: relational approach to database

management. ACM Transactions on Database Systems

(TODS), 1(2), 97-137.

[6] Haag, S., Cummings, M., & Dawkins, J. (1998).

Management information systems. Multimedia systems,

279, 280-297.

[7] A book - Laudon, K. C., & Laudon, J. P. (2000).

Management information systems (Vol. 6). Upper Saddle

River, NJ: Prentice Hall.

[8] Moorman, C., & Miner, A. S. (1998). Organizational

improvisation and organizational memory. Academy of

management review, 23(4), 698-723.

[9] Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations

of databases (Vol. 8). Reading: Addison-Wesley.

[10] Lenzerini, M. (2002, June). Data integration: A

theoretical perspective. In Proceedings of the twenty-first

ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems (pp. 233-246). ACM.

[11] Özsu, M. T., & Valduriez, P. (2011). Principles of

distributed database systems. Springer Science &

Business Media.

[12] Sheth, A. P., & Larson, J. A. (1990). Federated database

systems for managing distributed, heterogeneous, and

autonomous databases. ACM Computing Surveys

(CSUR), 22(3), 183-236.

[13] Graefe, G. (1993). Query evaluation techniques for large

databases. ACM Computing Surveys (CSUR), 25(2), 73-

169.

[14] Shanmugasundaram, J., Tufte, K., Zhang, C., He, G.,

DeWitt, D. J., & Naughton, J. F. (1999, September).

Relational databases for querying XML documents:

Limitations and opportunities. In Proceedings of the 25th

International Conference on Very Large Data Bases (pp.

302-314). Morgan Kaufmann Publishers Inc.

[15] Kossmann, D. (2000). The state of the art in distributed

query processing. ACM Computing Surveys (CSUR),

32(4), 422-469

[16] Carey, M. J., Ceri, S., Bernstein, P., Dayal, U., Faloutsos,

C., Freytag, J. C., & Valduriez, P. (2006). Data-Centric

Systems and Applications.

[17] Wolfson, O., Jajodia, S., & Huang, Y. (1997). An

adaptive data replication algorithm. ACM Transactions

on Database Systems (TODS), 22(2), 255-314.

[18] Weikum, G., & Schek, H. J. (1992). Concepts and

applications of multilevel transactions and open nested

transactions.

[19] Valduriez, P. (1993). Parallel database systems: open

problems and new issues. Distributed and parallel

Databases, 1(2), 137-165.

[20] Clement, T. Y., & Meng, W. (1998). Principles of

database query processing for advanced applications.

[21] Taniar, D., Leung, C. H., Rahayu, W., & Goel, S. (2008).

High performance parallel database processing and grid

databases (Vol. 67). John Wiley & Sons.

IJCATM : www.ijcaonline.org

