
International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 5, January 2017

38

Total Quality Management for Software Development

Amal Alhassan
Department of Information

Systems,
Faculty of Computing and
Information Technology,

Jeddah, Kingdom of Saudi
Arabia

Weam Alzahrani
Department of Information

Systems,
Faculty of Computing and
Information Technology,

Jeddah, Kingdom of Saudi
Arabia

Azrilah AbdulAziz
Department of Information

Systems,
Faculty of Computing and
Information Technology,

Jeddah, Kingdom of Saudi
Arabia

ABSTRACT

In this paper, we discuss the concept and principles of

successful the total quality management (TQM)

implementation. The paper briefly explains the similarities

between software development process and product

development process. In addition, overview quality measures

during the software development life cycle (SDLC). Finally,

the paper describes the Deming's quality management method

and his fourteen points to implement TQM. The paper

discusses how to apply Deming's method in software

development process and provides recommendations to

ensuring success during TQM implementation.

Keywords

Quality; quality management; software; development process;

software development; total quality management;

1. INTRODUCTION
Quality is a continuous improvement process of products and

services with a focus on the customer’s satisfaction (Wang,

(1995)). The Customer’s satisfaction and quality are

interlinked, and these create value for the customer and help

him/her to make a decision whether the products or services

justify their cost (TQM for IT IS). A commitment from the

entire organization is required in ensuring that the products

and services have the quality they have been designed for.

This approach of quality throughout the entire organization

has evolved into what is referred to total quality management

(TQM). The Total Quality Management (TQM) is a set of

guiding principles that represent the basis of continuously

improving the organization. The TQM philosophy can be

applied to any development process, be it product

development or software development. For software

development, the quality is fundamental for both researchers

and practitioners. Therefore, the enhancing of software quality

is a paramount concern. There are various software

development approaches during software development

process; these approaches are also referred as “Software

Development Process Models,” like Waterfall model. Within

a given software development life cycle (SDLC), TQM can be

applied to increase measured quality. Deming’s fourteen

points of management approach provide guidelines for

implementing the TQM concept. This paper sheds light on

TQM concepts for software development.

2. LITERATURE REVIEW
The effectiveness of quality management depends on the

effectiveness with which performance and results are

measured (Kanji, (2002)). According to Bradley, T. J. (1991,

June). To achieve the excellence requires the software

development community to regularly look for new techniques,

and the concept of Total Quality Management (TQM) is

fundamental in this effort. Helio Yang, Y. (2001). Pointed out

that the functionality, reliability, integrity, maintainability,

enhance ability, usability, portability, reusability of the

software and the appearance of the user interface could affect

software quality. In addition, (Everhart, (1995, June)) state

that if TQM in organizations fails, it is because individual

organizations treat TQM as a fad, give it lip-service, and rely

on slogans to facilitate change rather than sustaining actions.

According to Everhart, R., La Salle, A. J., & Khorramshahgol,

R. (1995, June)., in software development process, Automated

tools (i.e., CASE systems) held great promise for improving

the quality of software systems but few have lived up to early

expectations. Wherefore, the need for measuring software

quality becomes prominent when projects are running over

budget and schedule ((Ashrafi, (1998)). (Parzinger, (1998))

;(Parzinger, (2000)) identified some metrics or measures as

critical factors in software quality management

According to, Kan, S. H., Basili, V. R., & Shapiro, L. N.

(1994). The quality of product obtains by satisfying

customer's needs. To improve software development, there are

stages must be followed. Many companies adopted TQM to

get customer satisfaction by studying their needs, gathering

requirements, and fulfillment. Moreover, Li, E. Y., Chen, H.

G., & Cheung, W. (2000). Describe the software quality

assurance techniques (SQA) in the development process, is

not enough to achieve the quality of software product

demanded by the customer. Apply TQM for software

development includes entire organization. Software

development teams provide an on-the-job training program to

workers to gain experience and knowledge. Nevertheless, the

communication gap between the developers and the users of

software products affect the real implementation of TQM.

However, Glowalla, P., & Sunyaev, A. (2015). Referred to the

failure of software and information systems programs today’s,

is a big concern for researchers. The quality of the product

and processes in development is important to a successful

software project. TQM provides a causal structure to enhance

continuous quality improvement for software development.

3. TOTAL QUALITY MANAGEMENT

3.1 Total Quality Management Definition
TQM is a management approach aimed at satisfying all the

customer requirements, needs and expectations using a

continuous improvement approach (Wang, (1995)).

According to Lee, M. C., & Chang, T. (2005). The word

"total" involves everyone and all activities in the company,

quality means conformance to meeting customer

requirements, and management means quality can and must

be managed. It focuses on continuously improvement of

ability to deliver high-quality products and services to

customers. It suggests that any improvement that is made in

the business, be it a better design of a component or a better

process of a system, will help to improve the “total quality” of

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 5, January 2017

39

the organization and the quality of the final product (Li,

(2000))TQM is the foundation for activities, which include:

• Commitment by senior management and all

employees

• Meeting customer requirements

• Reducing development cycle times

• Just in time/demand flow manufacturing

• Improvement teams

• Reducing product and service costs

• Systems to facilitate improvement

• Line management ownership

• Employee involvement and empowerment

• Recognition and celebration

• Challenging quantified goals and benchmarking

• Focus on processes / improvement plans

• Specific incorporation in strategic planning

The TQM principles can be grouped into the following

practical and common sense concepts (Wang, (1995)):

1. Customer focus (internal and external customers)

2. Leadership (management role changes to active

leadership)

3. Teamwork (multidisciplinary teams, include

involvement of customers and suppliers)

4. Continuous improvement process.

5. measurement (the improvement process is based on

quantitative and qualitative metrics) and

6. Benchmarking as a driver to improvement in a

competitive environment.

3.2 Meaning of Quality
According to Oxford American Dictionary defines quality as

"a degree or level of excellence". Therefore, quality is defined

and judged by the customers. The "official" definition of

quality by the American National Standards Institute (ANSI)

and the American Society for Quality Control (ASQC) is "the

totality of features and characteristics of a product or service

that bears on its ability to satisfy given needs." Obviously

quality can be defined in many ways, depending on who is

defining it and to what product or service it is related.

However, in this paper we attempt to gain a perspective on the

dimension of Software quality.

3.3 Software Quality
There are three aspects of software quality: functional quality,

structural quality, and process quality (Chappell, (2013)).

Functional quality means that the software performs the tasks

it is intended to do for its users correctly. Software testing

commonly focuses on functional quality.

The second aspect of software quality, structural quality,

means the code itself is well structured. Unlike functional

quality, structural quality is hard to test for.

The third aspect, process quality, it is the quality of the

development process significantly affects the value received

by users, development teams, and sponsors, and all three

groups have a stake in improving software quality. However,

the quality of software is estimated by many of its attributes

such as reliability, integrity, maintainability, enhance ability

(extensibility), usability, portability, and reusability

(Subramanian, (2007). According to Helio Yang, Y. (2001).,

the functionality of the software and the appearance of the

user interface could also affect software quality.

Consequently, these characteristics can affect user satisfaction

so it could be used as a measure of software quality.

4. TOTAL QUALITY MANAGEMENT

FOR SOFTWARE DEVELOPMENT
The TQM philosophy described above can be applied to any

development process, be it product development or software

development. Software development is a process in which the

developer precisely converts the requirement specifications

into software products.

4.1 Product Development Life Cycle

(PDLC)
Product development life cycle is a systematic and orderly

approach to managing product development activities. It

usually follows the problem-solving steps prescribed by

Herbert A. Simon: intelligence, design, choice, and review

(Joshi).

The development of a new product begins with the stage of

requirements analysis through collected the needs of

customers, analyzed, and evaluated. Based on the customers'

needs and the product specifications, design blueprints of the

product are developed during the design stage. According to

these blueprints, prototypes of the product are built and tested

to evaluate the quality of the prototypes. If a prototype fails

the test, the cause of failure is analyzed and identified. In case

of failure, the project of developing this new product might

have to be canceled (Joshi).

Figure 1 Product development life cycle (Li, (2000))

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 5, January 2017

40

Figure 2 Waterfall model approach (Joshi)

The dashed lines in Figure 1 illustrate the cause of failure is

sequentially fed back to the stage where the faulty process be.

Once the prototypes passed all the tests, the best one is

selected for either a pilot release (a limited scale release to

testing) or a full release. If the follow up report indicates that

product is successful, gives signal to send back to the full

release stage for continuing the production. In the otherwise,

the requirements analysis process is triggered once again and

the entire product development life cycle is repeated (Li,

(2000)).

4.2 Software Development Life Cycle

(SDLC)
A software development life cycle resembles the product

development life cycle. It usually incorporates the steps of

planning, analysis, design, implementation, and support. Each

step of software development is divided into separate process

phases as Shown Figure 2 "The Waterfall" approach

This approach discouraged iterations between phases in the

process (Joshi) (Li, (2000)).

A software development life cycle may follow a structured

development methodology (SDM), a rapid prototyping

methodology (RPM) or a spiral development and

enhancement method (SDEM). The SDM typically is applied

to a system with clear requirements definitions, well-

structured processing and reporting, and a long and stable life

expectancy (Li, (2000)).

Table 1 shows details of the SDM process. Under this

methodology, iterations between phases in the process are

strongly discouraged. It is therefore called a "waterfall"

approach. On the contrary, the RPM process allows and

encourages such iterations. The SDEM combines the RPM

process with the SDM process to shorten the development

time required by a project adopting the SDM process.

Table 1 Detailed Phases of Structured Development Methodology (SDM) (Li, (2000))

PDLC Phases SDM Phases Phase Objectives

Requirements Analysis

Service Request/Project

Viability Assessment

To initiate a project and conduct cost/benefit analysis as well as

feasibility study.

System Requirements

Definition

To define project scope, analyze the existing system, and define

information requirements, data attributes, and system objectives.

Design

System Design

Alternatives

To identify and evaluate alternate system designs and prepare initial

project schedules.

System External

Specifications

To specify data flow, user/system interface, system controls, and

manual supporting procedures.

System Internal

Specifications

To specify processing logic, file structure, module interfaces, and

system architecture.

Build Prototypes

Program Development To transform programs’ internal specifications into program code using

a computer language.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 5, January 2017

41

4.3 Quality Measures during the Software

Development Life Cycle (SDLC)

To Produce a quality software product; it is important to take

appropriate quality measures during the software development

life cycle. A software development life cycle is made up of

five stages, as discussed here:

i. Requirements analysis. Past experiences indicate that

about 60%-80% of system-development-related failures

are due to poor understanding of user requirements. In

this regard, during the software development process,

major software vendors normally use quality function

development (QFD). Software quality function

deployment (SQFD) is considered a very useful method

to focus on improving the quality of the software

development process by implementing appropriate

quality improvement approaches to the SDLC

requirements solicitation phase. In other words, SQFD is

a front-end requirements collection method that

quantifiably solicits and defines the customer's critical

requirements (Dhillon, (2013)).

ii. Systems Design this is the most critical stage of quality

software development because a defect in design is

hundreds of times more costly to rectify than a defect

during the production stage. More specifically, it means

that every dollar spent to increase design quality has at

least a hundred-fold payoff during the implementation

and operation stages. Concurrent engineering is a widely

used method to change systems design and also it is a

useful method of implementing total quality management

(Dhillon, (2007)) (Dhillon, (2013)).

iii. Systems development. Software Total quality

management (TOM) requires the proper integration of

quality into the total software development process. After

the establishment of an effective quality process into the

first stage and second stage of SDLC, the task of coding

becomes simple and straightforward. However, for

document inspections, the design and code inspections

approach can be used. Furthermore, control charts can be

utilized to track the metrics of the effectiveness of code

inspections (Dhillon, (2007)) (Dhillon, (2013)).

iv. Testing activities must be planned and managed properly

right from the start of software development. In addition

to designing testing activities with care at each stage of

the SDLC. Furthermore, a TQM based software

development process must have a set of testing

objectives. A six-step metric driven approach can fit

quite well with such testing objectives are as follows

(Dhillon, (2013)):

1. Establish structured test objectives.

2. Select appropriate functional methods to derive test-

case suites.

3. Run functional tests and assess the degree of

structured coverage achieved

4. Extend the test suites until the desired coverage is

achieved.

5. Calculate the test scores.

6. Validate testing by recording errors not found

during the testing process

v. Implementation and Maintenance: Most of the software

maintenance activities are reactive. More specifically,

programmers frequently zero in on the immediate

problem, fix it, and wait until the occurrence of the next

problem. As statistical process-control (SPC) can be used

to monitor the quality of software system maintenance, a

TQM-based system must adapt to the SPC process to

assure maintenance quality (Dhillon, (2007)).

According to Kaizen, I. M. (1986)., the goal is increasing

quality, By instilling TQM's continuous improvement strategy

in every aspect of the software development, an organization

never settles for the level that it has reached, no matter how

good the product is. Many software companies are starting to

implement such culture into their organizations and

empowering their employees with the ability to help make

improvements even at entry level positions.

5. DEMING MANAGEMENT METHOD

5.1 Describes TQM to Software

Development Process
One of Deming ideas was the Plan, Do, Check, Action, which

is often shortened to PDCA. We can use PDCA cycle as the

basic idea, for software processes development to gain

software quality [Figure 3].

Figure 3 Deming’s PDCA cycle

Test Prototypes

Testing To verify and validate the system being developed throughout the

system development life cycle.

Pilot/Full Release

Conversion To convert the data formats and procedures for the new system.

Installation To install the hardware and

Software for the new system, and cutover the system into production.

Follow Up

Post Implementation

Review/Maintenance

To monitor and maintain the quality and performance of the new

system.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 5, January 2017

42

Applying TQM to software development, a process can

control software quality and productivity, and select a suitable

tool that can strengthen the capability of software quality

policy, quality awareness, prevention, correction, and

feedback. Table 2 describes TQM to software development

process (Lee, (2005)).

In Table 2, there are six processes for software development.

System planning includes a process of definition, analysis,

specification, estimation, and review. The objective of

software requirements analysis is the process of discovery and

evaluation. Software design process is a process through

which requirements are translated into a representation of

software. Programming languages and coding translate a

detailed design representation of software into a programming

language realization. Software testing of design that test

systematically uncovers different classes of errors. Software

maintenance expands all variable resources maintaining the

old system. As shown in Table 2 several TQM development

activities involve Business System Planning (BSP), Quality

Function Deployment (QFD), and Critical Success Factors

(CSF). QFD is cross-functional so that all departments work

together to achieve the common goal of satisfying customer

demands. CSF is to developing the systems for planning and

control. BSC is a method for translating strategy into action

and has been successfully implemented in all kinds of

companies all around the world. With the integration of TQM

activities, the organization develops the software systems can

produce a quality assurance plan and successfully carry out all

the tasks involved (Lee, (2005)).

Table 2 Describes TQM to software development process (Lee, (2005))

Step
Item Objective Task

Tool

Plan

Software planning A process of definition, analysis,

specification, estimation and review

 Identify problems

 Feasibility study.

 Defined software

project.

 Brainstorm

 CSF

 BSP

 CSF

Do

Software Requirements

analysis

The requirements analysis task is

process of discovery and evaluation

 Information flow.

 Information

structure.

 Software

requirements

specification

 Techniques

 CASE tools

 Training

Software design

process

Software design is a process

through which requirements are

translated into a representation of

software

 Design process.

 Transform analysis.

 Transaction

analysis.

 Data structure

design.

Programming

languages and coding

Translate a detailed

Design representation of software

into a programming language

realization

 Program coding.

 Unit testing.

Check

Software testing To design tests that systematically

uncover different classes of errors

 Valid testing.

 Validation testing.

 Static

testing.

 Dynamic

testing.

Action

Software maintenance It is expanding all variable

resources maintaining old system

 Preventive

maintenance.

 Corrective

maintenance.

 Adaptive

maintenance

 Performan

ce award.

 Feedback.

5.2 Deming's Fourteen Points to Software

Development
Deming as a guru of TQM adopted fourteen points of

management approach that provides guidelines for

implementing the TQM concept. These fourteen points can

apply to managing software development processes.

1) Create constancy of purpose for improvement of

product and service. Software development process

traditionally ends when the completed system is handed over

to the support group and put into production mode. The

development team should be responsible for what they

delivered, not the support group. Any quality problem occurs

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 5, January 2017

43

During the production should be addressed to the

development team. Management must (Li, (2000)):

• Establish operational definitions for each step in the

software development process.

• Define what is meant by “service to the customer.”

• Define standards of development, maintenance, and

service for the next years.

• Define the internal and external customer.

• Develop ways to provide better systems and

services in less time, using fewer resources.

• Invest tools and techniques to gain quality for

software development.

2) Adopt the new philosophy of total quality. The Quality is

everyone business. The manager is part of the quality team,

not just the worker. In the TQM culture, the quality comes

first, and everyone from top to bottom. Must embrace the

TQM concept and communicate their support to all members

of the software development team (Li, (2000)).

3) Cease dependence on mass inspection to achieve

quality. Quality is built in, not added on. It’s better to

prevent the errors in code or process by experience and

knowledge only. Management must install programs to

improve software development processes continually.

Examples of such programs are job training and job incentive

programs (Li, (2000)).

4) End the practice of awarding business based on price

tag alone. Many software organizations today are outsourcing

their projects to subcontractors. It is important not to award a

software contract based on price tag alone. Quality is more

important than the difference in costs. Low quality in the

long-term will result in a high total cost. It is better to create a

long-term relationship with a few loyal and trustworthy

suppliers who can produce quality code (Li, (2000)).

5) Improve constantly the systems of production and

service. System development processes must continually be

improved by introducing new and working methodology,

paradigm, standards, practices, techniques, tools, policies, and

procedures. All these require the organization to keep tracking

the best practice constantly. Each staff member is required to

improve oneself by updating or even expanding one’s skill set

(Li, (2000)).

6) Institute training on the job. In the quality of software,

the development team must have appropriate experience and

knowledge. The on-the-job training program is an effective

means of obtaining such experience and knowledge. In the

broadest sense, all staff members must know what their jobs

entail and how to do their work. Management must assess the

skill level of an employee before he or she is assigned to a

software project. Different skill levels can play different roles

and assume different responsibilities in a project (Li, (2000)).

7) Institute leadership. Management must lead, not punish. It

is manager's job to help staff do a better job and create a better

system. Project managers must be trained in basic

interpersonal and analytical skills. They must have a solid

understanding of statistical process control. They should know

that in any software development team whose performance is

in statistical control, half of them would always be below

average. They should focus on those members whose

performance is out of statistical control (Li, (2000)).

.Drive out fear of job insecurity (8 Employees must feel

secure before they are willing to ask questions, make

suggestions, or even expose their weaknesses by asking for

help. The policy of long-term employment could easily drive

out the fear of job insecurity. Moreover, any staff whose

performance is out of statistical control should be offered help

in retraining or reassignment. However, if one consistently

rejects helps from one's coworkers or supervisors, a layoff

may be the last resort (Li, (2000)).

9) Break down barriers between departments. Software

development requires a collaborative effort between users and

IS staff. For as long as we can remember, communication gap

has been the major factor to many implementation failures.

Furthermore, today's business system projects would most

likely involve different functional areas and require expertise

in database processing, client-server computing, and network

installation, etc. Therefore, open communication among

functional areas and general knowledge across disciplines are

necessary for a successful system implementation. This

requires appropriate education and training for team members

to change their behavior and improve their knowledge (Li,

(2000)).

10) Eliminate the slogans, exhortations, or targets for the

workforce. Slogans do not build quality systems. MIS

management should not ask for an impossible goal or

schedule, or unreal level of productivity. They should post

their progress to responding to suggestions and in helping the

staff improve quality. Encourage the employees, put up their

signs or slogans (Li, (2000)).

11) Eliminate the numerical quotas, and work standards.

Quotas such as (metrics), goals (schedules), and work

standards (unit times) address numbers, are not quality. A

software development project that causes haste and non-

conformities accomplishes nothing and services no one. Let

the project members put up their goals. Managers should help

people do a better job by reducing rework, errors, and waste.

Everyone must work toward constant improvement, not the

achievement of some arbitrary, short-term goals (Li, (2000)).

12) Remove barriers to pride of workmanship. All people

are motivated. They would like to make quality products.

However, a good workmanship relies on good materials, good

tools, good methods, and right timing. Poor materials, broken

tools, ineffective methods, or belated schedule are all barriers

to pride of workmanship and should be eliminated. Let the

software development team put its group identity or team

members' names on the software product to take the credit (or

the responsibility) to their work (Li, (2000)).

13) Institute a vigorous program of education and

retraining for everyone. On-the-job training is effective, but

slow, for an employee to acquire a skill set for a particular

type of job. The new skill set is needed for the job in a short

period. Management must set aside enough budgets to execute

a generous education and retraining program for everyone to

improve oneself. Under the TQM culture, all employees must

know enough statistical method to understand the nature of

variation, to manage the special causes of variation. Support

for training employees to acquire necessary statistical method

should be institutionalized (Li, (2000)).

14) Put everyone on work to accomplish the

transformation. The TQM transformation is everyone's job.

Everyone has a customer. Ask yourself who is the person

receiving your work? All of us must identify our customers to

determine precisely what our jobs are. Everyone belongs to a

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 5, January 2017

44

team, to work on the Plan-Do-Check-Act cycle, to address

one or more specific issues, to find specific causes detected by

statistical signals. Moreover, we must put management to

work. Only management can change the culture and

environment that dominate any individual's performance.

Management must agree on their meaning and on the

direction to take. They must acknowledge their mistakes, if

any, and have the courage to change. They must explain to a

critical mass of people in the organization why change is

necessary and that the change will involve everybody.

Obviously, people must understand the Fourteen Points to

know what to do and how to do it (Li, (2000)).

6. CONCLUSION
Total quality management can be applied to any development

process to improvement quality. Once you implemented TQM

concept and methods, you are bound to continually improve

your system and processes. There are different tools and

quality measures to implement TQM improving software

development process. Finally, the paper discusses Deming's

Fourteen Points to software development and recommends

asking yourself constantly, "What and how can I do it better

next time?". In addition, take in consideration PDCA cycle

(plan-do-check-act) to finish the work of the wheel.

7. REFERENCES
[1] Kaizen, I. M. (1986). The Key to Japan's Competitive

Success. MacGraw-Hill, New York.

[2] Li, E. Y., Chen, H. G., & Cheung, W. (2000). Total

quality management in software development

process. The Journal of Quality Assurance

Institute, 14(1), 4-6.

[3] Kan, S. H., Basili, V. R., & Shapiro, L. N. (1994).

Software quality: an overview from the perspective of

total quality management. IBM Systems Journal, 33(1),

 .4-19

[4] Glowalla, P., & Sunyaev, A. (2015). Influential Factors

on IS Project Quality: A Total Quality Management

Perspective.

[5] Lee, M. C., & Chang, T. (2005). Applying TQM, CMM

and ISO 9001 in knowledge management for software

development process improvement. International

Journal of Services and Standards, 2(1), 101-115.

[6] Joshi, A. C. Software Development Process And The

Total Quality Management.

[7] Everhart, R., La Salle, A. J., & Khorramshahgol, R.

(1995, June). Applying TQ principles to the requirements

phase of system development. In Engineering

Management Conference, 1995. Global Engineering

Management: Emerging Trends in the Asia Pacific.,

Proceedings of 1995 IEEE Annual International(pp. 223-

228). IEEE.

[8] Al-Qahtani, N. D., Alshehri, S. S. A., & Aziz, A. A. The

impact of Total Quality Management on organizational

performance.

[9] Kanji, G. K., & e Sá, P. M. (2002). Kanji's business

scorecard. Total Quality Management, 13(1), 13-27.

[10] Bradley, T. J. (1991, June). The use of defect prevention

in achieving total quality management in the software

life cycle. In Communications, 1991. ICC'91, Conference

Record. IEEE International Conference on (pp. 356-

359). IEEE.

[11] Jammal, M., Khoja, S., & Aziz, A. A. (2015). Total

Quality Management Revival and Six

Sigma. International Journal of Computer

Applications, 119(8).

[12] Ashrafi, N. (1998). A decision making framework for

software total quality management. International Journal

of Technology Management, 16(4-6), 532-543.

[13] Parzinger, M. J., & Nath, R. (2000). A study of the

relationships between total quality management

implementation factors and software quality. Total

Quality Management, 11(3), 353-371.

[14] Powers, J. (1993). TQM in software development

organizations. Quality Progress, 26(7), 79-80.

[15] Parzinger, Monica J., and Ravinder Nath. "TQM

implementation factors for software development: an

empirical study." Software Quality Journal 7.3-4 (1998):

 .239-260

[16] Subramanian, G. H., Jiang, J. J., & Klein, G. (2007).

Software quality and IS project performance

improvements from software development process

maturity and IS implementation strategies. Journal of

Systems and Software, 80(4), 616-627.

[17] Helio Yang, Y. (2001). Software quality management

and ISO 9000 implementation. Industrial Management &

Data Systems, 101(7), 329-338.

[18] Omachonu, V., Johnson, W. C., & Onyeaso, G. (2008).

An empirical test of the drivers of overall customer

satisfaction: evidence from multivariate Granger

causality. Journal of Services Marketing, 22(6), 434-444.

[19] Chappell, D. (2013). The three aspects of software

quality: Functional, structural, and process.

[20] Dhillon, B. S. (2013). Computer system reliability:

Safety and usability. CRC Press.

[21] Dhillon, B. S. (2007). Software Quality. Applied

Reliability and Quality: Fundamentals, Methods and

Procedures, 151-164.

[22] Wang, R. Y., Storey, V. C., & Firth, C. P. (1995). A

framework for analysis of data quality research. IEEE

transactions on knowledge and data engineering, 7(4),

 .623-640

IJCATM : www.ijcaonline.org

