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ABSTRACT 

Stream cipher systems are considered desirable and secure if 

composed of Boolean functions (B.Fs) that are characterized 

by high resiliency. Resiliency is one of the main 

cryptographic security criteria for a given Boolean function. 

One of the classes of functions satisfying high resiliency with 

desirable cryptographic properties include the Plateaued 

functions whose design construction is of significant interest. 

The main known methods for these functions’ construction 

are based on the Walsh spectrum or the related truth table 

concatenations if not algebraic methods. This paper examines 

the Haar spectral transform as an alternative method for the 

design of such functions. As its contribution, the paper 

presents different methods utilizing the Haar spectral 

coefficients’ distribution for the design of highly resilient 

functions including Plateaued functions. The paper presents 

two methods of approaches namely; design of resilient BFs 

within the current variable domain without considering lower 

variable domains and using the lower variable domains to 

construct resilient functions within the higher variable 

domain. In the process, a Haar based construction method of 

 𝒌 + 𝟏 𝒕𝒉-order resilient functions from  𝒌𝒕𝒉-order resilient 

functions is derived and presented. The presentation shows 

the advantage of the Haar based method compared to the 

existing Walsh benchmark. The paper demonstrates that it is 

possible with the Haar based method of approach to see 

directly the local properties of a given 𝒏-variable BF with 

respect to its sub-functions from 𝒓-variable domains (𝒓 < 𝒏) 

without considering the spectra of the respective sub-

functions. On the other hand, the Haar local behavioral 

properties related to the transformed functions provide the 

possibility to enumerate different types of resilient functions 

including the Plateaued functions.   
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1. INTRODUCTION 
A strong stream cipher requires that the employed Boolean 

function within the system does not lose the system’s 

statistical information as well as being resistant to correlation 

attacks. For the system to reach such level of security, the 

designer of the system has to ensure that the BF deployed for 

the system satisfies the resiliency property [1,2,3,4,5]. The 

question of how such functions are constructed has been 

covered within literature and most of the existing works are 

either based on the Walsh transform or truth table 

concatenations if not algebraic approach. Majority of these 

approaches build up an n-variable resilient function by using 

lower variable resilient functions through mostly 

concatenation of such lower domain functions [1,2,3]. On the 

other hand, a lot is known on the characteristics of the 

Plateaued class of resilient functions and yet not much on 

their methods of construction [2]. 

This paper presents such construction of resilient functions 

based on the Haar spectral transform as an alternative method 

of approach. The Haar in this sense provides a better 

alternative view of such functions since it makes it possible to 

view both the current variable domain as well as the lower 

variable domain at the same time. This possibility is based on 

the fact that the Haar spectrum is characterized by the local 

behavioral view of the transformed function. The paper 

presents Haar based methods on which the resilient functions 

can be constructed. The methods are considered for different 

restrictions on the Haar spectral coefficients and their related 

zones. The derivations are based on absolute flat spectral 

zones as well as mixed zero and nonzero spectral coefficients 

within zones of the respective Haar spectrum. In the process, 

the paper examines the presented construction methods and 

derives their connection to Plateaued functions. Additionally, 

the Haar based construction method from lower order 

resiliency to higher order is presented. It is demonstrated in 

the presentation that, the Haar spectrum provides more ways 

on which the resilient functions can be considered and 

possibly opens a door for further enumeration of such 

functions. 

The paper is organized as follows. Section 2 presents an 

overview of Boolean functions including the spectral 

transform methods and some of the known results to be 

employed in the later sections. Also covered are some Haar 

extensions on the existing Walsh construction methods. In 

section 3, the various Haar based methods of constructing 

resilient functions are presented in four different sub-sections. 

Each of the sub-section reflects on different aspects of Haar 

spectral characterization and distribution of resilient 

functions. The section derives construction methods by 

looking at Haar spectral zones’ distribution and whether the 

zones are absolute flat or mixed between zero and nonzero 

coefficients. Included in the section as well are the Plateaued 

functions from Haar point of view and the construction of 

higher order resilient functions from lower order ones. 

Finally, section 4 presents the conclusion of the paper along 

with the related discussion on future work. 

2. OVERVIEW 

2.1 Boolean Functions 
The mapping of n input bits ( 𝑥1, … , 𝑥𝑛 ∈ 𝔽2

𝑛 ) to a single 

output bit (𝑓(𝑥) ∈ 𝔽2) defines what is called an n-variable 

Boolean function (BF) 𝑓 𝑥1, … , 𝑥𝑛 . Any given BF f in 𝐵𝑛  
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(𝐵𝑛  is the set of all BFs) can be represented uniquely in 

several ways including; the binary truth table, the polarity 

truth table, and the algebraic normal form [1, 2]. These are the 

main representations which are of interest to this work. 

The ordered tuple defined by f (𝑓 ∈ 𝔽2}): 𝑓 =  𝑓 𝑥 0  ,  

 𝑓 𝑥 1  ,… , 𝑓 𝑥 2
𝑛−1    and constitutes outputs of the 

function for all possible 2𝑛  input combinations, is referred to 

as the binary truth table of f. Note that  𝑥 0 =  0,… ,0 , 

𝑥 2
𝑛−1 =  1,… ,1 , and  𝑘 =  2𝑛−𝑖𝑥𝑖

𝑛
𝑖=1 , where the binary 

vector  𝑥 𝑘  represents the integer 𝑘 (0 ≤ 𝑘 ≤ 2𝑛 − 1). 

Sometimes instead of using the binary form of the function, it 

is more convenient to employ its corresponding real valued 

form which is referred to as the sign function. The sign 

function is denoted by 𝑓  and also called the polarity truth 

table (resp. sequence of f), takes values from the set {−1,1} 

and is defined as  𝑓  𝑥 = (−1)𝑓(𝑥) ≡ 1 − 2𝑓 𝑥 , ∀𝑥 ∈ 𝔽2
𝑛 . 

On the other hand, the representation of the BF f defined by 

 𝑓 = 𝑎0 ⊕𝑎1𝑥1 ⊕⋯⊕𝑎12𝑥1𝑥2 ⊕⋯⊕𝑎12⋯𝑛𝑥1𝑥2 ⋯𝑥𝑛  

(𝑎𝑖 , 𝑥𝑖 ∈ 𝔽2) is called the Algebraic Normal Form (ANF) 

where the expression of the function is uniquely given as a 

sum (XOR) of products (AND).  

The number of variables in the product terms of the ANF 

defines the degree of f (denoted as deg⁡(𝑓)) and the number 

of nonzero entries in a function’s truth table defines the 

weight (denoted as 𝑤𝑡(𝑓)) of the function. A function is 

considered as balanced if it contains equal number of zeros 

and ones in its truth table (equivalently  𝑤𝑡 𝑓 = 2𝑛−1). 

Affine and Linear Boolean Functions: An n-variable BF 

defined and denoted generally as  𝐿𝜔 = 𝜔1𝑥1 ⊕𝜔2𝑥2 ⊕
⋯⊕𝜔𝑛𝑥𝑛  is called a linear BF, which is selected by 𝜔 ∈ 𝔽2

𝑛 . 

Affine functions on the other hand, are complements of the 

linear functions and defined as 𝑓 = 𝑐 ⊕ 𝐿𝜔  where  𝑐 ∈ 𝔽2. 

Note that, all the linear functions are contained in the set of 

affine functions. For the purpose of the work presented here, 

the notation 𝐿𝑘𝜔  means a k-variable linear function. 

2.2 Spectral Transforms 
This section looks at the Haar and Walsh spectral transforms, 

which are the two main transforms considered suitable for 

representation of Boolean functions. The section also presents 

some of the existing results that will be employed in the 

subsequent sections of the paper. 

Throughout this paper the following notations and 

abbreviations will be assumed: WH, WP are the Walsh-

Hadamard and Walsh-Paley orderings respectively; 𝑦 𝑗  is the 

𝑗-th row (𝑌 function) in the respective transform matrix; 𝑟 0𝑠  is 

a row-vector whose elements are all ones (1  ) with size as 

1 × 2𝑠;  𝑟 1𝑠  is a balanced row-vector whose first half elements 

are all ones and the second half elements are all negative-ones 

with size 1 × 2𝑠; 

Walsh-Hadamard Transform (WHT) of a function 𝑓  on 

𝔽2
𝑛  is denoted by 𝐹 𝑊𝐻  and given by [1, 2]:  

𝐹 𝑊𝐻(𝑢) =   −1 𝑓 𝑥 ⊕𝑥∙𝑢
𝑥,𝑢∈𝔽2

𝑛                                 (1) 

The Walsh-Paley Matrices ( 𝑊𝑃𝑛  ): These matrices are just 

Walsh transform matrices in Paley ordering and are given by 

[7,8]  (∀ 𝑖 ∈  0, 2𝑛−1 ) 

 𝑊𝑃𝑛  =    
1    1
1 −1

 ⊗ 𝑟𝑝     𝑖𝑛−1
   And    𝑊𝑃0 =  1              (2) 

Where, ⊗ is the Kronecker product and 𝑟𝑝     𝑖𝑛−1
′𝑠  are the rows 

of the previous lower order matrix ( 𝑊𝑃𝑛−1 ). Consequently, 

the rows in the interval  2𝑙 , 2𝑙+1  (in  𝑛 − 1 𝑡𝑕 -order) will 

produce the rows in the interval  2𝑙+1, 2𝑙+2  (in the  𝑛 𝑡𝑕 -

order). Note that the rows  2𝑙 , 2𝑙+1  defines the sub-matrices 

of the  𝑊𝑃𝑛  . 

Haar Functions: The set of Haar functions 𝐻𝑙
𝑞
 (resp.  𝐻𝑗 ) are 

defined as un-normalized over the input interval of [0, 2𝑛) and 

taking values of 0 and ±1. They form a complete set of 

orthogonal rectangular basis functions [5,6,10] and their 

definition is given as follows: 

 𝐻0
(0)

= 𝐻0 𝑥 = 1, ∀𝑥 ∈  0, 2𝑛  

𝐻𝑗  𝑥 =  

1, 𝑢0 ∙ 2𝑛−𝑙−1 ≤ 𝑥 < 𝑢1 ∙ 2𝑛−𝑙−1

−1, 𝑢1 ∙ 2𝑛−𝑙−1 ≤ 𝑥 < 𝑢2 ∙ 2𝑛−𝑙−1

0, 𝑒𝑙𝑠𝑒 𝑖𝑛 [0, 2𝑛)

                    (3) 

Where 𝑢𝑖 = 2𝑞 + 𝑖; l and q are degree and order of the Haar 

functions respectively. With  𝑗 = 2𝑙 + 𝑞 and for each value 

of  𝑙 = 0, 1, … , 𝑛 − 1, the orders are  𝑞 = 0, 1, … , 2𝑙 − 1. The 

Haar spectral zones are defined by the respective degrees 

locally. 

Haar Transform: the Haar transform (𝐹 𝐻) of 𝑓  is defined by 

[5,6,10]: 

𝐹 𝐻(𝑗)   =  𝐻𝑙
𝑞

(𝑥) ∙ 𝑓 (𝑥)𝑥=2𝑛−1
𝑥=0 ≡  𝐻𝑗 ∙ 𝑓 (𝑥)𝑥                 (4) 

An important alternative and equivalent definition of the Haar 

functions was given in [5] and further utilized in [13] to 

define the Haar spectrum as: 

𝐹 𝐻𝑙
𝑞
 𝑥 =   −1 𝑓 𝑥  ⊕ 𝑥𝑙+1

𝑥∈𝑆𝑞
𝑙                               (5) 

Where, 𝑆𝑞
𝑙 =   𝑥 𝑥 ∈  𝑞 ∙ 2𝑛−𝑙 ,  𝑞 + 1 ∙ 2𝑛−𝑙   is the 

restriction of 𝑥 to the respective sub-interval/subset defined by 

the corresponding degree and order [13]. It is very important 

to note that, every Haar spectral coefficient is a correlation 

between the transformed B.F f and the sub-linear 

function  𝑟 1𝑛−𝑙 . The correlation is over dyadic sub-intervals of 

the BF. 

2.3 Known Results and Some Extensions 
Resiliency [1,2]: An n-variable Boolean function 𝑓  is resilient 

of order k if and only if its Walsh (𝐹 𝑊𝐻) and Haar spectra 

satisfies the conditions given by (6) [1,2, 4,5,11-15] and (7) 

[13] respectively 

⇒  𝐹 𝑊𝐻 𝜔 =   −1 𝑓 𝑥  ⊕ 𝑥∙𝜔
𝑥∈𝑉𝑛 = 0,                             (6) 

       ∀ 𝜔 ∋ 1 ≤ 𝑤𝑡 𝜔 ≤ 𝑘  ∧   𝐹 𝑊𝐻 0 = 0     

⇒   𝐹 𝐻
𝑙  𝑞 𝑞,𝜔 ∈ 𝔽2

𝑙 ∙  −1 𝜔∙𝑞 = 0,                              (7) 

       ∀𝑞 ∋ 1 < 𝑤𝑡 𝑞 ≤ 𝑘 − 1  ∧   𝐹 𝐻 0 = 0 

Note that, a function that is resilient of order k is indeed a 

balanced correlation-immune function of the same order.  It 

was also stressed out in [13] that the Haar spectrum of a 

nonlinear resilient function should satisfy the following 

condition given by (8). The condition ensures that the 

transformed function does not have maximum correlation 

with a linear or affine function [13]. 

  𝐹 𝐻𝑙
𝑞
 𝑞 ≠ 2𝑛 , ∀𝑙 ∈  0, 𝑛 − 1                                 (8) 

The same representations and derivations given in [13] can be 

used to extend the following theorem (see Theorem 1) which 

was presented in [1]. The theorem deals with the 

concatenation (based on (9)) of two 𝑘-𝑡𝑕 order resilient 
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functions to form a  𝑘 + 1 -𝑡𝑕 order resilient function. The 

extension is simply on the second condition of the theorem 

where the Haar spectral coefficients can be used in place of 

the Walsh coefficients as according to (10). 

𝑓 𝑥, 𝑥𝑛+1 = 𝑥𝑛+1𝑓1 𝑥 ⊕ 𝑥 𝑛+1𝑓2 𝑥                                 (9)  

Theorem 1 [1]: Given that 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑛 , and suppose 

that 𝑓1,  𝑓2 and  𝑓 are related by equation (9) where the first 

two functions are n-variable functions while the third one (𝑓) 

is 𝑛 + 1-variable function. Then, for 𝑘 < 𝑛 − 1,  𝑓  is  𝑘 +
1 -resilient if and only if the following two conditions hold 

i. The two functions 𝑓1 𝑎𝑛𝑑 𝑓2 are  𝑘-resilient 

ii. ∀ 𝑣 ∈ 𝔽2
𝑛  ∋ 𝑤𝑡 𝑣 = 𝑘 + 1 then the Walsh transform 

satisfies 𝐹1𝑊𝐻
 𝑣 + 𝐹2𝑊𝐻

 𝑣 = 0 

The condition ii of the theorem in Haar representation is then 

given simply as according to the following equation 

 𝐹 1𝐻
𝑙
 𝑞 𝑞,𝑣 ∈ 𝔽2

𝑙 ∙  −1 𝑣∙𝑞  +   𝐹 2𝐻
𝑙
 𝑞 𝑞,𝑣 ∈ 𝔽2

𝑙 ∙  −1 𝑣∙𝑞 = 0 ,

∀ 𝑞 ∈ 𝔽2
𝑙  ∋ 𝑤𝑡 𝑞 = 𝑘                 (10) 

Additionally, the theorem gives the condition relating the 

degrees of the involved functions. If all the functions’ degrees 

are equal, then f would have the maximum degree of n+1-

(k+2) if and only if the other two source functions have their 

max degree of n-(k+1) [1]. 

The Haar transform of a given linear BF is defined by [11, 

13]: 

 𝐿 𝐻 𝑥 = 2𝑛−𝑙 ∙  
𝐿𝑙𝜔 𝑞 , 𝜔, 𝑞 ∈ 𝔽2

𝑙 , 𝑥 = 2𝑙 + 𝑞
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

               (11) 

The Haar-Sum-Vector (HSV) [13]: let the sum of Haar 

spectral coefficients over the zone defined by 𝑙 (𝑙 =

0,1, … , 𝑛 − 1) be given by  𝑆𝐹 𝐻 𝑙 =  𝐹 𝐻(𝑥)2𝑙+1−1
𝑥=2𝑙 , then the 

HSV denoted by 𝑆𝐹 𝐻
         is a 1 × (𝑛 + 1) vector containing all 

the zones’ spectral sums including the Haar global spectral 

coefficient. In this sense the HSV is defined as: 

 𝑆𝐹 𝐻
         𝑢 =  𝐹 𝐻 0 , 𝑆𝐹 𝐻 0 , 𝑆𝐹 𝐻 1 , 𝑆𝐹 𝐻 2 , … , 𝑆𝐹 𝐻 𝑛 − 1     
                                 (12) 

The following section explores the Haar based construction of 

resilient functions 

3. HAAR BASED CONSTRUCTION OF 

RESILIENT FUNCTIONS 
This section derives different construction methods for 

resilient functions based on their Haar spectral 

characterization. Each of the following section considers 

various specific methods of approach. 

3.1 The Last Haar Spectral Zone and the 

Absolute Nonzero Flat Spectrum 
This section considers the last zone of the Haar spectrum for a 

given arbitrary function. But before proceeding, it is 

significant to introduce the following notions relating to any 

given BF.  

Let a given n-variable BF 𝑓 constitute a dyadic (𝑖 = 2𝑡 , 𝑡 ≥ 1) 

concatenation of sub-functions 𝑓 𝑖  and defined as  𝑓 =
 𝑓 0    𝑓 1  … 𝑓 2𝑡−1 , then it is obvious that the lowest 

number of sub-functions is when 𝑡 = 1 giving two sub-

functions as 𝑓 0  and  𝑓 1 . On the other hand, the highest 

number of sub-functions is when 𝑡 = 𝑛 − 1 giving a total of 

2𝑛−1 sub-functions. The interest of this section is therefore 

when  𝑡 = 𝑛 − 1 and in this sense the sub-functions are 

defined either by 𝑟 11
 or  𝑟 01

 as given by the equation (13). The 

following example (Example 1) demonstrates this for a three 

variable case: 

𝑓 𝑖 = ±𝑟 11
= ± 1,−1 𝑜𝑟 𝑓 𝑖 = ±𝑟 01

= ± 1,1        (13) 

Example 1: Consider the linear function 

𝐿 =  1, −1,1,−1,−1,1, −1,1  and the arbitrary function 𝑓 =
 1,1,1, −1, −1,1, −1,−1 . The linear function can be written 

as a concatenation of 𝑟 11
 as  𝐿 =     𝑟 11

 𝑟 11
 − 𝑟 11

 − 𝑟 11
 ≡

[𝑟 11
, 𝑟 11

, −𝑟 11
, −𝑟 11

]. On the other hand, the second function is 

given by  𝑓 =     𝑟 01
 𝑟 11

 − 𝑟 11
 − 𝑟 01

 ≡ [𝑟 01
, 𝑟 11

, −𝑟 11
, −𝑟 01

]. 

The functions’ respective Haar transforms are given in the 

following table (see Table 1 below) including the distribution 

for the linear function defined by (11): 

Table 1. Spectra for Example 1 

 

It is clear from the table that, 𝐿2 represent the distribution of 

the sub-functions  𝑟 11
 (when 2 is factored out) as 

concatenation forming up the original linear function. This 

point to the most important fact that whenever a given 

arbitrary BF constitutes a concatenation defined by the 

distribution of only ±𝑟 11
as sub-functions, then all the other 

spectral zones (𝑙 ≠ 𝑛 − 1) will contain only zero spectral 

coefficients. This key idea is summarized in the following 

proposition for the conditions on the Haar spectral 

coefficients’ distribution of a given resilient function. 

Proposition 1: let 𝑓  be an n-variable Boolean function with 

polarity representation given by 𝑓 , and the Haar spectrum of 

its polarity form as  𝐹 𝐻 . If the Haar spectrum of the function 

satisfies the following conditions, 

1. The corresponding HSV has only zero elements: 

 𝑆𝐹 𝐻
         𝑢 = 0, ∀𝑢 ∈  0, 𝑛 + 1  

2. The nonzero Haar spectral coefficients are restricted 

within the last zone of the spectrum (𝑙 = 𝑛 − 1) with 

the following balanced distribution: 

 𝐹 𝐻 𝑥 =  
±2, 2𝑛−1 ≤ 𝑥 < 2𝑛

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
     

3. The spectral coefficients’ distribution is nonlinear (does 

not satisfy the   𝐿𝜔
𝑛−1  distribution) 

4. The sum over the absolute spectral coefficients is given 

by     𝐹 𝐻 𝑥  𝑥 = 2 ∙ 2𝑛−1 = 2𝑛  

Then, the function 𝑓 is a balanced nonlinear resilient 

function 

Proof: The proof of the proposition follows directly from the 

definition of resiliency. Assuming the conditions of the 

proposition have been satisfied, then the proof requires to 

show that the function is balanced and correlation immune. 

Using the Haar definition, the function is already balanced 

since the initial spectral coefficient is (𝐹 𝐻 0 = 0) zero by the 

conditions 1 and 2 of the proposition. For the correlation 

𝑥 𝑓 (𝑥) 𝐹 𝐻(𝑥) 𝐿 (𝑥) 𝐿 𝐻(𝑥) 𝐿2
𝜔 𝑞  

0  1  0  1   0  

1  1  4 -1   0  

2  1  2  1   0  

3 -1  2 -1   0  

4 -1  0 -1   2 + 
5  1  2  1   2 + 
6 -1 -2 -1  -2 − 
7 -1  0 -1  -2 + 
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immunity, all that needs to be done is to show that the sum of 

the spectral coefficients for each zone is zero. Now based on 

the elements of the HSV, all the sums are zeroes meaning that 

the transformed function is correlation immune by the Haar 

definition. At this point, the remaining question is whether the 

function is linear or not. Since the spectral distribution of the 

coefficients does not satisfy the  𝐿𝜔
𝑛−1 distribution (conditions 

3 and 4) then, the transformed function is not linear. Given 

that the function is not linear then the sum (𝑠𝑢𝑚𝑛−1) over the 

nonzero spectral coefficients is given by, 

 𝑠𝑢𝑚𝑛−1 =   𝐹 𝐻 𝑥 
2𝑛−1
𝑥=2𝑛−1 ≡   𝐹 𝐻𝑛−1

𝑞
 𝑥 𝑞  

               ≡ 2  𝐹 𝐻 𝑥 𝑥∋(𝐹 𝐻=1) +  𝐹 𝐻 𝑥 𝑥∋(𝐹 𝐻=−1)   

               ≡ 2 ∙ 0 ≡ 0 

Whereby, the balanced distribution (condition 2) guarantees 

the sum to be zero. Since the sum is zero and again by the 

definition of resiliency together with conditions 3 and 4, then f 

is a balanced nonlinear resilient function.     □ 

The proposition 1 gives a method of approach to designing a 

balanced nonlinear resilient function by only ensuring 

conditions 2 and 3 of the proposition are satisfied. Once these 

two conditions are satisfied, the rest of the conditions follows 

suit. The question then is how to ensure that condition 3 is 

satisfied and the best way to do this is by exploiting on the 

linear distribution given by 𝐿𝜔
𝑛−1. The process then involves 

manipulating the linear distribution to transform it to 

nonlinear distribution. The simplest way of achieving this is 

by expressing the 𝐿𝜔
𝑛−1 as a concatenation of lower variable 

distributions for instance 𝐿𝜔
𝑛−1 =   𝐿𝜔

𝑛−2 𝐿𝜔
𝑛−2 . The summary 

of the steps involved in this construction algorithm (based on 

proposition 1) is given in the following figure (see Figure 1). 

 

Figure 1: Algorithm 1 – Proposition 1 Based Construction 

Algorithm for Resilient Functions 

It should be noted that, the first step of the algorithm involves 

picking up the sub-matrices defined by degree greater than 

one. These sub-matrices contain rows whose distribution 

follows the  𝐿𝜔
𝑛−1 linear distribution, and half of such rows 

contain elements of the balanced  𝐿𝜔
𝑛−2 linear distribution. The 

unique  𝐿𝜔
𝑛−2 linear distributions from the two choices of rows 

within the different sub-matrices (step 2 of the algorithm), are 

then employed for the construction of the resilient function 

(steps 3 and 4 of the algorithm). The last step outputs the 

constructed resilient function. The following example 

demonstrates the steps of the construction algorithm. 

Example 2: Consider a 4-variable case, the Walsh-Paley 

matrix of order 3 and its sub-matrices are given in the Figure 

2 below. In this case, there are only two unique sub-matrices 

(from the figure) that constitute 𝐿𝜔
3  linear distributions which 

can be split into balanced 𝐿𝜔
2  distributions (step 2 of 

Algorithm 1). Included in the figure as well, are the possible 

combinations (red and green colors) or concatenations of 

unique  𝐿𝜔
𝑛−2 linear distributions (excluding their 

complements). Any such concatenation defines the step 3 

process in the construction algorithm based on proposition 1. 

Then choosing the concatenation,   +  +  − − +  − + −  for 

step 3 of the Algorithm 1, gives the following spectral 

coefficients for the last zone of the Haar 

spectrum:   2, 2, −2, −2,2,−2,2, −2 . The resulting 

distribution is then utilized over the sub-functions  𝑟 11 to 

construct the respective resilient function as  𝑓 =

 𝑟 11, 𝑟 11, −𝑟 11, −𝑟 11, 𝑟 11, −𝑟 11, 𝑟 11 , −𝑟 11 =  1,−1,1,−1,−1,  
 1, −1,1,1, −1, −1,1,1, −1, −1,1 . It can easily be verified that 

the Haar spectrum of the resulting function consist of nonzero 

spectral coefficients only within the last spectral zone and that 

the function is indeed resilient. This Ends the Example 

 

Figure 2: Walsh-Paley Matrix of Order 3 with its two 

Unique Sub-Matrices and their Possible Unique 

Combinations 

Remark: An important point to make is that, the 

concatenation of the unique  𝐿𝜔
𝑛−2 linear distributions under 

context can be viewed directly from the current variable 

domain of n. In other words, this process coincides with the 

construction of such resilient functions from the existing 

literature where the consideration is truth table concatenation 

of lower variable linear functions [1,2,14]. The Haar method 

gives this view from the current domain due to its local 

behavioral properties related to the transformed BF. 

The following sub-section examines the mixture of zeroes and 

nonzero spectral coefficients within different zones. 

3.2 Zones with Mixed Zeroes and Nonzero 

Spectral Coefficients 
The consideration in this section is not the same as the 

previous construction (section 3.1) of resilient functions but 

rather on the last zone of the spectrum being not absolute flat. 

In this sense, the focus then shifts to the other zones of the 

spectrum defined by degrees 0 < 𝑙 < 𝑛 − 1. Specifically, 

when these zones are absolute flat taking values half the 

number of nonzero values of the corresponding transforming 

Haar functions. The following proposition summarizes the 

conditions on the Haar spectral coefficients within the zones 

for a given BF to be resilient. 

Proposition 2 – Haar Based Resilient Construction: 

let 𝑓  be an n-variable Boolean function with polarity 

representation given by 𝑓 , and the Haar spectrum of its 

polarity form as  𝐹 𝐻 . If the Haar spectrum of the function 

satisfies the following conditions, 

1. The spectral coefficients for 𝑥 < 2𝑛−1 satisfy the 

following conditions 

Algorithm 1: Construction Algorithm for Resilient Functions 

Input: Number of variables, 𝒏 

Output: Resilient function,  𝒇  

Steps: 

Step 1: Pick two unique sub-matrices of the Paley matrix of order 

𝒏 − 𝟏 

Step 2: Pick any two unique balanced 𝑳𝝎
𝒏−𝟐 distributions from the 

two sub-matrices. 

Step 3: Concatenate the two 𝑳𝝎
𝒏−𝟐 distributions to form the spectral 

coefficients for the last zone of the Haar spectrum. 

Step 4: Use the distribution for the sub-functions  𝒓  𝟏𝟏 to construct 

the respective resilient function, 𝒇   

Step 5: Output 𝒇  
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 𝐹 𝐻 𝑥 =  
0, 𝑥 = 0, 1

±2𝑛−𝑙−1, 𝑥 ∈  2𝑙 , 2𝑙+1 
 , ∀𝑙 ∈  1, 𝑛 − 1  

2. The flat spectral zones follow a balanced distribution 

that is linear in terms of the ± signs (2𝑛−𝑙−1 ∙ 𝐿𝜔
𝑙 ) 

  𝐹 𝐻 𝑥 
2𝑙+1−1
x=2𝑙 = 0, ∀𝑙 ∈  1, 𝑛 − 2  

3. The last zone’s spectral coefficients satisfy balanced  

distribution between zero and nonzero coefficients with 

  𝐹 𝐻 𝑥 𝑥 = 0, 𝑥 ∈  2𝑛−1, 2𝑛  

Then, the function 𝑓 is a balanced nonlinear resilient 

function 

Proof: The proof of the proposition follows the same idea as 

the previous proposition. The transformed function is 

balanced since the initial spectral coefficient is (𝐹 𝐻 0 = 0) 

zero by the condition 1 of the proposition. Similarly for the 

correlation immunity, all that needs to be done is to show that 

the sum of the spectral coefficients for each zone is zero. The 

initial zone (𝑙 = 0) and the last zone (𝑙 = 𝑛 − 1) both satisfy 

the Haar correlation definition as according to the conditions 

1 and 3 respectively of the proposition. The only thing left for 

consideration is the flat spectral zones; now condition 2 

guarantees that the zones satisfy the Haar correlation 

immunity property (defined by (7)). As all the spectral 

coefficients satisfy the Balanced and Correlation immunity 

conditions, the respective function f then is a balanced 

nonlinear resilient function.                                                     □ 

Example 3: Proposition 2 can help in constructing resilient 

functions with a distribution of more nonzero spectral 

coefficients over the Haar spectrum through different zones 

rather than within only one zone. The following table (see 

Table 2 below) gives example of functions created based on 

the proposition for 4-variable functions. Note that the 

different zones within the Haar spectra are color coded 

differently so as to clearly observe the related conditions. 

Table 2. 4-Var Resilient Functions Based on Proposition 2 

 

Remark: One key observation within the last spectral zones 

of these functions is that, there is a unique spectral 

coefficients’ distribution that holds when the zone is split into 

two sub-intervals. The two consecutive sub-intervals in this 

sense contain the same balanced distribution of the spectral 

coefficients. This behavior reflect the Haar based local 

properties of a given function and hence the balanced property 

locally for correlation immunity.  

The next section presents a review on Plateaued functions and 

how they are related here within the Haar spectral domain. 

3.3 Plateaued Functions 
The Plateaued functions [1,2,14] or three-valued functions 

[1,2,15,16] are considered as functions with desirable 

cryptographic properties and their Walsh spectral coefficients 

assume values of either 0 or ±2𝜆 . Looking back at 

Proposition 1 given in the previous section then it can be 

noted that the resulting resilient functions are in fact Plateaued 

functions in the sense that their corresponding Walsh spectra 

would contain only three values. The following proposition 

summarizes this relationship. 

First, it should be noted that the Haar based definition of 

resilient given in (7) is nothing other than the use of the Haar 

transform in place of the Walsh-Hadamard transform. That is, 

the left-hand-side (LHS) of (7) represents a specific Walsh-

spectral coefficient and this connection between the two 

transforms is through different zones [13].  

Proposition 3: The resilient function f based on Proposition 1 

is a Plateaued function. 

Proof: The proof follows the definition of a Plateaued 

function that its Walsh spectrum consists of either zero values 

or ±2𝜆 . The starting point is with all spectral coefficients 

defined by  𝑥 < 2𝑛−1 where the first two global coefficients 

𝐹 𝐻 0  and 𝐹 𝐻 1  (𝑙 = 0) are same as Walsh coefficients 

(𝐹 𝑊𝑃 0  and 𝐹 𝑊𝑃 1  resp.) which are both zeroes. Now for 

the other zones defined by 0 < 𝑙 < 𝑛 − 1, it can be clearly 

seen that their Walsh coefficients are all zeroes 

since   𝐹 𝐻
𝑙  𝑞 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2

𝑙 =  0 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2
𝑙 = 0. 

The only remaining zone is the last zone defined by  𝑙 = 𝑛 −
1 and whose Walsh coefficients are given by  

  𝐹 𝐻
𝑛−1 𝑞 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2

𝑛−1 =   ±2 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2
𝑛−1   

                                           = ±2 ∙   𝐿𝜔
𝑛−1 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2

𝑛−1   

 = ±2 ∙    𝐿𝜔
𝑛−2 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2

𝑛−2   

                            +   𝐿𝑣
𝑛−2 ∙  −1 𝑣∙𝑞𝑞,𝑣 ∈ 𝔽2

𝑛−2  = 0 𝑜𝑟 ±2𝑛−1 

The respective Walsh coefficient is zero if  𝜔, 𝑣 ≠ 𝑞, 

otherwise it is 2𝑛−1 when either 𝜔 = 𝑞 or  𝑣 = 𝑞 (both 𝜔 and 

𝑣 cannot be equal to  𝑞 at the same time). When one of them 

equals 𝑞 then the respective sum equals the length of the 

corresponding sub-linear function ( 𝐿𝜔
𝑛−2  𝑜𝑟  𝐿𝑣

𝑛−2 ) which 

is 2𝑛−2. When the length multiplied by the factored 

coefficient (±2 ∙ 2𝑛−2) then the resulting Walsh coefficient 

becomes ±2𝑛−1. Where the negative is incase  −1 𝜔∙𝑞  is a 

complement of 𝐿𝜔
𝑛−2 (similar for  −1 𝑣∙𝑞  and  𝐿𝑣

𝑛−2). Since 

the Walsh coefficients can take only one of the three 

values 0 𝑜𝑟 ± 2𝑛−1, the transformed function f is then a 

Plateaued function.                                                                  □ 

For the resilient functions generated by proposition 2 on the 

other hand, there should be an extra condition with regards to 

the last spectral coefficients for the resulting function to be a 

Plateaued function. The following proposition summarizes 

this condition. 

Proposition 4: A resilient function f generated based on 

proposition 2 can be a Plateaued function if its Haar spectrum 

satisfies the given 3 conditions (proposition 2’s) and the 

following holds: 

  𝐹 𝐻
𝑛−1 𝑞 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2

𝑛−1 = 0, ±2𝑛−1                        (14) 

𝑥 𝑓 1(𝑥) 𝑓 2(𝑥) 𝑓 3(𝑥) 𝐹 1𝐻(𝑥) 𝐹 2𝐻(𝑥) 𝐹 3𝐻(𝑥) 

0  1 -1  1  0  0  0 
1  1  1  1  0  0  0 
2  1  1  1  4  4  4 
3 -1  1 -1 -4 -4 -4 
4 -1 -1 -1  2 -2  2 
5 -1 -1  1 -2 -2  2 
6 -1  1 -1 -2  2 -2 
7  1 -1 -1  2  2 -2 
8 -1 -1 -1  0 -2  0 
9 -1  1 -1  2  0  2 

10  1 -1  1  0  0 -2 
11 -1 -1 -1 -2  2  0 
12  1  1 -1  0 -2  0 
13  1  1  1  2  0  2 
14 -1  1  1  0  0 -2 
15  1 -1  1 -2  2  0 
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Proof: The proof of the proposition is straight forward as the 

first two global coefficients are zeroes (condition 1 of 

proposition 2). For the flat spectral zones (1 < 𝑙 < 𝑛 − 1) it 

can be easily verified that the corresponding Walsh 

coefficients ( 𝐹 𝐻
𝑙  𝑞 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2

𝑙 ) can only take either 0 

or ±2𝑛−𝑙−1 ∙ 2𝑙 = ±2𝑛−1. This is true since the 2𝑛−𝑙−1 value 

can be factored out and the resulting spectral coefficients are 

linear (𝐿𝜔
𝑙 ) and whose Walsh transform is either 0 or  ±2𝑙  

depending on the linear distribution and by the Walsh 

definition of linear functions. The new condition introduced 

by the proposition ensures that the Walsh coefficients based 

on the last Haar spectral zone assume the same values 

(0 𝑜𝑟 ± 2𝑛−1) as the other Haar spectral zones.                      □ 

Remark: For Proposition 3, the resulting 𝜆 is equivalent to 

2
𝑛

2
+1

 for the case of 4-variable functions. The construction 

methods presented here (Propositions 1 and 2) can be used on 

their own for any given number of variables of at least four 

(for resilient functions). These methods can as well be used in 

conjunction with the existing methods such as the one given 

in [1,2,17], through combination of lower variable functions 

satisfying the resilient criterion. The Haar approach can be 

integrated with the Walsh and used as hybrid (Haar-Walsh) as 

well with better results [13]. 

3.4 Higher Order Resiliency from Lower 

Order Ones    
The following theorem generalizes the condition on which 

one may be able to use only one resilient function of order k 

in n-variables to obtain a function in n+1-variables that is 

resilient of order k+1. 

Theorem 2: Suppose that 𝑓  is a 𝑘 resilient sign function in 𝑛-

variables and suppose the following holds for some Haar 

spectrum 𝐺 𝐻  of an 𝑛 + 1-variable sign function  𝑔  

 𝐺 𝐻 𝑥 =  
0, 𝑥 < 2𝑛−1

2𝑓 , 2𝑛−1 ≤ 𝑥 < 2𝑛
                (15) 

Then,  𝑔  is resilient of order 𝑘 + 1 

Proof: The proof of this theorem follows directly from the 

Haar based definition of resilient function. Since the spectrum 

contains only zero values for higher spectral zones (𝑥 <
2𝑛−1), so the only thing left to do is just to see the last zone of 

the spectrum through the Haar definition of correlation given 

in (7) as follows 

  𝐺 𝐻
𝑛−1 𝑞 𝑞∈𝔽2

𝑛−1 ∙  −1 𝜔∙𝑞 =  𝑓  𝑞 𝑞∈𝔽2
𝑛−1 ∙  −1 𝜔∙𝑞  

                          =  𝑓  𝑞 𝑞∈𝔽2
𝑛−1 ∙  −1 𝜔∙𝑞  

           = 0, ∋ 0 ≤ 𝑤𝑡 𝑞 ≤ 𝑘       (𝑓  is a 𝑘 resilient)  

⇒    𝑔  is 𝑘 + 1-resilient (By Haar definition).               □ 

The Haar design algorithm based on Theorem 2 is given in the 

figure below (Figure 3). The algorithm can be used in this 

case for designing resilient functions satisfying higher order 

given lower order functions. What the algorithm does in the 

figure is simply ensuring that the function has the Haar 

spectral distribution that will satisfy resiliency. This is one of 

the main advantages of the Haar transform as the spectral 

coefficients behave locally and therefore can be used to 

influence the function directly by a designer to reach specific 

target goals. The following example demonstrates the 

algorithm. 

Example 4: Consider the 4-variable function 𝑓  given in the 

following table (Table 3) along with its WP spectrum and the 

Haar spectrum. It can clearly be seen the function is resilient 

of order 1 since the last zone of the Haar spectrum is balanced 

while the rest of the zones are zeroes, or by just looking at the 

WP spectrum then it can be seen that all coefficients with 

index weight equals one are zeroes. If this function is utilized 

based on Theorem 2, then the resulting function 𝑔  would be a 

5-variable function of order 2. The resulting function in this 

case is given as 𝑔 = 0x66996996 in Hexadecimal format 

whose Haar spectral coefficients follow the distribution given 

by the Theorem 2. End of Example 

 

Figure 3: Haar Design Algorithm for Generating Higher 

Order (k) Resilient from Lower Order (k-1) 

Table 3. A 4-Var Function from Example 4 and Its WP 

and Haar Spectra 

 

Note on the evaluation of the Haar-based methods of 

approach: It is clear from the remarks given in the previous 

sections that, the Haar alternative methods of approach make 

it possible to look at a given function in the current variable 

domain (𝑛) along with its related sub-functions from lower 

variable domains (𝑟 < 𝑛). This is done from the highest 

considered variable domain without leaving that domain. In 

effect, it is one of the Haar advantages that is not shared by 

the existing construction methods based on Walsh transform 

or truth table concatenation,  where a designer has to consider 

first the lower variable domains (𝑟 < 𝑛) or the related sub-

functions in order to build a higher variable function (𝑛-

variable function). In such cases, a function is designed by 

starting first with sub-functions and then utilizing them to 

construct a new one in higher variable domain [1,2,3,4,14,16]. 

On the other hand, the Haar based methods can be integrated 

well with the existing methods and give extra flexibility in 

𝑥 𝑓 (𝑥) 𝐹 𝑤𝑃 (𝑥) 𝐹 𝐻(𝑥) 

0  1  0  0 

1 -1  0  0 

2  1  0  0 

3 -1  0  0 

4 -1  0  0 

5  1  0  0 

6 -1  0  0 

7  1  0  0 

8  1  0  2 

9 -1  0  2 

10 -1  8 -2 

11  1  8 -2 

12 -1  0  2 

13  1  0 -2 

14  1  8 -2 

15 -1 -8  2 

Design Algorithm: Higher Order Resiliency 

Input: An 𝒏-variables 𝒌-resilient BF in polarity form, 𝒇  

Output: An  𝒏 + 𝟏 -variables  𝒌 + 𝟏 -resilient BF in polarity form, 𝒈  

Steps: 

Step 1: Compute 𝒕𝒆𝒎𝒑𝒗𝒆𝒄 = 𝟐 ∗ 𝒇  

Step 2: Initialize parameter:  𝒄𝒐𝒖𝒏𝒕 = 𝟎, 𝑽𝒐𝒖𝒕 𝒙 = 𝟎 ∀𝒙 ∈  𝟎, 𝟐𝒏+𝟏   
Step 3: Loop: while 𝒄𝒐𝒖𝒏𝒕 < 𝟐𝒏 do  

Step 3.1: 𝒊𝒏𝒅𝒍𝒆𝒇𝒕 = 𝟐 ∗ 𝒄𝒐𝒖𝒏𝒕;    𝒊𝒏𝒅𝒓𝒊𝒈𝒉𝒕 = 𝟐 ∗ 𝒄𝒐𝒖𝒏𝒕 + 𝟏; 

Step 3.2: If  𝒕𝒆𝒎𝒑𝒗𝒆𝒄 𝒄𝒐𝒖𝒏𝒕 = −𝟐  then go to Step 3.3 else go 

to Step 3.4 

Step 3.3: 𝑽𝒐𝒖𝒕 𝒊𝒏𝒅𝒍𝒆𝒇𝒕, 𝒊𝒏𝒅𝒓𝒊𝒈𝒉𝒕 =  −𝟏, 𝟏 ; then go to Step 3.5 

Step 3.4: 𝑽𝒐𝒖𝒕 𝒊𝒏𝒅𝒍𝒆𝒇𝒕, 𝒊𝒏𝒅𝒓𝒊𝒈𝒉𝒕 =  𝟏,−𝟏 ; then go to Step 3.5 

Step 3.5: 𝒄𝒐𝒖𝒏𝒕 = 𝒄𝒐𝒖𝒏𝒕 + 𝟏 

Step 4: Output 𝒈 = 𝑽𝒐𝒖𝒕 
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terms of design constructions. This is in fact true as the Haar 

methods can provide added alternative from the perspective of 

a function’s local properties or by combination with the 

Walsh as hybrid methods of approach [13].    

The following section presents the conclusion of the paper. 

4. CONCLUSION 
Stream ciphers are considered desirable and secure if 

composed of Boolean functions (B.Fs) that are characterized 

by high resiliency. Resiliency is one of the main 

cryptographic security criteria for a given Boolean function. 

One of the classes of functions satisfying high resiliency with 

desirable cryptographic properties are the Plateaued functions 

and whose design construction is of significant interest. This 

paper has examined the Haar spectral transform as an 

alternative method for the design of such functions. The paper 

presented different methods utilizing the Haar spectral 

coefficients’ distribution for the design of highly resilient 

functions including Plateaued functions. The paper presented 

two methods of approaches namely; design of resilient BFs 

within the current variable domain without considering lower 

variable domains and using the lower variable domains to 

construct resilient functions within higher variable domain. In 

the process, a Haar based construction method of  𝑘 + 1 𝑡𝑕 -

order resilient functions from  𝑘𝑡𝑕 -order resilient functions is 

derived and presented as well.  

The Haar based construction methods for resilient functions 

have been considered for different restrictions on the Haar 

spectral coefficients and their related zones. The derivations 

were based on absolute flat spectral zones as well as mixed 

zero and nonzero spectral coefficients within zones of the 

respective Haar spectrum. In the process, the paper examined 

the presented construction methods and derived their 

connection to Plateaued functions. In addition, the Haar based 

construction method from lower order resiliency to higher 

order has been presented. It is demonstrated in the 

presentation that, the Haar spectrum provides more ways on 

which the resilient functions can be considered and possibly 

opens a door for further enumeration of such functions. The 

Haar flexibility and its local properties provide an advantage 

over the Walsh based methods since the Walsh is global in 

nature and it is difficult to view lower variable functions’ 

properties while in higher variable domains.  The paper 

demonstrates that it is possible with the Haar based method of 

approach to see directly the local properties of a given 𝑛-

variable BF with respect to its sub-functions from 𝑟-variable 

domains (𝑟 < 𝑛) without considering the spectra of the 

respective sub-functions. On the other hand, the Haar local 

behaviors related to the transformed functions provide the 

possibility to enumerate different types of resilient functions 

including the Plateaued functions.  

The work presented here dealt mainly with Haar spectral 

coefficients (𝐹 𝐻
𝑙 ) having a distribution over absolute values of 

2𝑛−𝑙−1 (1 < 𝑙 < 𝑛 − 1). It is highly recommended for further 

examination on Haar spectral coefficients having a balanced 

nonzero distribution over values that are less than 2𝑛−𝑙−1 

for  1 < 𝑙 < 𝑛 − 1.  Also of interest is the distribution of zero 

and nonzero values within the same spectral zones such that, 

their Walsh linear combination is either less than 2𝑛−𝑙−1 

( 𝐹 𝐻
𝑙  𝑞 ∙  −1 𝜔∙𝑞𝑞,𝜔 ∈ 𝔽2

𝑙 < 2𝑛−𝑙−1) or zero. This will make 

it possible to minimize the magnitude of the corresponding 

Walsh spectral coefficients. Consequently, it may provide 

further classification and enumeration of the classes of highly 

nonlinear resilient and/or Plateaued functions. 
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