
International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

27

Design and Implementation of Random Word Generator

using Backtracking Algorithm for Gameplay in Ambrosia

Game

Imam Kuswardayan
Department of Informatics,

Information and Technology
Faculty, ITS Surabaya

Ridho Rahman H.
Department of Informatics

Information and Technology
Faculty, ITS Surabaya

Nanik Suciati
Department of Informatics

Information and Technology
Faculty, ITS Surabaya

ABSTRACT

Playing games is one way to spend our free time. Game was

created to entertain users who play it. One favorite genre for

some gamers is a Role Playing Game (RPG). RPG is favored

because players assume the roles of characters in a fictional

setting. Game development requires new innovations to fulfill

the market’s requirement. One of the innovations in the game

lies in the gameplay. In the RPG game that adopts Turn Base

Strategy (TBS), improvised gameplay is very minimal. TBS

system is focus in strategy, while for the action of each player

is very little, that makes some novice players feel bored.

Therefore, to solve these problems, the TBS gameplay need to

improved. Ambrosia is RPG game with TBS gameplay that

improved. The improvement gameplay is creating a word

from random letters (Anagram) to attack the enemy. The

randomization process is considering by the weight of the

initial letter. And for extraction of words solution which can

be created, is using Backtracking Algorithm. After testing this

game, it shows that words solution can extracted by using

Backtracking Algorithm. The improved gameplay also

successfully attract users to play Ambrosia again.

General Terms

Human-Computer Interaction

Keywords

Anagram, Backtracking Algorithm, Improvisation, Role

Playing Game (RPG), Turn Base Strategy (TBS)

1. INTRODUCTION
Playing game is one of way to spend leisure time. Game itself

have been created to entertain users who play it. One genre of

game that is very entertaining, fun and favourite of game

lover is a Role Playing Game (RPG). Many people like RPG

Game because players can customize and develop the

characters in the game according the player's wishes. One of

RPG game that is quite popular is the Pokémon series which

developed by Nintendo [1].

Game development is rapidly increasing in line with growth

of the people who love the game. All ages can be covered

with many varieties of games that are on the market.

However, new innovation is required to adjust the needs of

the market. One of the innovations in the game lies in the

gameplay. In the RPG game that adopts Turn Base Strategy

(TBS), improvised gameplay is very minimal. Gameplay on

TBS system focus about the strategy, while the action of each

player is very small, making some ordinary players are bored

in the early game. Therefore, to solve that problem, the

improvement in TBS gameplay is needed.

Focus on this research is improvement new gameplay such as

arrange random words (anagram) to attack the enemy. In this

gameplay, the player must make a word as long as possible to

attack the enemy. The longer words are arranged, the greater

attack is given. Player can only arrange words in English.

There are two main components in this gameplay, the first is

randoming the words and the second is checking words. For

randoming words, will be selected words from the database or

reference English dictionary. When checking the word, there

is two steps, creating and checking word list. Word list is

some words that can be composed using random words before

and come from English dictionary. Creating list of words is an

implementation of the algorithm of Backtracking. After

creating the list , the game will wait input from the player.

When word of the player has been arranged, it will be checked

using the list that has been created. This checking method is

using Brute Force Algorithm. This game will built with C#

language using Unity3D as Game Engine with Android SDK

as the add-on so that this game can run on Android devices.

For the filtering process in dictionary reference is made with

C ++ language using Code::Blocks IDE. In this research will

using approach of software system design.

Using this improvement is expected for beginner player who

have never played RPG game does not feel bored and tired. In

addition, the game is expected can train English language

skills of the players.

This research is a research proposal which try to improve the

methodology of playing anagram. We found previous research

design waka (a Japanese poem) composing and playing

interface “Iroha Pad” [11]. The proposed system supports

users to have less literacy of Japanese literature for composing

and appreciating a waka. Users can compose the original

waka like playing a puzzle [11].

In this research, we use English words. There are two main

components in this game. They are component for random the

alphabets and component for checking the generated words.

And we use backtracking algorithm to extract the words.

This is an implementation research. We validate our

implementation research by testing the developed application

based on its requirement. This validation research will be

explained in the next section.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

28

Fig. 1 Flowchart of randomization and checking word

2. LITERATURE

2.1 Backtracking Algorithm
Backtracking is Depth First Search based algorithm to find

solution for problem. Backtracking is an improvement over

brute-force algorithm that systematically only searching for

possible solution [5]. Backtracking is a recursive algorithm

that also available as iterative algorithm. It described in these

steps:

1. Solution will be searched by generating a path from root

to the leaf. The resulting node will be called living node.

2. If the path is not directing to the solution then the living

node will be killed into death node. The function that

will be used to kill the function is the limiting function.

3. If the last constructed node is a death node, then the

search process will be resumed by creating another child

node. If there's no more child node then the search will

be backtracked to the parent node.

4. The search ends when a solution is found or there's no

more alive node to be backtracked.

2.2 Brute Force Algorithm
Brute Force is a straightforward approach to find a solution of

the problem. It based on the problem statement and the

definition of the concept [6]. Brute force finds the solution of

the problem by using a simple, straightforward and obvious

way. The steps that will be taken by this algorithm is to

process data one by one until n data that can be concured as

its worst case scenario.

2.3 Roulette Wheel Selection
Roulette Wheel Selection is a selection method based on the

value of the object [7]. This method use the percentage of

every object. The value of the percentage will be adapted with

the object value. Bigger percentage means bigger chance for

the object to be selected. This selection concept is very

similiar to a Roulette machine. This algorithm is written as

these steps below:

1. Set the percentage or range of every object.

2. Randomize the number from the smallest value in the

range until the last range.

3. If the result located within an object range. that object

will be choosen.

3. DESIGN AND IMPLEMENTATION

3.1 Problem Analysis
Innovation in battle system on RPG genre with TBS

mechanism is very little. Most improvement for that kind

games only in story line or type of enemies that are more

varied and increasingly flexible character customization.

Moreover, a game with TBS mechanism is lack of action, so

beginner players will be bored in the beginning.

Games that will be build will answer those problems by create

a new battle system where player must compose a word in

English to attack an enemy. Hopefully this game can help a

beginner player to know fun aspect of RPG game and make

player practice their ability to know the vocabulary in English.

3.2 General Description
Games that will be built is a game with RPG genre and TBS

mechanism combined with educational elements, recognizing

word in English. This game tells about someone who wants to

find Ambrosia, the food of the gods. Someone who eats

Ambrosia will have godlike power and could defeat a

destructive god.

The main focus of this game lies in the mechanism of fight or

gameplay. Players will be confronted with a set of letters, then

the player is asked to make a word in the English correctly to

attack the enemy. More longer the words that can be formed,

more damage given to the enemy. In this game system,

random letters are displayed to the player comes from random

words taken from a dictionary reference, then a random word

is searched for possible words that can be formed using

Backtraking Algorithm. After obtaining a list of words that is

formed, then the input word given form players will be

checked using Brute Force.

There are some dungeons that can be played. Since this is a

RPG game, then the player can do some customization.

However, there is some limit to customize, such as only adds

attributes but does not change the appearance. In addition,

players can improve their character's level up to level 20. For

the development of character and the difficulty in fighting the

enemy is set automatically by the system.

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

29

Fig. 2 Example of Backtracking Algorithm process

3.3 Reference Dictionary
Reference dictionary comes from a collection of English

words derived by Infochimps [10]. There are 354 986 words.

There's no plural word inside the dictionary. The words in the

dictionary contain some acronyms and familiar names in

English, along with past tense word. There will be filtering

process which only take a word with a length at least 3 letters

and a maximum 7 letters used in the game, and it will

separating the dictionary into 26 sections based on the first

letters.

3.4 Randomization and Checking Words
Focus of this research lies in the gameplay where there will be

implementation of the algorithm Backtracking in checking

word. The flow of the design of randomization and checking

word is represented in Figure 1.

The first step is to determine weights for each letter.

Weighting for each letter is based on points for each letter in a

Scrabble game [11]. Every points that contained in a Scrabble

game is assumed as appear frequency of a letter, so if the

letter's points is low then that letter often to appear, otherwise

if the points is high then that letter rarely come out. Points

each letter can be seen in Table 1. After obtaining points each

letter, then find the maximum value of all the letters by their

frequency.

The next step is get the weight of each letter by dividing the

frequency points of each letter with a maximum value. The

formula to find the frequency of each letter can be seen in

equation (1), while the formula to find the maximum value

lies in Equation (2) and for a formula to find the weight of

each letter can be seen in Equation (3). The weight of each

letter is shown in Table 2.

Table I. Points of Each Letter

Letter Points Letter Points

A 1 N 2

B 4 O 1

C 4 P 4

D 2 Q 10

E 1 R 1

F 4 S 1

G 3 T 1

H 3 U 2

I 1 V 5

J 10 W 4

K 5 X 8

L 2 Y 3

M 4 Z 10

.12
10

i

i
poin

frequency (1)

.
26

1

i

ifrequencyMaxValue (2)

%.100
MaxValue

frequency
Weight i

i
 (3)

The next step is to determine the initial letters using Roulette

Wheel Selection Algorithm, which will randomization based

on the weight of each letter that has been obtained. In this

process the letter with high weight has a chance of being

selected higher than letters with low weights. After receiving

the initial letter, the next step is to choose a random word

based on the initial letter selected. Input from this process is

the initial letters obtained in the previous process, and then

reference dictionary representing the initial letter will be

selected. Then select the word randomly with the range of the

number of words in the dictionary of references that have

been selected.

The next process is to find words solution that can be formed

with Backtracking Algorithm. Input from this process is a

word that has been selected in the previous process. For

example, the word chosen is "LUPA". From that word, each

letter will be turned into node corresponding to the alphabet,

starting with the letter "A". From the node "A" and then go to

node "L" as the child node. Then it is checked into a

dictionary word with the prefix string "AL". If it is exist, then

the search is continued by turning the node "P" and then

checked again into the dictionary word with the prefix "ALP".

If it is no existence, then node "P" will be disconnected and

backtrack to the node "L". A solution is found if the string

formed from the same node line with the words contained in

the dictionary reference. The end of this process if all solution

have been found and there's no line to created. Examples of

words search process can be seen in Figure 2. The next

process is any solution that found will be added to the array

list.

Table II. Weight of Each Letter

Letter Weight Letter Weight

A 8% N 4%

B 2% O 8%

C 2% P 2%

D 4% Q 1%

E 8% R 8%

F 2% S 8%

G 3% T 8%

H 3% U 4%

I 8% V 1%

J 1% W 2%

K 2% X 1%

L 4% Y 3%

M 2% Z 1%

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

30

 In the next process, players will enter a word based on a set

of random letters displayed on the gameplay as the output of

selecting word process. The word that has been entered by the

players then checked with array list by using Brute Force

Algorithm. Checking process will compare the string, and not

comparing each character or letter.

3.5 Implementation
Ambrosia is built with C# language using Unity3D as Game

Engine with Android SDK as the add-on so that this game can

run on Android devices. For the filtering process in dictionary

reference is made with C ++ language using Code::Blocks

IDE. The interface on the main gameplay featuring two

characters who are fighting, as well as the letter keys that can

be selected to compose a word on the bottom. The interface is

shown in Figure 3. Furthermore, if the word is composed by

the players correctly, then the display interface is shown in

Figure 4.

Fig. 3: Interface of attack with compose the word

Fig. 4: Interface when attack success

4. TESTING
Once the game is build completely, the next step is testing the

game. The test is to ensure the use of backtracking algorithm

in finding a words solution. We use black box testing to test

this application. This test takes 2 rounds of the game. There

will be new random words in each round. Figure 5 displays

the solution in the first round, while Figure 6 displays the

solution in the second round.

Fig. 5: Words solution that obtained in the first round

Fig. 6: Words solution that obtained in the second round

5. CONCLUSION
Ambrosia has been built applying randomization word that

can be arranged in its gameplay. During testing, backtracking

algorithm is capable to create a list of words solution based on

the dictionary. For reference dictionary, Info chimps presents

a pretty much word, but involves the acronyms and names in

English that are not familiar to most Indonesian people. From

the test result, this game is quite interesting and worth to play.

For the further works, another algorithm which can be used to

create a list of word can be implemented. This research use

English words. Another language can be used in the further

works.

6. REFERENCES
[1] "Top 100 RPGs of All Time," IGN, [Online]. Available:

http://www.ign.com/top/rpgs.

[2] I. Sommerville, Software Engineering 9th edition,

Buston: Pearson Education, 2011.

[3] "Download Android Studio and SDK Tools | Android

Developers," Google Android, [Online]. Available:

http://developer.android.com/sdk/index.html.

[4] A. Levitin, "Backtracking," in Introduction to The

Design and Analysis of Algorithms, New Jersey, Pearson

Education, Inc, 2012, pp. 424-430.

[5] A. Levitin, "Brute Force," in Introduction to The Design

and Analysis of Algorithms, New Jersey, Pearson

Education, Inc, 2012, pp. 97-106.

[6] D. L. Adam Lipowski, "Roulette-wheel selection via

stochastic acceptance," Physica A, vol. 391, pp. 2193-

2196, 2012.

[7] "Code:Blocks," The Code::Blocks team, [Online].

Available: http://www.codeblocks.org/home.

[8] "Infochimps: Big Data - Cloud Services," Infochimps,

Inc., 23 February 2012. [Online]. Available:

http://www.infochimps.com/datasets/word-list-350000-

simple-english-words-excel-readable.

[9] "Scrabble | Word Games | Board Games | Scrabble

Online," Hasbro, [Online]. Available:

http://scrabble.hasbro.com/en-us/faq. M. I. Assaat,

"Aplikasi Algoritma Backtracking dalam Permainan

Anagram," MAKALAH IF2251 STRATEGI

ALGORITMIK, 2007

[10] Nishikawa. Naoki, “Iroha Pad: A Waka Composing and

Playing Interface Using the Anagram of the Iroha

Poem”, second international conference culture and

computing (culture computing), 2011, pp 153-154

IJCATM : www.ijcaonline.org

