
International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

37

Comparison of Real Time Task Scheduling Algorithms

Vijayshree Shinde
PG Scholar, Department of

 Computer Engineering
Terna Engineering College,

 Navi Mumbai, India

Seema C. Biday, PhD
Professor, Department of
Electronics Engineering

Terna Engineering College,
Navi Mumbai, India

ABSTRACT

In a Real-Time System, the correctness of the system is not

only depending on the logical result of the computation but

also on the time at which result is produced is very important.

In real time system, scheduling is effected using certain

criteria that ensure processes complete their various tasks at a

specific time of completion. The quality of real-time

scheduling algorithm has a direct impact on real-time system's

working. We studied popular scheduling algorithms mainly

Earliest Deadline First, Rate Monotonic, Deadline Monotonic,

Least laxity First, Group Earliest Deadline First and Group

Priority Earliest Deadline First for periodic task. We observe

that the choice of a scheduling algorithm is important in

designing a real-time system. We conclude by discussing the

results of the Real-Time scheduling algorithm survey.

Keywords

Real-Time system, Real-Time task scheduling, Deadline,

Execution time, Period, EDF,RM, DM, GPEDF, GEDF, LLF.

1. INTRODUCTION
Real time system must respond to externally generated inputs

within a specified period to avoid failure. The deadline of a

task is the point in time before which the task must complete

its execution [1]. There are three types of deadlines, which are

mentioned below,

 Soft Deadline

In this type of deadline, task could miss some deadline and the

system could still work correctly. Reservation systems is one

of the example of soft deadline.

 Firm Deadline

This deadline is one in which the results come after the

deadline is missed is of no usefulness. Infrequent deadline

misses are tolerable. These sorts of deadlines are utilized as a

part of system which are playing out some vital operations.

 Hard Deadline

If task miss some deadline, then catastrophe results will occur,

such type of deadline is known as hard deadline. The system

which are performing critical applications like air traffic

control go under this category.

The application of real time systems can be found in Robotics,

Pacemakers, Chemical Plants, Antimissile Systems, and

Embedded Systems etc. to name a few [2]. There are three

kinds of real-time tasks, depending on their arrival pattern:

periodic task (Periodic tasks execute at every known fixed

time interval. Normally, periodic tasks have constraints which

indicate that instances of time constraints), Aperiodic task

(aperiodic tasks execute at any random time constraints and

would not have pre-defined timing sequence) and Sporadic

task (Sporadic tasks are combination of both periodic and

Aperiodic, where in, the executing time is Aperiodic but the

executing rate is periodic in nature). The time constraints are

usually a deadline. Scheduling mechanism is the important

concept of a computer system, it is the strategy by which

computer system decided which task should be executed at

any given time. Scheduling algorithm for uniprocessor

systems must guarantee to apportion the enough time to all the

system task at specific purposes of time that they can meet

their deadline as far as possible.

The objective of a real-time task scheduler is to guarantee the

deadline of tasks in the system as much as possible when we

consider soft real-time system [3]. To achieve this goal, vast

researches on real-time task scheduling have been conducted.

Real-time scheduling can be divided into two categories:

Static and Dynamic. In static algorithm al priorities are

assigned at design time and those priorities is remains

constant for the life time of a task. Dynamic algorithms assign

priorities at runtime, based on execution parameters of tasks.

Dynamic scheduling can be either with static priority or

dynamic priority. Rate Monotonic [4] and Deadline

Monotonic [5] are examples of dynamic scheduling with static

priority. EDF [4](Earliest Deadline First) and LST [6] (Least

Slack Time First) are examples of dynamic scheduling with

dynamic priority. EDF and LST algorithms are optimal under

the condition that the jobs are preemptive, there is only one

processor and the processor is not overloaded [7]. But the

limitation of these algorithms is, their execution diminishes

exponentially if the system turns out to be marginally

overloaded. This paper makes comparison of different task

scheduling algorithms.

The rest of paper is organized as follows: in section 2,

described real-time task model, section 3 described real-time

task scheduling algorithms adopted in this paper, in section 4,

described the comparison of real-time task scheduling

algorithms, and in section 5, paper is concluded.

2. REAL-TIME TASK MODEL
Let T= {T1, T2, Ti,….. Tn} be a set of N periodic task in a

uniprocessor system. The tasks are mutually independent and

the processor time is the only resource that needs to be

scheduled. Each task Ti is defined as Ti = (Ci, Pi, Di), where

Ci is its execution time, Pi is its period and Di is its deadline,

Ci ≤ Di.

3. REAL-TIME TASK SCHEDULING

ALGORITHMS

3.1 Earliest Deadline First Algorithm
In 1973 Liu and Layland, suggested the most popular real

time scheduling algorithms Earliest Deadline First (EDF) [4].

EDF is a dynamic priority algorithm in which task with the

earliest deadline has the highest priority. EDF is an optimal

uniprocessor scheduling algorithm. The optimal scheduling

algorithm gives 100% CPU utilization

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

38

EDF algorithm gives best performance and minimize miss

ratio, when systems operating under low or moderate levels of

resource and data contention. However, the performance of

Earliest Deadline First algorithm is suddenly degraded in an

overloaded system. This is because, under heavy loading,

tasks gain high priority only when they are close to their

deadlines.

Consider Table 1, which represents a sample tasks set that

will be used as common example throughout this paper to

better understand the differences among real time task

scheduling approaches. This task set is schedule using fully

pre-emptive Earliest Deadline First Scheduling algorithm

show in figure 1.

Table 1. Real-Time Task set

Task Ci Di Pi

T1 1 4 4

T2 2 5 5

T3 2 7 7

3.2 Rate Monotonic
RM is a preemptive and static priority scheduling algorithm

on uniprocessor systems [4]. RM assigns the higher priority to

the task with the shortest period, assuming that periods are

equal to deadlines (Pi=Di), because if the demand rate is

more, the period would be shorter and the priority would

increase. Therefore, it is used in periodic tasks. One major

limitation is CPU not always fully utilize when fixed priority

scheduling algorithm is used. In this algorithm, all the tasks

will meet their deadline if the CPU utilization factor (U) is

less than N(21/N-1) where N is the number of tasks to be

scheduled [8].

 Periodic tasks have constant known execution times

and are ready for execution at the beginning of each

period(T).

 Deadlines(D) for tasks are at the end of each period:

(D = T)

 The tasks are independent, that is, there is no

precedence between tasks and they do not block

each other.

 Scheduling overhead due to context switches and

swapping etc. are assumed to be zero.

Sample task set are schedule by RM scheduling algorithm as

shown in figure 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1

T2

T3

Fig 1: The timing diagram of EDF scheduling

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

39

3.3 Deadline Monotonic
Deadline Monotonic (DM) is the optimal fixed priority

scheduling algorithm where the assigned priorities are

inversely proportional to the task deadline. DM used when D

< T which allows us to see RM as a special case of DM. DM

executes at any time instant the instance of the ready task with

the shortest deadline, first. If two or more tasks have the same

deadline, then DM randomly selects one for execution next.

DM becomes equivalent to the RM algorithm when the

deadlines of tasks are equal to their period [9].

3.4 Least Laxity First
LLF is another optimal dynamic-priority scheduling

algorithm. The laxity of a process is defined as the deadline

minus remaining computation time. The laxity of a job is the

maximal amount of time that the job can wait and still meet its

deadline. The algorithm gives the highest priority to the

dynamic job with the littlest laxity. Then the job with the

highest priority is executed. While a process is executing, it

can be preempted by another whose laxity has less than that of

running process. A problem arises with this scheme when two

processes have similar laxities. One process will run for a

short period while and then get preempted by the other and

vice versa. Hence, numerous context switches happen in the

lifetime of the processes. The least laxity first algorithm is an

optimal scheduling algorithm for systems with periodic real-

time tasks [10].

3.5 Group Earliest Deadline First
gEDF was developed for improving the success ratio of EDF

during overload condition of soft real time multimedia

application. The initiator pioneered the idea of group

scheduling, where jobs with near deadlines were group

together using an algorithm. After grouping jobs within a

group are schedule using shortest job first scheduling [9, 11].

Group range parameter (Gr) determines which job gets into

which group. It is simply a percentage value of the job at the

head of a queue's absolute deadline. Mathematically it is

defined as

gEDF Group = {τ k | τ k ∈ QgEDF , d k − d1 ≤ d1 Gr ,

1 ≤ k, m ≤| QgEDF |} (1)

in which:

 d1 is the dynamic deadline of the first job in the group

 QgEDF is a queue for gEDF and

 | QgEDF | represents the length of queue

 m is the number of all ready jobs in a system [9]

3.6 Group priority Earliest Deadline First
GPEDF perform schedulability test prior to grouping a

particular job. Following method is used to solve the problem

of how to group jobs together [12].

GPEDF perform schedulability test prior to grouping a

particular job. Following method is used to solve the problem

of how to group jobs together [12].

j=1,2,….,N
Ci

D i
+

Csum +Cex

D j
≤ 1

𝑗

𝑖=1

 (2)

all the jobs in job set Jt behind first job in a set can be

executed before first job and the system will still be

schedulable, where Csum is the sum of the execution times of

the jobs in job set except first job in job set, and Cex is the

sum of execution time of the jobs that would be ready later

than time t and have absolute deadline shorter than last job in

job set. If there is a job set Jt which satisfies eq. (2) at time t,

the order of the jobs in job set Jt can be changed randomly.

This means that the jobs can be form in job set Jt into a group,

in which the jobs can be reordered as required without

reducing the schedulability. GPEDF scheduling algorithm can

be described in three parts as follows;

First part is enqueue, when a new job arrives, enqueue sort

new job into Jt. The second dequeue and third exqueue

methods invoked every time unit. dequeue deletes the jobs

which have absolute deadlines shorter than current time t.

exqueue creates group of jobs and execute shortest job first

Fig 2: The timing diagram of RM scheduling

Deadline Miss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1

T2

T3

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

40

algorithm within groups. When there is no group in the

system, the jobs are put into group one by one according to

the order they appeared in job set Jt and will be stopped until

one job cannot satisfy Eq. (2). If a job cannot form a group

with other jobs, then it forms the group with itself. If the

system is overloaded and when there is only one job in the

group at that time a job may not be completed successfully

because the remaining time may not be enough for the job to

execute.

In the GPEDF scheduling algorithm, jobs with short execution

time can be executed first in the group, which leaves more

time for other jobs to execute. This allows more jobs to be

completed, the number of switches is decreased and the

response is reduced.

all the jobs in job set Jt behind first job in a set can be

executed before first job and the system will still be

schedulable, where Csum is the sum of the execution times of

the jobs in job set except first job in job set, and Cex is the

sum of execution time of the jobs that would be ready later

than time t and have absolute deadline shorter than last job in

job set. If there is a job set Jt which satisfies eq. (1) at time t,

the order of the jobs in job set Jt can be changed randomly.

This means that the jobs can be form in job set Jt into a group,

in which the jobs can be reordered as required without

reducing the schedulability. GPEDF scheduling algorithm can

be described in three parts as follows;

First part is enqueue, when a new job arrives, enqueue sort

new job into Jt. The second dequeue and third exqueue

methods invoked every time unit. dequeue deletes the jobs

which have absolute deadlines shorter than current time t.

exqueue creates group of jobs and execute shortest job first

algorithm within groups. When there is no group in the

system, the jobs are put into group one by one according to

the order they appeared in job set Jt and will be stopped until

one job cannot satisfy Eq. (1). If a job cannot form a group

with other jobs, then it forms the group with itself. If the

system is overloaded and when there is only one job in the

group at that time a job may not be completed successfully

because the remaining time may not be enough for the job to

execute.

In the GPEDF scheduling algorithm, jobs with short execution

time can be executed first in the group, which leaves more

time for other jobs to execute. This allows more jobs to be

completed, the number of switches is decreased and the

response is reduced.

4. COMPARISON OF REAL TIME

TASK SCHEDULING ALGORITHMS
We observed the performance of scheduling algorithm from

the work done by the various researchers in the field of real

time scheduling, as shown in table 2.

Table 2. Comparison of real time scheduling algorithm

Algorithms Implementation
Priority

Assignment
Scheduling Criteria

Preemptive/

Non-

Preemptive

CPU

Utilization
Efficiency

EDF Difficult Dynamic Deadline Preemptive
Full

Utilization

Efficient in

Underloaded

Condition

RM Simple Static Period Preemptive Less

Efficient in

overloaded condition

as compared to EDF

DM Simple Static Relative Deadline Preemptive

More as

compared to

RM

Efficient

LLF Difficult Dynamic Laxity Preemptive
Full

Utilization
Efficient

GEDF Difficult Dynamic

Deadline and within

group Shortest

Execution time (SJF)

Non-Preemptive
Full

Utilization

Efficient in Non-

preemptive

environment

GPEDF Difficult Dynamic
Deadline and within

group SJF
Preemptive

Full

Utilization
Efficient

5. CONCLUSION
Comparative study of some existing real time scheduling

algorithms has been done in this paper. It has been observed

that deadline is the most important concept in real time

systems and to meet this deadline real time scheduling

algorithm is the most important topic. Allocating and

scheduling the tasks are very complicated in the real-time

system. Different approaches for allocation of tasks and

scheduling the tasks are defined by different researchers. The

tasks may be either static or dynamic. Earliest deadline first is

an optimal dynamic priority algorithm. EDF is efficient

scheduling algorithm if the CPU utilization is less than 100%

but algorithm gives poor performance when system is

International Journal of Computer Applications (0975 – 8887)

Volume 158 – No 6, January 2017

41

overloaded. Fixed priority scheduling algorithms are easier to

implement and hence widely used. Rate Monotonic is an

optimal static priority scheduling algorithm. Deadline

Monotonic is an optimal static priority scheduling algorithm

when deadline is less than or equal to period. Group priority

Earliest Deadline first algorithm is efficient scheduling

algorithm it gives better context switching, response time and

CPU utilization.

In future a new algorithm should be developed which improve

the performance of EDF scheduling algorithm in overloaded

condition and give the best performance in underloaded

condition. The new algorithm will be very useful when future

workload of the system is changeable

6. ACKNOWLEDGMENTS
Thanks to the Computer Engineering department and Terna

Engineering College for their valuable support

7. REFERENCES
[1] R. L. Panigrahi and M .K. Senapaty, “Real Time System

for Software Engineering: An Overview”, Global Journal

for Research Analysis, Vol. 3, Issue 1, pp. 25-27,

January 2014.

[2] Jane W.S. Liu, Real-Time Systems , Pearson Education,

India,pp. 121 & 26, 2001.

[3] Mehrin Rouhifar and Reza Ravanmehr, “A Survey on

Scheduling Approaches for Hard Real-Time Systems”,

International Journal of Computer Applications (0975 –

8887) Volume 131 -No.17, December 2015.

[4] C. Liu and James Leyland, January 1973, “Scheduling

algorithm for multiprogramming in a hard real-time

environment”, Journal of the Association for Computing

Machinery, 20(1): 46-61.

[5] J.Leung and J. Whitehead, “On the complexity of fixed-

priority schedulings of periodic, real-time tasks”,

Performance Evaluation 2(4):237-250 December 1982.

[6] A.Mok and M.Dertouzos, 1978, “Multiprocessor

scheduling in a hard real-time environment”,7th Texas

Conference on Computing Systems.

[7] Ketan Kotecha and Apurva Shah, “Adaptive Scheduling

Algorithm for Real-Time Operating System”, 978-1-

4244-1823-7/08/$25.00 c_2008 IEEE

[8] J. Lehoczky, L. Sha and Yv Ding, “The Rate Monotonic

Scheduling Algorithm: Exact Characterization And

Average Case Behavior”, IEEE International symposium

on real time system, pp. 166-171, 1989.

[9] W. Li, K. Kavi, and R. Akl, “A non-preemptive

scheduling algorithm for soft real-time systems”,

Computers and Electrical Engineering, vol.33, no. 1, pp.

12–29, 2007.

[10] Arezou Mohammadi and Selim G. Akl,” Scheduling

Algorithms for Real-Time Systems”, Technical Report

No. 2005-499, July 15, 2005.

[11] Zahereel Ishwar Abdul Khalib , Badlishah R. Ahmad and

Ong Bi Lynn Ong, “High deadline meeting rate of non-

preemptive dynamic soft real time scheduling

algorithm”,296301,DOI:10.1109/ICCSCE.2012.648715,

2012 IEEE.

[12] Li, Q. & Ba, W, “A group priority earliest deadline first

scheduling algorithm”, Frontiers of Computer Science

October 2012, Volume 6, Issue 5, pp 560–567.

IJCATM : www.ijcaonline.org

