Fixed Points Theorems in G-metric Spaces

Avinash Chandra Upadhyaya Department of Mathematics Deenbandhu ChhotuRam University of Science and Technology, Murthal,Sonepat-131039, Haryana (India)

ABSTRACT

In this paper, we prove common fixed point theorems for a pair of mappings satisfying contractive condition of integral type in G- metric spaces.

Keywords

G-metric spaces, fixed point, integral type contractive condition.

1. INTRODUCTION

In 2004, Mustafa and Sims [4] introduced the concept of Gmetric spaces as follows:

Let X be a nonempty set. Let G: $X \times X \times X \rightarrow R^+$ be a function satisfying the following properties:

- (G1) G(x, y, z) = 0 if x = y = z,
- $(G2) \qquad 0 < G(x, x, y) \text{ for all } x, y \in X \text{ with } x \neq y,$
- (G3) G (x, x, y) \leq G (x, y, z) for all x, y, z \in X with $z \neq y$,
- (G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$ (symmetry in all three variables),
- (G5) $G(x, y, z) \le G(x, a, a) + G(a, y, z)$ for all x, y, z, $a \in X$, (rectangle inequality).

The function G is called a generalized metric or, more specifically, a G – metric on X, and the pair (X, G) is called a G – metric space.

Definition 1.1. Let (X,G) be a G-metric space then for $x_0 \in X$, r > 0, the G-ball with center x_0 and radius r is, $B_G(x_0,r) = \{y \in X : G(x_0,y,y) < r\}$.

Proposition 1.1. Let (X,G) be a G-metric space, then for any $x_0 \in X$ and r > 0, we have,

- $(i) \quad \text{if } G(x_0,\!x,\!y) < r, \, \text{then } x,\,y \in \ B_G(x_0,\!r) \;.$
- (ii) if $y \in B_G(x_0, r)$, then there exists a $\delta > 0$ such that $B_G(y, \delta) \subset B(x_0, r)$.

Definition 1.2. Let (X,G) and (X',G') be G-metric spaces .A function f: $X \rightarrow X'$ is G-continuous at a point $x_0 \in X$ if f ${}^{1}(B_{G'}(f(x_0),r)) \in X$ for all r > 0.We say f is G-continuous if it is G-continuous at all points of X.

Proposition 1.2. Let (X,G) and (X',G') be G-metric spaces. A function f: $X \rightarrow X'$ is G-continuous at a point $x \in X$ iff it is G-sequentially continuous at x ;that is, whenever (x_n) is G-convergent to x we have (fx_n) is G-convergent to f(x).

Proposition 1.3. Let (X,G) be a G-metric space, then the function G(x,y,z) is jointly continuous in all three of its variables .

Definition 1.3. Let (X, G) be a G – metric space. A sequence $\{x_n\}$ in X is G – convergent to x if $\lim_{m,n\to\infty} G(x, x_n, x_m) = 0$; i.e., for each $\in > 0$ there exists an N such that G $(x, x_n, x_m) < \in$ for all m, $n \ge N$.

Proposition 1.4.Let (X, G) be a G – metric space. Then the following are equivalent:

- (i) $\{x_n\}$ is G convergent to x,
- (ii) $G(x_n, x_n, x) \rightarrow 0 \text{ as } n \rightarrow \infty$,
- (iii) $G(x_n, x, x) \rightarrow 0 \text{ as } n \rightarrow \infty$,
- (iv) $G(x_m, x_n, x) \rightarrow 0$ as $m, n \rightarrow \infty$.

Definition 1.4. Let (X, G) be a G – metric space. A sequence $\{x_n\}$ is called G – Cauchy if, for each $\in > 0$ there exists an N such that G $(x_n, x_m, x_l) < \in$ for all n, m, $l \ge N$.

Proposition 1.6. In a G – metric space (X, G) the following are equivalent:

- (i) the sequence $\{x_n\}$ is G Cauchy,
- (ii) for each $\in > 0$ there exists an N such that G $(x_n, x_m, x_l) < \in$ for all n, m, $l \ge N$.

Proposition 1.7. A G – metric space (X, G) is G – complete if and only if (X, d_G) is a complete metric space.

2. MAIN RESULTS.

In 2002, Branciari [1] and Rhoades [7] proved fixed point theorems for integral type contractive condition which further strengthens the Banach Fixed Point Theorem.

Now, we prove a common fixed point theorem using E.A. property for a pair of weakly compatible mappings satisfying a contractive condition of integral type in G-metric spaces.

Theorem 2.1. Let f and g be weakly compatible self maps of a G-metric space (X, G) satisfying the following conditions :

(2.1) f and g satisfy E.A. property,

for each $x, y \in X$, $c \in [0,1)$,

where $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is a Lebesgue-integral mapping which is summable (with finite integral) on each compact subset of \mathbb{R}^+ , non-negative, and such that for each $\mathcal{E} > 0$,

(2.3)
$$\int_{0}^{\varepsilon} \phi(t) dt > 0,$$

(2.4) g(X) is a closed subspace of X.

Then f and g have a unique common fixed point.

Proof. Since f and g satisfy the E.A. property, therefore, there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = u \in X$. Since g(X) is a closed subspace of X, every convergent sequence of point of g(X) has a limit point in g(X).

Therefore, $\lim_{n\to\infty} fx_n = u = ga = \lim_{n\to\infty} gx_n$ for some $a \in X$. This

implies $u = ga \in g(X)$.

Now From (2.2), we have

$$G(fa, fx_n, fx_n) \qquad G(ga, gx_n, gx_n)$$
$$\int_0^{} \phi(t) dt \leq c \qquad \int_0^{} \phi(t) dt .$$

Letting $n \rightarrow \infty$ and using Lebesgue dominated convergence theorem and $c \in [0, 1)$ it follows in view of (2.3) that u= fa. This implies u= ga =fa .Thus a is the coincidence point of f and g.

Since f and g are weakly compatible, therefore, fu = fga = gfa = gu.

From (2.2), we have

0

$$\begin{array}{ccc}
G(fu, fa, fa) & G(gu, ga, ga) \\
\int & \phi(t) \, \mathrm{dt} \leq c \int \\
0 & \phi(t) \, \mathrm{dt}, \text{ since } c \in \end{array}$$

[0,1),which in turns implies that fu=u. Hence u is the unique common fixed point of f and g.

For uniqueness: Suppose that $w \neq z$ is also another common fixed point of f and g. From (2.2), we have

0

[0,1), therefore, z = w and uniqueness follows.

Example 2.1. Consider $X = \begin{bmatrix} 0, 2 \end{bmatrix}$ with usual G- metric space G i.e., G(x,y,z) = (|x-y|| + |y-z|| + |z-x|). Define the self maps f and g on X as follows:

International Journal of Computer Applications (0975 – 8887) Volume 159 – No 1, February 2017

$$f(x) = \begin{cases} 1 \text{ if } 1 \le x \le 2 \\ 1 \text{ g}(x) = 2, \text{ if } 1 \le x \le 2 \end{cases}$$

Consider the sequence $x_n = \frac{1}{n}$. Clearly $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n$

=0.Then f and g satisfy E. A . property. Also $f(X) = \{0, 1\}$

and $g(X) = \{0, 2\}$. Here we note that neither f(X) is contained in g(X) nor g(X) is contained in f(X).

Moreover φ defined by $\varphi(t)$ =t is a Lebesgue-integral mapping which is summable (with finite integral) on each compact subset of R⁺, non-negative, and such that for each $\mathcal{E} > 0$,

$$\varphi(t)$$
dt > 0. Theorem 2.1 holds for $\frac{1}{2} \le q < 1$

Theorem 2.2. Let f and g be weakly compatible self maps of a G-metric space (X, G) satisfying (2.1), (2.2), (2.3) and the following :

 $(2.5) f(X) \subset g(X).$

If the range of either of f or g is a closed subspace of X, then f and g have a unique common fixed point.

Proof follows easily from Theorem 2.1.

3. REFERENCES

- A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci.,29(9) (2002), 531-536.
- G. Jungck, Common fixed points for noncontiguous nonelf mappings on metric spaces, Far East J. Math. Sci.4 (2), (1996), 199–212.
- [3] Z. Mustafa and B.Sims, Some remarks concerning Dmetric spaces, Proceedings of International Conference on Fixed Point Theory and applications, Yokohama Publishers, Valencia Spain, July 13-19(2004), 189-198.
- [4] Z.Mustafa and B.Sims, A new approach to a generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), 289-297.
- [5] Z.Mustafa and H.Obiedat and F.Awawdeh, Some fixed point theorems for mappings on complete G-metric spaces, Fixed point theory and applications, Volume2008, Article ID 18970,12 pages.
- [6] Z.Mustafa,W. Shatanawi and M.Bataineh, Existence of fixed points results in G-metric spaces, International Journal of Mathematics and Mathematical Sciences, Volume 2009, Article ID. 283028, 10 pages.
- [7] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 63(2003), 4007-4013.