
International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

33

A Secure Framework for Software Product Line

Development

Md. Mottahir Alam
(Ph.D. Scholar)

Department of Electronics &
Communication Engineering,

Singhania University,
Jhunjhunu,

Rajasthan, India

Asif Irshad Khan
Dept. of Computer Science,

FCIT,
King AbdulAziz University,

Jeddah, KSA

Aasim Zafar
Dept. of Computer Science,
Aligarh Muslim University,

Aligarh, UP,
India

ABSTRACT
In today’s marketing scenario, the software companies have

the challenge to provide a vast variety of customized software

products option to satisfy diversified customers’ requirements.

Although increasing product varieties increase sales volume

and profits, but it also raises development complexity, time

and cost. In order to address the issues, companies are moving

towards Software Product Line Engineering (SPLE) which

helps in providing large varieties of products with minimum

development effort and cost. This approach amalgamate

component based development and feature based

development, both of which are based on the concept of

reusability and facilitate the development of a family of

products. This paper tries to propose an improved framework

for software product line. Cross-cutting concerns such as

security and configurability are addressed in this framework.

Further, the proposed framework is compared with selected

state of art frameworks.

General Terms
Software Product Line Engineering, Variability Management.

Keywords
Software Product Line, feature coverage, variability,

comparison framework, product line methods, feature

modeling.

1. INTRODUCTION
Although McIlroy [1] in 1969 and Parnas[2] in the 1970s

were the first to describe the software product lines and its

benefits, it started receiving special attentions in software

engineering community since the 1990s [3,4,8]. Recently,

Software product lines have significant attention in both

research and industry because software product line

engineering(SPLE) provides a promising method to deliver a

vast range of improved quality, cheaper and faster[3] software

systems.

SPLE technique is based on mass customization[12] to build a

set of products or systems that have a commonly managed set

of features and are developed from a common set of reusable

core assets in a way to fulfill needs of a specific customers or

market segment[3]. Therefore, software product line(SPL) is

accepted as an effective approach for reuse in software

engineering[9].

The main advantages of the product line are reduced time-to-

market[10,11], reduced cost[12] and improved quality [11,12].

When SPLE is combined with component based development

approach, it further increases the scope of reusability, resulting

in further reduction in release time and cost without

compromising on the quality of the product[5,6,7]

As a result of this, several software companies have already

switched or considering switching to the software product line

approach [13,20] with an incorporation of components into it.

The products in SPL are developed on a common platform by

binding variability on top of that platform. The use of

platforms in application development is possible through

planning reuse, building reusable assets, and proactively

reusing these assets. The reuse repository of a software product

line is known as core assets of the product line. It includes

domain models, requirements, architecture, components, test

cases, support tools etc.

Fig 1: Economics of software product line engineering [17]

Fig 1 compares the economics of SPL with that of traditional

software development. As we can observe from the graph,

although SPL involves a large initial investment in time and

cost[17] compared to traditional software development, but it

maximizes return on investment(ROI) by reusing architecture

and other core assets across the product line family.

Furthermore, it also helps in achieving maturity of

architecture and software development processes.

The three important conceptions in SPLE are commonality,

variability, and configuration. Commonality refers to common

aspects in all applications whereas variability indicates the

application-specific features in SPL. Configuration comprises

of the selection of possible variants for a specific application.

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

34

In today’s competitive market, although there is steep

competition to release products faster, there should be no

compromise on quality and stability of the products[19].

SPLE ensures improved quality products along with reduction

of time to market. Apart from this, it also helps in lowering of

maintenance cost, improving cost-estimation, and offering

customized products to customers. Furthermore, it enables

evolution of wide range of newer improved products.

This paper is organized as follows: Section 2 discusses related

work in software product line framework. Section 3 discusses

the proposed framework. The comparative analysis of

frameworks is presented in Section 4. Section 5 presents

discussion and section 6 provides concluding remarks and

future work.

2. RELATED WORK
Kim, J. et.al[14] in 2008 proposed a frame implementing

domain requirements as well as modeling core architecture in

SPL. It is presented in Fig 2. The framework provides a

mapping between product line requirements and reference

architecture through the use of processes, methods and support

tools. It involves concepts such as goal oriented domain

requirement analysis, analytical hierarchy process(AHP),

matrix technique and architecture styles. It performs domain

requirement analysis by classifying requirements into four

abstract levels:

Business level, service level, interaction level, and internal

level. This helps in identifying and building components. The

next step is to prioritize the components using matrix

techniques and analytical hierarchy process(AHP). Finally, a

reference architecture is created based on the components and

their quality attributes.

Fig 2: DRAMA process[14].

Tanhaei, M. et.al[15] in 2010 proposed an architecture-based

technique to select constituent components in an SPL. It is a

component-oriented technique to manage and control the

selection of components in an SPL, thereby reducing risks and

cost of software development. The components are carefully

selected on the basis of reference architecture, product family

requirements, domain requirements, and concerns of

stakeholders. The architecture of this method is shown in the

Fig 3. It starts with the selection of a component list from the

component lists on the basis of architecture variant point.

Fig 3: Architecture of method[15].

The components in the component list can be selected either

from COTS components or component repository. If the

component is not available then it is developed. The selected

components are evaluated for approval. Once approved, these

components are passed through integrity test. Lastly, a

reference architecture is obtained these selected and

successfully tested components.

Mellado, D et.al[16] proposed a framework incorporating

security mechanisms for SPL as shown in Fig 4. This

framework divides activities into two main types: application

engineering and domain engineering. It implements security by

integrating domain security mechanism PLSecDomReq and

application security mechanism PLSecAppReq.

Fig 4: Security requirements engineering framework for

Software Product Lines [16].

The reference architecture involves repositories, traceability,

and security mechanism. The various repositories implemented

in the framework are:

i) Software product line repository

ii) Application repository

iii) Software product line Security Assets repository

iv) Application Security Asset repository

v) The security standards repository

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

35

Guendouz, A et al.[18] in 2014 proposed a component based

approach for SPLE and validated it through a case study of e-

Meeting. The main benefit of this step is the automation of

application derivation step. The framework is presented in Fig

5.

Fig 5: Component-Based Product Line engineering[18]

3. PROPOSED MODEL
The proposed model as shown in Fig 7 represents a high

abstract level of software product line (SPL) architecture. The

model is a mix of aspect-oriented and the feature-oriented

approach. The aspect-oriented approach addresses

crosscutting concerns and functional behaviors of SPL while

feature-oriented approach is used to capture variability and

commonality of product lines. The detailed explanation of the

proposed model is as follows:

The model has 2 high-level processes: domain engineering

and application engineering. The main aim of domain

engineering is to identify and develop reusable artifacts for

reuse later in the application engineering phase. Application

engineering targets building of software products using the

identified reusable artifacts.

Domain Engineering requires common and variable

requirements of the product line family as inputs and

generates reusable core assets such as components,

framework, a library, tools or a platform etc.

Application engineering deals with requirements

specifications of individual products of the software product

line family are considered and a customer-specific product is

developed by using the generic architecture and reusing the

core assets from domain engineering as much as possible.

3.1 Domain Engineering
The core activities of the domain engineering phase are

described as follows:

Business Feasibility Study:

This activity is concerned with research and analysis of all the

factors concerning with the success of a new set of products in

the marketplace. It requires the active participation of all

possible teams such as software development team, marketing

teams, business investors, buyers and prospective customers.

The development team will give the technical and resource

perspective while the marketing team, buyers, and end-

customers will help to bring a business perspective to the

analysis. It involves the gathering of business intelligence,

competitive studies, and assessments, etc. and then combining

of all of these data into a solid business strategy and plan.

A feasibility study is conducted in terms of benefits and risks

of the target product line family. The benefits of a product line

family are the returns that are expected from it while the risks

are the threats that are expected due to its introduction. The

comparative study of benefits and risks gives a broad picture

to the business stakeholders which enables them to take an

investment decision.

Product Line Scoping

It is based on the previous step in which the features of the

potential product line and its products are identified. The

scope should be practically attainable .i.e. it should neither be

too large nor too small. The output of this activity is a product

portfolio comprising of all potential products of the product

line family and also a product roadmap as shown in fig 6.

Fig 6: Product Line Scoping [21]

Product Line Requirement Analysis:

In this activity product line requirements are analyzed and

documented. Domain experts and different stakeholders of the

product line are involved to analyzed the variable and

common feature requirements targeting the family product.

Core reusable artifacts are identified and suggested for later

reuse. The requirements are categorized into a set of reusable

common artifacts and product-specific variable features for

the product line family. It is essential that product line

requirements should be appropriately structured and should be

free from design and implementation assumptions.

Security Policy and Security Modeling:

Security is across-cutting concern and is affected by a wide

range of architectural decisions. Since a product line also

contains third party components, therefore product line

architecture should be able to contain the potential security

concerns posed by these components.

Based on the thorough understanding of product line’s

security requirement, a security policy for the product family

is defined. The security policy generally covers about

authentication, authorization, integrity, confidentiality, and

the handling of data. Additionally, it acts as a foundation for

making access control decisions by identifying different

privileges a user should have while accessing the secured

assets.

A security architecture language such as XACML(eXtensible

Access Control Markup Language) or Secure xADL (secure

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

36

eXtensible Architecture description language) is used to

describe the security requirements. These policy rules are

formally described into a security model so as to validate the

product line against it in the later stages. The security model is

built considering all the scenarios representing the security

requirements for the proposed product line. It includes

vocabulary for security requirements.

Fig 7: Shows a high abstract level of Software Product Line (SPL) Architecture

The security policy rules should be in adhering to

international security standards such as ISO/IEC 27001

standard, ISO/IEC 27002 standard, and ISO/IEC 15408-

1:2009 standards.

Product line design and architecting:

Product line design refers to designing the basic reference

architecture as well as deciding the architectural style for a

software product line. It describes all the mandatory and

varying features of the SPL domain and provides a design

which is fundamental to all products in the product line

family.

The reference architecture of the product line is defined on the

basis of these features. It also provides room for the

expression of variability and commonalities of the product

instances and helps in creating an abstract structure for the

product set. The products are abstracted by configuring the

architecture and tailoring components available in the

component catalog.

Many related product architectures are encapsulated into

product line architecture. It is like a common architecture for

a set of related products in the product line. Product line

architecture(PLA) defines the diversity of the product as each

product architecture varies from product to product but

adapted same reference architecture of the product line. The

variation points in a domain artifact identify the places at

which the products differ or variation occurs.

Architecture description languages (ADLs) provide support

for capturing variation points. ADL is recognized as an

important element in the description and analysis of

software properties. It allows describing of variable and

dynamic features in the SPL. Koala and xADL 2.0 are some

of the ADLs which provide exclusive support for capturing

variation points. However, not all ADLs provide such type of

support.

Product line Implementation:

It involves finding of available services such as components,

and tools existing in the local or remote repository on the

basis of the specifications of the design phase. It also includes

detailed designing and realizing of the reusable software

components for the entire product line family.

It describes a set of activities and supporting tools essential

for building the products. It also elaborates about

implementation plan which consists of policies, procedures,

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

37

automation support for reuse during application engineering

phase.

Fig 8: An approach for component selection

The framework provides an approach to select components as

shown in Fig 8. The approach consists of systematic set of

activities. The component selection starts with searching of

suitable components in the locally available component

catalog. If suitable component meeting all the specified

requirements is found, then it is selected for reuse. In case, the

required component is not locally available, then one should

search in market for component with required features,

preferably in the same domain.

These externally available components should be selected on

the basis of features, cost, quality etc. If any of externally

available components meet all the criteria than it selected. In

case, no component meets the criteria then one should plan

and develop own components with desired functional and

non-functional features.

Product line Testing
Software product line brings enormous testing efforts. It is

quite challenging to possible test all family products.

Validation is the process of carefully checking the

requirements for completeness, exactness, clarity and

uniformity. In software product line development,

requirements’ validation occurs in stages and it has a large

number of reviewers.

Test artifacts like tools, test case, test data, metrics are

generated in this activity to be reused during application

testing phase in order to test a chosen system configuration.

3.2 Application Engineering Phase
In application engineering phase, new products are created by

reusing the core assets developed during the domain

engineering phase. The common requirements are taken from

the domain engineering and product-specific variable

requirements are added to bring out new products. Thereafter,

the products are rigorously tested and if they meet the

acceptance criteria, can be delivered.

Following are the detail explanations of the major activities

carried out to create customize products:

Application Requirement
The main focus in this phase is to derive customized product’s

variants as per stakeholders’ functional & non-functional

requirements. Feature Profile (FP) of a specific product is

generated starting from its specification documents. Features

are prioritized based on the preferences of stakeholders and

business objective concerning the optimal features and quality

needs.

Specific extraction rules are defined for analyzing the

specification documents in order to identify the common and

variable features for each product.

Application Design and Architecting:
Product design and architecting refers to designing the

individual product architectures for a set of products in a

product line family. It avails the reference architecture from

the domain engineering phase to bring out the product

architecture. It picks and configures the compulsory parts of

the reference architecture and adds in product specific

variations.

The inputs to this step are reference architecture and the

product requirements’ specification while the output is

product specific architecture for individual products. It is to be

noted that the product(application) architecture is not

developed from the scratch, but is extracted from the

reference architecture by linking variability, i.e. making

specific selections at points where the reference architecture

suggests different variants.

Furthermore, product design and architecting must be done as

per the rules defined in the domain design phase while

building the reference architecture. These rules are defined for

implementing variability as well as application-specific

adaptations.

Application Implementation:
During the implementation sub-process, individual products

are built, using selections and configurations of the reusable

components as well as the implementation of product-specific

features.

The inputs to the product implantation sub-phase are the

application architecture and the reusable components from the

component catalog while the output is a fresh product with the

detailed design artifacts.

Application Testing
During the testing, the new product is verified and validated

against its requirement specifications. Application testing

includes all common parts, and variable parts in order to

achieve complete test coverage.

The input to the product testing includes all kinds of products

artifacts to be used as a test benchmark, the newly built

product, and the reusable test artifacts from the domain

testing.

The output of the product testing consists of a test report with

the results of all tests that were carried out on the product as

well as the detected errors. Additionally, the detected defects

are documented in more detail in bug reports.

If the product acceptance criteria is not met, the process will

loop back to the product implementation phase as shown in

the proposed framework.

Delivery, Evolution and Maintenance:
The final phase of the application engineering phase is the

successful acceptance and delivery of the final product. If the

new product has been successfully tested, fulfilling the

acceptance criteria, it can be delivered. If the product fails to

meet the specifications, it has to be rebuilt and tested again.

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

38

Once delivered, the company works for product improvement

and comes up with possible new product variants so as to

remain competitive.

Fig 9: Layered architecture for SPLE development

Fig 9 shows layered architecture for SPLE development.

GCPLE layer acts as a set of services for developing

customized applications in CCAE layer. It uses the SPL

support framework for generating code addressing the

commonalities and variabilities of the product line. Multi-

platform layer provides generic services such as operating

system(OS) access, database(DB) access and network

communication.

4. COMPARISON OF DIFFERENT

APPROACHES
A comparative analysis of above approaches is presented in

Table1.

Table1: A comparative analysis

Issues
and Challenges

DRA
MA

Kim,

J. et.al

Tanhae
i, M.

et.al

Mellad
o, D

et.al

Guendou
z, A et al

Alam,
M et.al

Product line

management

Requirements

Variability
management

Designing and
Architecting

Implementation

Cross-cutting

concerns

Testing &

Validation

Maintenance

and Evolution

5. DISCUSSION
It should be noted that domain engineering is a continuous

process. The knowledge and understandings concerning the

domain should be maintained and continuously revised

according to new experiences, scope broadening of the

product line, and new trends. Furthermore, domain

engineering should also be continuously adapted as per the

feedback and experiences from application engineering. Thus,

domain model practically can never be fully complete; it may

perhaps always be refined to be more accurate.

In application engineering phase, reusable assets such as

components, interfaces, feature models, architectures,

frameworks, security assets, production plans etc. are not

created a new, but are adapted from the platform developed

during domain engineering by binding variability. The effort

required making each adaptation should be analyzed and those

adaptations should be rejected which require an effort similar

to that of developing the complete product anew.

Variability, during application engineering, is bound by

providing specific values for component internal

configuration parameters. Therefore, testing should be done to

find out any defective configurations as well as to confirm

that the correct variants are bounded.

Since there is no running application in the domain

engineering, so only components or integrated data can be

tested. The applications are available for testing only in

application engineering phase.

Components in the core asset repository must have a defined

variability mechanism so that these can be modified as per

need for efficient use. Core asset repository should be

regularly updated by adding new assets as product lines

progress. The COTS present in or added to core asset

repository must satisfy the return on investment (ROI) for the

organization.

Security concerns should be incorporated in the SPLE and

product line architecture from the initial stages as retrofitting

security in the later stages might break the product line

architecture. With regard to security, it must be noted that if

the cost of security is higher than the data that needs to be

protected, then the security is not worth the cost.

Lastly, it should be noted that if domain engineering is done

right, the development effort in application engineering will

be greatly reduced in comparison to a single system

development.

6. CONCLUSION
In this paper, an improved framework for software product

line development has been proposed. The framework

illustrates a promising approach for the development of secure

software applications using software product line engineering

concepts. It also emphasizes on the incorporation of security

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

39

requirements concerning a product line from the very initial

stages i.e. in the domain engineering phase in a systematic

way adhering to international security standards such as

ISO/IEC 27001 standard, ISO/IEC 27002 standard, and

ISO/IEC 15408-1:2009 standards. Further, the proposed

framework is theoretically evaluated with selected state of art

frameworks. In future, the proposed framework will be

evaluated using empirical study and formal method

techniques.

7. REFERENCES
[1] McIlroy, M.D., Buxton, J., Naur, P. and Randell, B.,

1968, October. Mass-produced software components. In

Proceedings of the 1st International Conference on

Software Engineering, Garmisch Pattenkirchen,

Germany (pp. 88-98). sn.

[2] Parnas, D.L., 1976. “On the Design and Development of

Program Families”, IEEE Transactions on Software

Engineering, March.

[3] Clements, P., Northrop, L., 2001. "Software Product

Lines: Practices and Patterns".Addisson-Wesley. 0-201-

70332-7.

[4] DeBaud, J.M., Schmid, K, 1999. A systematic approach

to derive the scope of software product lines". In:

Proceedings of the 21st International Conference on

Software Engineering, Los Angeles, California, United

States.

[5] Khan, A.I., Alam, M.M., Shariq, M., May 2015. " A

Perspective Study of Intelligent System for Component

based Development". International Journal of Computer

Applications 117(4):11-17.

[6] Khan, A.I., Khan, U.A., 2012. "An Improved Model for

Component Based Software Development." Software

Engineering 2, no. 4 (2012): 138-146.

[7] Khan, A.I., Alam, M.M., Jedaibi, W.A., January 2015.

"Variability Management in Software Development

using FeatureIDE: A Case Study." International Journal

of Scientific & Engineering Research, Volume 6, Issue 1,

584 ISSN 2229-5518

[8] Deelstra, S., Sinnema, M., Bosch, J., 2004. "Experiences

in software product families:problems and issues during

product derivation".In: Proceedings of Third

International Conference, SPLC2004, Boston, MA, USA.

Springer.

[9] Kim, K. et al.,2006. "Asadal: A Tool System for Co-

Development of Software and Test Environment based

on Product Line Engineering". In: 28th International

Conference on Software Engineering (ICSE), pp. 783–

786.

[10] Dager, J. C., 2000. "Cummins' Experience in Developing

a Software Product Line Architecture for Real-time

Embedded Diesel Engine Controls," Patrick Donohoe

(ed.) Proceedings SPLC1, Kluwer. Page: 23-46. ISBN:

0792379403.

[11] Hetrick, W.A., Krueger, C.W., Moore, J.G., 2006.

"Incremental return on incremental investment:

Engenio’s transition to software product line practice".

In: Companion to the 21st ACM SIGPLAN Conference

on Object-oriented Programming Systems, Languages,

and Applications, Portland, Oregon, USA.ACM.

[12] Pohl, K., Böckle, G., van der Linden, F., 2005. "Software

Product Line Engineering". Springer,

Berlin/Heidelberg/New York. 10 3-540-24372-0.

[13] Böckle, G., 2000." Model-based requirements

engineering for product lines". In: Proceedings of the

First Conference on Software Product Lines: Experience

and Research Directions, Denver, Colorado, United

States. Kluwer Academic Publishers.

[14] Kim, J., Park, S., Sugumaran, V. ,2008. "DRAMA: A

framework for domain requirements analysis and

modeling architectures in software product lines".

Journal of Systems and Software, 81(1), 37-55.

[15] Tanhaei, M., Moaven, S., Habibi, J., 2010. "Toward an

architecture-based method for selecting composer

components to make software product line". Proceedings

of the 2010 Seventh International Conference on

Information Technology: New Generations (ITNG) (pp.

1233-1236).

[16] Mellado, D., Fernández, M. E., Piattini, M., 2010.

"Security requirements engineering framework for

software product lines". Information and Software

Technology, 52(10), 1094-1117.

[17] Linden, F., Schmid, K., Rommes, E. , 2007." Software

Product Lines in Action". Springer, Berlin.

[18] Guendouz, A., Bennouar, D., 2014. "Component-Based

Specification of Software Product Line Architecture". In

International Conference on Advanced Aspects of

Software Engineering (pp. 2–4).

[19] Alam, M.M, Khan, A.I., 2013. "Risk-based testing

techniques: a perspective study." International Journal of

Computer Applications 65, no. 1 .

[20] Md Alam, M.M, Khan, A.I., Zafar,A, 2016."A

Comprehensive Study of Software Product Line

Frameworks". International Journal of Computer

Applications 151(3):11-17.

[21] PWalters, JDMcGregor, Arcade Game Maker

Pedagogical Product Line: Scope, Software Engineering

Institute ,Carnegie Mellon University, Retrieved from

http://www.sei.cmu.edu/productlines/ppl/product_line_o

verview.html

8. AUTHOR PROFILE
Mr. Md Mottahir Alam: is a Ph.D. scholar in the Computer

Science & Engineering in Singhania University, India. He has

six years of experience as Software Engineer (quality) for

leading software multinationals, where he worked on projects

for companies like Pearson and Reader's digest.

He is ISTQB certified Software Tester. He has received his

Bachelor's degree in Electronics & Communication and

Masters in Nanotechnology from Jamia Millia Islamia

University, New Delhi, India.

Mr. Alam research interest includes Software Engineering

esp. Software Product Line Engineering, Software

Reusability, Component-based and Agent-based Software

Engineering.

Asif Irshad Khan, Ph.D., is working as a faculty member in

the department of Computer Science, FCIT, King Abdulaziz

University, Jeddah, Saudi Arabia. He has thirteen years of

experience as a professional academician and researcher.

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 4, February 2017

40

Dr. Khan received Ph.D. in Computer Science and

Engineering from Singhania University, Rajasthan, India, and

Master & Bachelor degrees in Computer Science from the

Aligarh Muslim University (A.M.U), Aligarh, India.

He has published several research articles in leading journals

and conferences. He is a member of the editorial boards of

international journals and his current research interest

includes Software Engineering with a focus on Component

Based and Software Product Line Engineering.

Dr. Aasim Zafar is working as an Associate Professor in the

Computer Science Department, AMU, Aligarh. His current

research interest includes e-learning, mobile learning, virtual

learning environments and mobile ad hoc networks.

He received his Ph.D. degree in Computer Science from the

Aligarh Muslim University, India. He has a number of

research papers to his credits.

Dr. Zafar is a member of Internet Society (ISOC). He is a

member of several editorial boards and a regular reviewer for

reputed journals.

IJCATM : www.ijcaonline.org

