
International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

6

Study on Data Compression Technique

Md. Jayedul Haque
Department of Computer
Science & Engineering

United International University
Bangladesh, Dhaka-1100

Mohammad Nurul Huda
Professor & MSCSE Coordinator

United International University
Bangladesh, Dhaka

ABSTRACT

In this current age both communication and generic file

compression technologies are using different kind of efficient

data compression methods massively. This paper surveys a

variety of data compression methods. The aim of data

compression is to reduce redundancy in stored or

communicated data. Data compression has important

application in the area of file storage and distributed system.

This paper will provide an overview of several compression

methods and will formulate new algorithms that may improve

compression ratio and abate error in the reconstructed data. In

this work the data compression techniques: Huffman, Run-

Length, LZW, Shannon-Fano, Repeated-Huffman, Run-

Length-Huffman, and Huffman-Run-Length are tested against

different types of multimedia formats such as images and text,

which shows the difference of various data compression

methods on image and text file.

General Terms

Network Security, Algorithms, Hidden message in DNA, File

System, Modems and Files (BOA)

Keywords

Lempel-Ziv-Welch (LZW), Huffman, Shannon-Fano, Data

Compression, Benchmark file, Data Structure, Algorithms

1. INTRODUCTION
Data compression is the process of converting an input data

stream (the source stream or the original raw data) into

another data stream (the output, the bit stream, or the

compressed stream) that has a smaller size. A stream can be a

file, a buffer in memory, or individual bits sent on a

communications channel. The process of reducing the size of

a data file is popularly referred to as data compression.

Compression is useful because it helps to reduce resources

usage, such as data storage space or transmission capacity. As

compressed data must be decompressed to use, this extra

processing imposes computational or other costs through

decompression. The field of data compression is often called

source coding. The input symbols (such as bits, ASCII codes,

bytes, audio samples, or pixel values) are emitted by a certain

information source and have to be coded before being sent to

their destination. There are two types of compression, lossy

and lossless. Lossy compression reduced file size by

abrogating some unneeded data that won‟t be recognize by

human after decoding, this often used by video and audio

compression. On the other hand, lossless compression

manipulates each bit of data inside file to minimize the size

without losing any data after decoding.

2. LITERATURE REVIEW
In 1949 Shannon – Fano algorithm was simultaneously

developed by Claude Shannon (Bell labs) and R.M. Fano

(MIT) [16]. It is used to encode messages depending upon

their probabilities. After a short period, Huffman [21] in 1952

proposed an elegant sequential algorithm which generates

optimal prefix codes in O (nlogn) time. The algorithm actually

needs only linear time provided that the frequencies of

appearances are sorted in advance. There have been extensive

researches on analysis, implementation issues and

improvements of the Huffman coding theory in a variety of

applications [17, 18]. In [19], a two-phase parallel algorithm

for time efficient construction of Huffman codes has been

proposed. A new multimedia functional unit for general-

purpose processors has been proposed [20] in order to

increase the performance of Huffman coding. After that In

1984 LZW introduced a new compression technique. One of

the lossless data compression widely used is LZW data

compression, it is a dictionary based algorithm. LZW

compression is named after its developers, A. Lempel and J.

Ziv, with later modifications by Terry A. Welch [7]. Lempel-

Ziv-Welch (LZW) [7] this algorithm proposed by Welch in

1984. LZW compression works best for files containing lots

of repetitive data. This is often the case with text as well as

monochrome images. LZW compression is fast comparing to

other algorithms. This algorithm is an improved

implementation of the LZ78 algorithm published by Lempel

and Ziv in 1978 (LZ78) [8]. The first algorithm of Lempel and

Ziv was published in 1977 and it is named as LZ77 [9]. LZ-77

is an example of what is known as "substitutional coding".

The LZ77 [9] and LZ78 [8] are otherwise called LZ1 and LZ2

respectively like The LZW algorithm uses dictionary and

index for encoding and decoding operation. In 2011 Senthil

Shanmugasundaram and Robert Lourdusamy[10] worked on

Statistical compression techniques and Dictionary based

compression techniques which was performed on text data. In

between the statistical coding techniques the algorithms such

as Shannon-Fano Coding, Huffman coding, Adaptive

Huffman coding, Run Length Encoding and Arithmetic

coding were considered in his research. Lempel Ziv scheme

which is a dictionary based technique was divided into two

families: those derived from LZ77 (LZ77, LZSS, LZH and

LZB) and those derived from LZ78 (LZ78, LZW and LZFG)

in his work. After a short period, in 2013, Doa'a Saad El-

Shora & Ehab Rushdy Mohamed works on the data

compression techniques: Huffman, Adaptive Huffman and

arithmetic, LZ77, LZW, LZSS, LZHUF, LZARI and PPM are

tested against different types of data with different sizes. In

2014, Kashfia Sailunaz, Mohammed Rokibul Alam Kotwal

worked on Shannon Fano Coding, Huffman Coding, Repeated

Huffman Coding and Run-Length coding. A new algorithm

"Modified Run-Length Coding" is also proposed and

compared with the other algorithms only on full text data.

This paper has extended their work using both image and text

data in comparison.

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

7

3. DATA COMPRESSION

3.1 Recent Compression Technique
3.1.1 Huffman
Huffman codes which are optimal with prefix codes generated

from a set of probabilities by a particular algorithm, the

Huffman Coding Algorithm. David Huffman developed the

algorithm as a student in a class on information theory at MIT

in 1950. The algorithm is now probably the most prevalently

used component of compression algorithms, used as the back

end of GZIP, JPEG and many other utilities.[1][2][3][4]

Huffman coding deals with data compression of ASCII

characters. It follows top down procedure means the binary

tree is built from the top down to construct a minimal

consequence. In Huffman Coding the characters in a data file

are converted to binary code and the most common characters

in the file have the shortest binary codes, and the characters

which are least common have the longest binary code [5].

3.1.2 Run-Length
Run-Length Encoding might be the simplest method of

compression techniques which can be used to compress data

made of any combination of symbols. It does not need to

know the frequency of repetition of symbols and can be very

efficient if data is represented as 0s and 1s [6].

The general idea behind this method is to replace consecutive

repeating occurrences of a symbol by one occurrence of the

symbol followed by the number of occurrences.

3.1.3 Lempel-Ziv-Welch (LZW)
In the introduction chapter we have discussed about the

lossless data compression. One of the lossless data

compression widely used is LZW data compression, it is a

dictionary based algorithm. LZW compression is named after

its developers, A. Lempel and J. Ziv, with later modifications

by Terry A. Welch [7]. Lempel-Ziv-Welch (LZW) [7] this

algorithm proposed by Welch in 1984. LZW compression

works best for files containing lots of repetitive data. This is

often the case with text and monochrome images. LZW

compression is fast comparing to other algorithms. This

algorithm is an improved implementation of the LZ78

algorithm published by Lempel and Ziv in 1978 (LZ78) [8].

The first algorithm of Lempel and Ziv was published in 1977

and it is named as LZ77 [9]. LZ-77 is an example of what is

known as "substitutional coding". The LZ77 [9] and LZ78 [8]

are otherwise called LZ1 and LZ2 respectively like The LZW

algorithm uses dictionary and index for encoding and

decoding operation. It creates a dictionary and if a match is

found in the dictionary then corresponding string is replaced

by the index. There are several algorithms like DEFLATE and

GZIP uses the LZ family algorithms. LZW compression

became the first widely used universal data compression

method on computers. After the invention of LZW there are

lots of improvements and enhancement done in LZW for data

compression that is discussed in this section. LZW

compression works best for files containing lots of repetitive

data especially for text and monochrome images. In this work

we have used LZW only for text data.

3.1.4 Shannon-Fano Coding
This method is called an earliest technique for data

compression that was invented by Claude Shannon and Robert

Fano [10] in 1949. It is used to encode data depending upon

their probabilities. The algorithm for Shannon- Fano coding

is:

1. According to given list of ASCII characters, build a

frequency or probability table.

2. Sort out the table according to the frequency, with

the most frequently occurring character on the top.

3. Divide the table into two halves with the total

frequency count of the upper half being as close to

the total frequency count of the bottom half as

possible.

4. Assign the upper half of the list a binary digit „0‟

and the lower half a „1‟.

5. Repeatedly apply the steps 3 and 4 to each of the

two halves, subdividing groups and adding bits to

the codes until each symbol has become a

corresponding leaf on the tree.

Generally, Shannon-Fano coding does not guarantee the

generation of an optimal code. Shannon – Fano algorithm is

more efficient when the probabilities are closer to inverses of

powers of 2 [10].

3.2 Usage of Data Compression
The usage of data compression are massive. We use data

compression when to preserve information or file in safe

manner. Besides, if we are uploading one or several large files

to a website or moving files to another machine, you can get

benefit from a smaller file size. Alongside, Email servers are

notoriously stringent on the size of the file attachments that

you can have. Compressing the files will reduce the file size

and allow you to send more files into the message as an

attachment.

4. PROPOSED METHODS

4.1 Repeated Huffman
If Huffman coding technique can be applied effectively on a

file again and again, then it is called Repeated Huffman

coding. An algorithm which compresses data using Huffman

encoding then it again uses Huffman encoding on resultant

data. The Huffman tree is built twice the time and traversal

process is same to build code. While it is expected that

encoded message length will be smaller in every pass of

Repeated Huffman coding, nevertheless encoding the tree

itself will be an overhead in each pass. So repetition count

will depend upon how efficiently we can represent a Huffman

tree. If a Huffman tree can be represented efficiently in

memory, Repeated Huffman coding technique can be applied

in an effective number of times.

Algorithm 1 illustrates how Repeated Huffman coding works.

 Step 1: Scan file from browsing directory

 Step 2: for (Read byte start to end)

 {

 Found-bytes [index] =read byte;

 Frequency [index] =count the

repetition of byte; //filling frequency table

 }

 Step 3: Build Sorted Frequency Table

 Step 4: Build Huffman Tree according to table

 Step 5: Traversal of tree to determine all code

words in bits

 Step 6: Make byte-list reading this bit-list

 Step 7: Scan byte-list

 Step 8: Read byte to again make Frequency Table

go- to Step2

 Step 9: go to Step3

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

8

 Step 10: go to Step4

 Step 11: go to Step5

Step 12: go to Step6

Step 13: Serialize byte-list in a file with extension

*.jts in browsing directory.

Algorithm 1: Repeated Huffman Coding

4.2 Run-Length Huffman
If Huffman coding technique can be applied effectively on a

file after Run-length algorithm, then it is called Run-length

Huffman coding. An algorithm which compresses data using

Run Length encoding then it uses Huffman encoding on

resultant data. First it detects repeating occurrences and build

Huffman tree on optimal characters after that it traverse tree to

make the code. While it is expected that encoded message

length will be smaller in every pass of Run-length Huffman

coding.

Algorithm 3 illustrates how Repeated Huffman coding works.

 Step 1: Scan file from browsing directory

 Step 2: Replace consecutive repeating

occurrences

 Step 3: Insert symbol with occurrence in byte list

 Step 4: Scan byte list

 Step 5: for (Read byte start to end)

 {

 Found-bytes [index] =read byte;

 Frequency [index] =count the

repetition of byte; //filling frequency table

 }

 Step 6: Build Sorted Frequency Table

 Step 7: Build Huffman Tree

 Step 8: Traversal of tree to determine all code

words in bits

 Step 9: Make byte list reading this bit list

 Step 10: Serialize byte list in a file with extension

*.jts in browsing directory

Algorithm 2: Run-length Huffman Coding

4.3 Huffman Run-Length
If Huffman coding technique can be applied effectively on a

file before Run-length algorithm, then it is called Huffman

Run-length coding. An algorithm which compress data using

Huffman encoding then it uses Run Length encoding on

resultant data. First it builds Huffman tree on scanned file

after that it traverse tree to make the code and detects

repeating occurrences. While it is expected that encoded

message length will be smaller in every pass of Huffman Run-

length coding.

Algorithm 2 illustrates how Huffman Run-length coding

works.

 Step 1: Scan file from browsing directory

 Step 2: for (Read byte start to end)

 {

 Found-bytes [index] =read byte;

 Frequency [index] = count the

repetition of byte; //filling frequency table

 }

 Step 3: Build Sorted Frequency Table

 Step 4: Build Huffman Tree according to table

 Step 5: Traversal of tree to determine all code

words in bits

 Step 6: Make byte-list reading this bit-list

 Step 7: Scan byte-list

 Step 8: Replace consecutive repeating

occurrences

 Step 9: Insert symbol with occurrence in binary

array

 Step 10: Form byte array from binary array

 Step 11: Serialize byte array in a file with

extension *.jts in browsing directory

Algorithm 3: Huffman Run-length Coding

5. RESULTS AND DISCUSSION
This paper will establish the effectiveness of Repeated

Huffman coding, Huffman Run-length, Run-length Huffman

and experimental results of these three algorithm. Text and

image file has been used to test those compression methods.

We executed and tested our methods on many standard and

famous images such as "Lena image" and other famous

images. These standard test images have been used by

different researchers [11-14] related to image compression

and image applications. We have used 256×256 image file

size. For assessing effectiveness of methods compression ratio

is used. Besides, pg571 text file have been used [15] by so

many researchers in there research. In addition a fraction of

enwik8 text [16] is used in our work to evaluate the

compression techniques. As enwik8 is a large file so that to

avoid time complexity we have used a smaller part of this file

to analyze the result. Compression ratio is defined as

Compression ratio= 100

Original

CompressedOriginal

File containing Huffman tree has the format that is discussed

in [4] Repeated Huffman coding was first used with normal

coding of the tree and then memory efficient coding was used

to see whether repetition count increases. A Huffman tree

representation is also related to average code length for a

symbol in a message. Average code length can be defined as

Average code length, AL= i

n

i

ilp
1

Where pi is the probability of ith symbol

And li is the code-length of ith symbol.

5.1 Figures and Tables
In this work all (previously mentioned in abstract) algorithms

have implemented using visual studio 2012. Table 1 illustrate

that all data compression techniques achieve negative and

positive results against standard files. Positive results mean it

lessen the file size and negative results mean it increases the

file size. The experimental results of the implemented

algorithms, Huffman, Run-Length, LZW and Shannon Fano

coding as well as proposed methods Repeated Huffman, Run-

Length Huffman and Huffman Run-length for compression

ratio are described in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

9

Table 1. Compression ratio for images and text data in compression methods

File
Original

Size(Bytes)

Compression Ratio (%)

Run-length Huffman LZW
Shannon-

Fano

Repeated

Huffman

Huffman Run-

length

Run-length

Huffman

lena.jpg 8,246 -56.3 0.39 N/A -469 -36.13 -346 0.7

F16.jpg 8,628 -58.2 0.40 N/A -469 -35.2 -772 -1.5

babbon.jpg 11,655 -62.3 1 N/A -467 -25.3 -989 2.3

boat.jpg 20,561 -49.7 1 N/A -465 -13.1 -958 13.9

Peppers.jpg 8,690 -54.1 0.38 N/A -469 -34.6 -2849 1.9

Pg571.txt 3,013,373 -93.8 35.13 41 -317 36.3 -224.24 13.4

Enwik8.txt 16,47,842 -2.9 36.1 44.5 -364 37.2 -180 14.4

The significance of Huffman is its compression ratio is always

positive for all sample file. On the other hand, LZW

methodology only implemented for text documents. From

these two table we can see only Huffman is giving better

result for image file. On the other hand, LZW method is better

for text data. But, Shannon Fano is not giving any good result

for any file format. Again we can see Run-Length method is

not efficient for image compression as it also gives negative

result.

The compression ratio of Repeated Huffman and Huffman

Run-Length is not positive for all sample image file in this

assumption. Only Run-Length Huffman gives some positive

results for standard image file.

Again, we can see the result of Repeated Huffman is the best

for text data where Huffman Run-Length is always negative.

Not only Repeated Huffman but also Run-Length Huffman

gives positive result for text data.

In fig 1 – fig 7 we have shown all the results of compression

methods with each standard files in histogram plot separately.

Which will be helpful for a reader to get a bird‟s eye of view

of all the compression methods in a short time. From

experimental results we can make a summary that Huffman

and Run-Length Huffman gives us the better compression

result comparison with other methods. After using all of the

summary we have made a relationship chart to understand that

which benchmark file is giving better and efficient result for

all of the methods. Where we can easily make a conclusion

that enwik8 text is best one for all the compression techniques

.

Fig 1: Results for lena.jpg

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

10

Fig 2: Results for f16.jpg

Fig 3: Results for babbon.jpg

Fig 4: Results for boat.jpg

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

11

Fig 5: Results for peppers.jpg

Fig 6: Results for pg571.txt

Fig 7: Results for enwik8.txt

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

12

Fig 8 describes that all the compression techniques are giving

better result for enwik8 text file where total 7 methods have

used including recent and proposed compression techniques.

All the compression techniques are described in the previous

chapters. After computing all the results the assumption

comes that all the compression techniques are better for text

file than image file.

Fig 8: Comparison between benchmark files

6. CONCLUSION
Data compression is a process that reduces the data size,

removing the excessive information and redundancy which

consequently reduces the storage space, cost & increases the

Data transfer rate in communication. In this paper recent

methods are combined in a single method. The unique

features of these algorithms are transformation and

compression algorithms; where the transformation rearranged

the data to optimize input for the next sequence of

compression algorithm. Those proposed methods are

experimented with different benchmark files and formats such

as images and text files which represents some prospective

results with few drawbacks in proposed methods. The

comparison of Experiment results with the recent methods and

proposed algorithms hits the expected better compression

ratio (%) for “Repeated Huffman”, which gives better result

even from Huffman for text data. On the other hand Run-

Length Huffman gives a better result in comparison with other

proposed method for both image and text data. But Huffman

gives better result for all the image and text files which can be

seen in table given in figures and tables section. The main

drawback experienced in this paper is the compression ratio

(%) of “Huffman + Run-length” algorithm, which only

manages a Compression ratio (%) in negative magnitude.

Besides, Shannon fano always gives the worst result among

all the methods. At long last, it remains space for the future

research and development on several fields which can be

carried on like LZW Huffman, Huffman LZW, LZW Run-

Length and Run-Length LZW compression techniques.

Besides, compression coding video and audio data and

efficient decoding technique for all the proposed methods will

be carried on in future works.

7. ACKNOWLEDGMENTS
Our thanks to Almighty and my supervisor for his continuous

guidance, encouragement, and patience, and for giving me the

opportunity to do this work.

Finally, my deepest gratitude and love to my parents for their

support, encouragement, and endless love.

8. REFERENCES
[1] Connel, J. B., “A Huffman-Shannon-Fano Code”, Proc.

IEEE 61 (Jul. 1973), 1046-1047.

[2] Gallager, R. G., “Variations on a theme by Huffman”,

IEEE Trans. Inf. Theory IT-24, 6(Nov. 1978), 668-674.

[3] Hashemian, R., “Memory efficient and high-speed

search Huffman coding”, IEEE Trans. Comm.

43(10)(1995)2576-2581.

[4] M. N. Huda, "Study on Huffman Coding," Graduate

Thesis, 2004.

[5] S. Porwal, Y. Chaudhary, J. Joshi and M. Jain , “ Data

Compression Methodologies for Lossless Data and

Comparison between Algorithms” International Journal

of Engineering Science and Innovative Technology

(IJESIT) Volume 2, Issue 2, March 2013.

[6] Campos, A. S. E. Run Length Encoding. Available:

http://www.arturocampos.com/ac_rle.html (last accessed

July 2012).

[7] WELCH, T. A. 1984.” A technique for high-

performance data compression”. IEEE Comput. 17, 6, 8–

19. 9.

[8] ZIV, J. AND LEMPEL, A. 1978. “Compression of

individual sequences via variable-rate coding”. IEEE

Trans. Inform. Theory 24, 5, 530–536.

[9] ZIV, J. AND LEMPEL, A. 1977. A “universal algorithm

for sequential data compression”. IEEE Trans. Inform.

Theory 23, 3, 337–343.

[10] S. Shanmugasundaram and R. Lourdusamy, “A

Comparative Study of Text Compression Algorithms”

International Journal of Wisdom Based Computing, Vol.

1 (3), December 2011.

[11] Kao, Ch., H, and Hwang, R. J.: 'Information Hiding in

Lossy Compression Gray Scale Image', Tamkang Journal

of Science and Engineering, Vol. 8, No 2, 2005, pp. 99-

108.

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 5, February 2017

13

[12] Ueno, H., and Morikawa, Y.: 'A New Distribution

Modeling for Lossless Image Coding Using MMAE

Predictors'. The 6th International Conference on

Information Technology and Applications, 2009.

[13] Grgic, S., Mrak, M., and Grgic, M.: 'Comparison of

JPEG Image Coders'. University of Zagreb, Faculty of

Electrical Engineering and Computing Unska 3 / XII,

HR-10000 Zagreb, Croatia.

[14] http://sipi.usc.edu, accessed Mar 2011.

[15] http://www.gutenberg.org/cache/epub/571/pg571.txt.

[16] Fano R.M., “The Transmission of Information”,

Technical Report No. 65, Research Laboratory of

Electronics, M.I.T., Cambridge, Mass.; 1949.

[17] Buro. M.: „On the maximum length of Huffman codes‟,

Information Processing Letters, Vol. 45, No.5, pp. 219-

223, April 1993.

[18] Chen, H. C. and Wang, Y. L. and Lan, Y. F.: „A Memory

Efficient and Fast Huffman Decoding

Algorithm‟Information Processing Letters, Vol. 69, No.

3, pp. 119- 122, February 1999.

[19] Ostadzadeh, S. A. and Elahi, B. M. and Zeialpour, Z. T,

and Moulavi, M. M and Bertels, K. L. M, : A Two Phase

Practical Parallel Algorithm for Construction of Huffman

Codes, Proceedings of International Conference on

Parallel and Distributed Processing Techniques and

Applications, pp. 284-291, Las Vegas, USA, June 2007.

[20] Wong, S. and Cotofana, D. and Vassiliadis, S.: General-

Purpose Processor Huffman Encoding Extension,

Proceedings of the International Conference on

Information Technology: Coding and Computing (ITCC

2000), pp. 158-163, Las Vegas, Nevada, March 2000.

[21] Huffman, D. A. : „A Method for the Construction of

Minimum Redundancy Codes", Proc. IRE, Vol. 40, No.

9, pp. 1098-1101, September 1952.

[22] Doa'a Saad El-Shora & Ehab Rushdy Mohamed. A

"Performance Evalution of Data Compression

Techniques Versus Differenct Types of Data" . Article :

(IJCSIS) International Journal of Computer Science and

Information Security, Vol. 11, No. 12, December 2013

[23] Kashfia Sailunaz, Mohammed Rokibul Alam Kotwal and

Dr.Mohammad Nurul Huda. Article: Data Compression

Considering Text Files. International Journal of

Computer Applications 90(11):27-32, March 2014. Full

text available.

IJCATM : www.ijcaonline.org

http://www.gutenberg.org/cache/epub/571/pg571.txt

