Generalized \((k, r)\) – Lucas Numbers

Ashwini Panwar
School of Studies in Mathematics, Vikram University Ujjain, India

Kiran Sisodiya
School of Studies in Mathematics, Vikram University Ujjain, India

G.P.S. Rathore
Department of Mathematics
College of Horticulture, Mandsaur, India

ABSTRACT
In this paper, we have defined new kinds of \((k, r)\)-Lucas number. But the difference among these sequences comes to the forefront not only through the value of the natural number \(k\) but also through the value of new parameter which we find involved in the definition of this distance. Consequently we have various properties of these numbers for study.

General Terms
Number theory, Fibonacci numbers, Lucas numbers, Pell numbers, Golden Ratio, Golden Sections, Applied Mathematics et. al.

Keywords
\(k\)- Lucas Number, \((k, r)\) Lucas Number, Binet’s Formula, Generating engines.

1. INTRODUCTION
Classic Fibonacci numbers and classic Lucas numbers have charismatic properties and researcher have been shown their generalization and implemented in every field of science and arts. Classical Lucas numbers have been generalized in various way [6]. One of these generalizations that have been of a great interest lately among mathematical researchers is one that paves a way to the \(k\)- Lucas number.

1.1 Definition
For every natural numbers, the \(k\)- Lucas sequence \(L_k = \{L_{k,n}\}\) is defined by the recurrence relation[6]

\[L_{k,n+1} = kL_{k,n} + L_{k,n-1}\] for \(n \geq 1\)
\[L_{k,0} = 2, L_{k,1} = k\]

With initial conditions \(L_{k,0} = 2, L_{k,1} = k\)

From above definition the general expression of first \(k\)- Lucas numbers are presented in Table 1:

<table>
<thead>
<tr>
<th>Table 1: (k) - Lucas numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{k,1} = k)</td>
</tr>
<tr>
<td>(L_{k,2} = k^2 + 2)</td>
</tr>
<tr>
<td>(L_{k,3} = k^3 + 3k)</td>
</tr>
<tr>
<td>(L_{k,4} = k^4 + 4k)</td>
</tr>
<tr>
<td>(L_{k,5} = k^5 + 5k^2 + 5k)</td>
</tr>
<tr>
<td>(L_{k,6} = k^6 + 6k^4 + 9k^2 + 2)</td>
</tr>
<tr>
<td>(L_{k,7} = k^7 + 7k^5 + 14k^3 + 7k)</td>
</tr>
</tbody>
</table>

If \(k = 1\), the classical Lucas sequence is obtained \(\{2, 1, 3, 4, 7, 11, 18, \ldots\}\)

If \(k = 2\), the Pell – Lucas sequence is obtained \(\{2, 2, 6, 14, 34, 82, 198, \ldots\}\)

2. GENERALIZED \((k, r)\) LUCAS NUMBERS
This section witnesses the application of the definition of \(r\) – distance to the \(k\)- Lucas numbers in a such peculiar way that it generalizes the earlier findings [2, 4]. The intensely appealing formula are those which are used to calculate the general term of the sequences produced by the above definition. Moreover it supports in finding out the sum of the first \(n\) terms.

2.1 Definition
We define the generalized \((k, r)\) Lucas number \(L_{k,r}(n)\) for the natural numbers \(k \geq 1, n \geq 0, r \geq 1\) by the recurrence relation

\[L_{k,r}(n) = kL_{k,r-1}(n) + L_{k,r-2}(n)\] for \(n \geq r\)
with the initial conditions \(L_{k,r}(n) = 2, n = 0, 1, 2, \ldots, r - 1\), except \(L_{k,1}(1) = k\).

So, \(iL_{k,r}(n) = \left\lfloor L_{k,r}(n)/r!N\right\rfloor\), the expressions of the sequences obtained for \(r = 1, 2, \ldots\) are

\(L_k(1) = \{2, k, k^2 + 2, k^3 + 3k, k^4 + 4k^2 + 2, k^5 + 5k^3 + 5k, k^6 + 6k^4 + 9k^2 + 2, k^7 + 7k^5 + 14k^3 + 7k, \ldots\}\)
\(L_k(2) = \{2, 2, 2k + 2, 2k^2 + 4k + 2, 2k^3 + 6k^2 + 4k + 2, 2k^4 + 8k^3 + 8k + 2, \ldots\}\)
\(L_k(3) = \{2, 2, 2, 2k + 2, 2k^2 + 4k + 2, 2k^3 + 4k + 2, 2k^4 + 6k + 2, \ldots\}\)
\(L_k(4) = \{2, 2, 2, 2, 2k + 2, 2k^2 + 4k + 2, 2k^3 + 6k + 2, 2k^4 + 8k + 2, 2k^5 + 12k^2 + 12k + 2, \ldots\}\)
\(L_k(5) = \{2, 2, 2, 2, 2, 2k + 2, 2k^2 + 4k + 2, 2k^3 + 6k + 2, 2k^4 + 8k^2 + 8k + 2, 2k^5 + 12k^3 + 12k^2 + 12k + 2, \ldots\}\)

For \(k = 1, 2, 3\), we obtain distinct integers sequences which is

<table>
<thead>
<tr>
<th>Table 2 (1, r) –Lucas numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
</tr>
<tr>
<td>(L_{1,1}(n))</td>
</tr>
<tr>
<td>(L_{1,2}(n))</td>
</tr>
<tr>
<td>(L_{1,3}(n))</td>
</tr>
<tr>
<td>(L_{1,4}(n))</td>
</tr>
<tr>
<td>(L_{1,5}(n))</td>
</tr>
</tbody>
</table>
L_{0}(1) is the classical Lucas sequence \(L = \{ L_n \} = \{ 2, 1, 3, 4, 7, 11, 18, 29, \ldots \} \)

Table 3 (2, r) Lucas Numbers

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{2,0}(1))</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>34</td>
<td>82</td>
<td>198</td>
<td>478</td>
</tr>
<tr>
<td>(L_{2,0}(2))</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>34</td>
<td>82</td>
<td>198</td>
<td>478</td>
</tr>
<tr>
<td>(L_{2,0}(3))</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>34</td>
<td>82</td>
<td>198</td>
<td>478</td>
</tr>
<tr>
<td>(L_{2,0}(4))</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>34</td>
<td>82</td>
<td>198</td>
<td>478</td>
</tr>
<tr>
<td>(L_{2,0}(5))</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>34</td>
<td>82</td>
<td>198</td>
<td>478</td>
</tr>
</tbody>
</table>

Table 4 (3, r) Lucas Number

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>
| \(L_{3,0}(1) \) | 2 | 3 | 11 | 36 | 119 | 393 | 1298 | ...
| \(L_{3,0}(2) \) | 2 | 3 | 11 | 36 | 119 | 393 | 1298 | ...
| \(L_{3,0}(3) \) | 2 | 3 | 11 | 36 | 119 | 393 | 1298 | ...
| \(L_{3,0}(4) \) | 2 | 3 | 11 | 36 | 119 | 393 | 1298 | ...
| \(L_{3,0}(5) \) | 2 | 3 | 11 | 36 | 119 | 393 | 1298 | ...

3. PROPERTIES OF (k, r) LUCAS SEQUENCE

3.1 First Explicit Formula for (k, r) – Generalized Lucas Numbers

The French mathematician Binet’s dropped out two analytical formulas for the Fibonacci and Lucas numbers. In our case, Binet’s formula favors us to express the generalized (k, r) Lucas numbers in function of the roots \(a_1 \) and \(a_2 \) of the following characteristic equation, associated to the recurrence relation

\[a^2 - k \alpha - 1 = 0 \]

where \(\alpha = \frac{k+\sqrt{k^2+4}}{2} \).

\[a_1, a_2 = k, \]

\[a_1 - a_2 = \sqrt{k^2+4}, \ a_1 a_2 = -1. \]

Proposition 1 (Binet’s Formula)

The \(n \)-th Generalized (k, r) Lucas number is given by

\[L_{k,n}(r) = a_1^n + a_2^n. \]

(4)

Proof.

Since equation (3) has two distinct roots, then the sequence is

\[L_{k,n}(r) = C_1 a_1^n + C_2 a_2^n \]

(5)

is the solution of the equation (3). Giving to \(n \) the values \(n = 0, 1 \) and \(r = 1, 2 \) respectively. Then we get values \(C_1 = C_2 = 1 \)

using in (5), we get

\[L_{k,n}(r) = a_1^n + a_2^n. \]

3.2 Catalan’s Identity

In 1879 a Belgian Mathematician Eugene Charles Catalan inaugurated the Catalan’s identity. Now we introduce Catalan’s identity for (k, r) Lucas number.

Proposition 2. (Catalan’s Identity)

\[L_{k,n-m}(r). L_{k,n+m}(r) - L_{k,n}^2(r) = (-1)^{n-m} L_{k,2m}(r) + 2(-1)^{n+1}. \]

(6)

Proof.

Using Binet’s formula, we get

\[L_{k,n-m}(r). L_{k,n+m}(r) - L_{k,n}^2(r) = [a_1^{n-m} + a_2^{n+m}][a_1^{n+m} + a_2^{n-m}] - [a_1^n + a_2^n]^2 \]

\[= (-1)^{n-m}[a_1^{2m} + a_2^{2m}] + 2(-1)^{n+1} \]

\[= (-1)^{n-m} L_{k,2m}(r) + 2(-1)^{n+1}. \]

3.3 Cassini’s Identity

Jean-Dominique Cassini brought to light this identity in 1680.

Proposition 3. (Cassini’s Identity)

\[L_{k,n-1}(r). L_{k,n+1}(r) - L_{k,n}^2(r) = (-1)^{n-1} L_{k,2}(r) + 2(-1)^{n+1}. \]

(7)

Proof.

In (6), put \(m = 1 \), to get above result.

3.4 D’Ocagne’s Identity

Proposition 4. (d’Ocagne’s Identity)

If \(m > n \), then

\[L_{k,m}(r). L_{k,m+1}(r) - L_{k,n+1}(r). L_{k,n}(r) = (-1)^m(\sqrt{k^2+4}) L_{k,m}(r) - (k + \sqrt{k^2+4})^{m-n}. \]

(8)

Proof.

\[L_{k,m}(r). L_{k,m+1}(r) - L_{k,n+1}(r). L_{k,n}(r) = [a_1^m + a_2^m] [a_1^{m+1} + a_2^{m+1}]. [a_1^{n+1} + a_2^{n+1}]. [a_1^n + a_2^n] \]

\[= (a_1 a_2)^m (a_1 - a_2) (a_2^{m-n} - a_1^{m-n}) \]

\[= (-1)^m (\sqrt{k^2+4}) L_{k,m}(r) - 2(a_1 a_2)^{m-n} \]

\[= (-1)^m (\sqrt{k^2+4}) L_{k,m}(r) - (k + \sqrt{k^2+4})^{m-n}. \]

3.5 Limit of the two consecutive terms

In this section we break down that the limit of the quotient of two consecutive terms is equal to the positive root of the corresponding characteristic equation.

Proposition 5.

\[\lim_{m \to \infty} \frac{L_{k,n+1}(r)}{L_{k,n}(r)} = a_1. \]

(9)

Proof. We have

\[\lim_{m \to \infty} \frac{L_{k,n+1}(r)}{L_{k,n}(r)} = \lim_{n \to \infty} \frac{(a_1^{n+1} + a_2^{n+1})}{(a_1^n + a_2^n)} \]

\[= \lim_{n \to \infty} \frac{a_1^{n+1} + (a_1 a_2)^n a_2^{n+1}}{a_1^n + (a_1 a_2)^n a_2^n} \]

Since \(a_2 < a_1 \), then \(\lim_{n \to \infty} (a_1 a_2)^n = 0 \),

We get

\[\lim_{m \to \infty} \frac{L_{k,n+1}(r)}{L_{k,n}(r)} = a_1. \]
Also it can be shown easily

\[\lim_{n \to \infty} \frac{L_{kn}(r)}{L_{kn+1}(r)} = \frac{1}{x}, \]

(10)

Proof.
It can also be shown like Proposition 5.

3.6 Generating function for the (k, r)-Generalized Lucas Number

In below paragraph, the generating function for the (k, r)-Lucas sequences is given.

Proposition 7.

Generating function of sequence

\[aL_k(r) = \{L_{kn}(r) \} \]

is given by

\[G(L_{kn}(r); x) = \frac{2 + 2x}{1 - x^2 - krx^2}. \]

(11)

Proof.

\[G(L_{kn}(r); x) = \sum_{n=0}^{\infty} L_{kn}(r)x^n \]

\[= L_{k,0}(r)x^0 + L_{k,1}(r)x^1 + L_{k,2}(r)x^2 + \]

\[L_{k,3}(r)x^3 + \cdots \]

\[= 2 + 2x + \sum_{n=2}^{\infty} L_{kn}(r)x^n \]

\[= 2 + 2x + \sum_{n=2}^{\infty} \left[kl_{kn-2}(r) + L_{kn-2}(r) \right] x^n \]

\[= 2 + 2x + kx^2 \sum_{n=2}^{\infty} kl_{kn-2}(r)x^{n-2} + \]

\[x^2 \sum_{n=2}^{\infty} L_{kn-2}(r)x^{n-2} \]

\[= 2 + 2x + kx^2 \sum_{n=0}^{\infty} kl_{kn}(r)x^n + x^2 \sum_{j=0}^{\infty} L_{kj}(r)x^j \]

where \(p = n - r, n = 0, 1, 2, 3, \ldots \) and \(r = 1, 2, 3, \ldots \) and \(j = n - 2 \)

so \((1 - kx^2 - x^2) \sum_{n=0}^{\infty} L_{kn}(r)x^n = 2 + 2x \)

we have \(L_{kn}(r) = \frac{2 + 2x}{1 - x^2 - krx^2}. \)

4. ACKNOWLEDGEMENT

We would like to thank the anonymous referees for numerous helpful suggestions

5. REFERENCES

