
International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 8, February 2017

39

DoT(Database for IoT): Requirements and Selection

Criteria

Trupti Gurav
Asst.Professor

Department of Computer Engg
SKN College of Engg

Pune, Maharashtra, India

R. A. Kudale
Asst.Professor

Department of Computer Engg
SKN College of Engg

Pune, Maharashtra, India

ABSTRACT

The Internet of Things (IoT) is the dynamic and global

network infrastructure where smart interconnected objects

continuously generate massive amount of data which then

transmitted over internet. A lot of work is done on building

low cost small devices, their connectivity and communication.

However there is a little work done on data management as

well as the type of database systems (DoT: Database for IoT)

that must be used in IoT. DoT requirements are different than

the traditional database requirements. WSN Data management

solutions are applied to Iot but WSN is just a part of IoT and it

needs another solution for data management. In this paper we

will focus on different types of IoT data, data management

and their challenges in IoT . This paper also considers

database requirements for IoT and focuses on selection of

DoT by considering type of devices and their capabilities.

Keywords

Database management challenges, Internet of Things,

Database for IoT (DoT) .

1. INTRODUCTION
With a cell phone in every pocket, humans are now able to

communicate with friends, coworkers and family like never

before. However, the accessibility and portability of the

internet has not just changed the way humans communicate

— with the availability of inexpensive network cards and high

coverage networks, machines are gradually catching up to

human usage of the internet. This paradigm shift, from human

to machine domination of Internet traffic, is termed the

Internet of Things (IoT). The „thing‟ in IoT could be a person

with a heart monitor or an automobile with built-in-sensors,

i.e. objects that have been assigned an IP address and have the

ability to collect and transfer data over a network without

manual assistance or intervention. The embedded technology

in the objects helps them to interact with internal states or the

external environment, which in turn affects the decisions

taken. In IoT the devices, traditionally considered as

unintelligent, have started communication through internet.

For the end user, everything appears to happen automatically,

but in reality it needs coordination of all actions and ensuring

smooth operations of these devices through web services and

databases. At any given time, the IoT ecosystem will have

multiple devices, systems and tools that will generate

significant volumes of data. IoT systems are either closed

system , meaning the nature of the things making up the

system is known or wide- open means creators are not able to

anticipate the universe of “things” that could be connected, or

their quantity [1] . IoT system generates massive amount of

data which later on used for further processing. Storing,

processing and retrieving data altogether is called Data

Management. In the context of IoT, data management should

act as a layer between the objects and devices generating the

data and the applications accessing the data for analysis

purposes and services.

It has been projected recently that there is a renewed interest

in database systems research that focuses on alternate models

other than the traditional relational model. The new database

for IoT (DoT) needs some aspects such as the utilization of

remote storage at the Things layer, non-structural data

support, relaxation of the Atomicity, Consistency, Isolation,

and Durability (ACID) properties to trade-off consistency and

availability, and integration of energy efficiency as a data

management design primitive [2].

IoT data management framework from the perspective of IoT

architecture is proposed in [3]. According to [3] both offline

and real-time data cycles need to be supported in an IoT-based

data management system, to accommodate the various data

and processing needs.

Section 1 discusses about data management in IoT and how it

is different from traditional data management. Section 2

focuses on database requirements and selection criteria in IoT.

2. DATA MANAGEMENT
Data management in IoT systems takes place at two different

levels.

First Data management takes place at device level (ie. Field

deployed devices) where online, real time data is collected.

This data is then propagated to other smart objects or to

server/cloud. Second data management is at cloud/server level

which handles the mass storage and in-depth analysis of IoT.

The first data management task is fundamentally simple: It

involves collection of small subsets of data, analysing them,

and giving respond with automated, real-time control actions

in each case. As an embedded device is designed for a limited

range of jobs, it becomes easy for developer to know quite a

lot about its data, including the types, relationships, volume,

and velocity of data in turn make it easier to assess and direct

what actions are to be taken. The second operation at an

aggregation point on the cloud or in communication with it

must collect and manage data from a large number of field

devices, analyse it, and determine if it has actionable

intelligence that must either be responded to quickly or passed

along for analysis or action in the future.

Modest amount of data is managed at field-deployed devices,

they do propagation of query requests and result to and from

sensors and smart objects. But huge amount of data is handled

at an aggregation point (the cloud being the most obvious

example).In short first level of data management is

communication intensive whereas second level is storage

intensive.

https://en.wikipedia.org/wiki/Internet_of_things#_blank
https://en.wikipedia.org/wiki/Cloud_computing#_blank

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 8, February 2017

40

2.1 IoT data Characteristics
IoT systems have massive and growing number of data

sources; sensors, RFIDs, embedded systems, and mobile

devices. Data is generated by millions of these data sources

connected over network and hence the amount of data

generated is massive and heterogeneous in nature.

Cooper, J., & James[2] have categorized the data into the

following areas: RFID, address/unique identifiers, descriptive

data, positional and environmental data, sensor data, historical

data, physics models, and command data.

Based on purpose of IoT system, devices are periodically

sending observations or keeping track of some abnormal

behaviour. Thus data gathered is geographically-dispersed

real-time data. Along with all this data every object or thing

has its own metadata like its identification, location, processes

and services provided by that thing etc.

2.2 Lifecycle of IoT data
The lifecycle of data within an IoT system—illustrated in

Figure 1—proceeds from data production to aggregation,

transfer, optional filtering and preprocessing, and finally to

storage and archiving. Querying and analysis are the end

points that initiate (request) and consume data production, but

data production can be set to be “pushed” to the IoT

consuming services [4]. Production, collection, aggregation,

filtering, and some basic querying and preliminary processing

functionalities are considered online, communication-

intensive operations. Intensive preprocessing, long-term

storage and archival and in-depth processing/analysis are

considered offline storage-intensive operations.[3]

2.3 Data-management Challenges
By knowing the purpose of IoT and the type of devices used

in the IoT following are the data management challenges.

1. Data diversity: Internet of Things involves weaving

together multiple connected devices, the data

requirements are defined by weaving together

disparate data sources. It requires the integration of

customer data, billing information, device data, web

services data (e.g. weather and traffic data), and

more.

2. Data volume and velocity: The two primary

characteristics of the data flood are volume and

velocity. Devices generate a flood of data that must

be ingested, evaluated for trend data and anomalies,

and used to trigger various actions. The velocity

challenge puts a massive load on data management

technologies, because the data may be pouring in at

a rate of millions of elements a second. The data

must be stored to provide a historical context for

evaluating trends over time.

Fig 1: IoT data Lifecycle

3. Real-time data processing: Internet of Things

system has the ability to respond to users actions,

more or less in real-time. Since this response is

often an orchestrated effort leveraging a variety of

device inputs and other data, the ability to process

the data and respond in real-time puts an extra load

on the data infrastructure.

4. Data integration: IoT data has the multiple use

cases. Device data may be used operationally—

triggering certain actions in real-time—and it may

also be leveraged to glean analytic insight regarding

trends and for predictive purposes. These demands

typically require very different tools, and introduce

a significant data integration challenge.

3. DATABASE FOR IOT (DoT)

3.1 Dot Requirements
The Internet of Things success relies on the data that

applications create; however, vetting a database for IoT apps

requires criteria totally different from traditional enterprise

databases. Database system should be able to handle all

different unknown data. Following are the DoT requirements.

1. Scalability: A database for IoT applications must

be scalable. In Iot massive and growing number of

data sources collects massive amount of data which

the traditional RDBMS cannot be scaled to manage.

Data will need to be managed via responsible local

ownership. Local owners will decide which data and

services to make available to global network[2].

DBMS used on devices and/or gateways must be

able to handle the workload.

2. Real time data handling and processing: Sensors

used in IoT system gathers some real time data for

monitoring all sorts of environmental phenomena,

for example, weather, temperature, and noise.

Decisions are made based on captured data. Sensors

and grid technology can be used to capture vast

amounts of data very quickly, but querying and

mining these can be problematic, particularly when

the analysis must be achieved in real-time. Big data

stores like Hadoop provide a low-cost high-volume

data warehouse, but it doesn‟t address high-velocity

data or ad hoc analytic processing.

3. Capability to handle heterogeneous data: DBMS

must be able to handle data diversity, data volume

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871070/figure/f1-sensors-13-15582/

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 8, February 2017

41

and velocity. Big data database supports multiple

formats of data, facilitates faster storage of data,

meets scalability requirements and ensures data

consistency. Given the characteristics of data

generated in IoT, big data databases are potentially

the suitable options to consider. However, while the

big data appliances like Hadoop meet requirements

on analytics such as the trend analysis quite well, it

do not meet up to the demands and rigor of online

data processing. NoSQL databases are not designed

to handle the analytic processing of the data or

joins, which are common requirements for Internet

of Things applications.

If a new device gets added into IoT system and database

system has to accommodate

New and unforeseen data then the obvious challenges are:

1. The ability The ability to ingest new data that

has a previously unknown structure

2. The ability to execute analytics on #1

3. The ability to integrate analytics on #1 with

analytics on previously known data

#1 is handled well by NoSQL DBMSs. Or RDBMS via DDL.

RDBMS handle structure of data through the database

dictionary whereas NoSQL DBMSs handle this through

different meta data.

4. Transactional integrity: In traditional database

systems transaction management mechanisms

guarantee the ACID properties in order to enforce

overall data integrity [4]. ACID properties are

atomicity, consistency, isolation, and durability. A

transaction must complete in its entirety or not at

all, a transaction must leave the database in a

consistent state, transactions should not show other

transactions, and intermediate results and changes

made by a transaction must be permanent. Dynamic

nature of IoT systems makes it difficult to maintain

ACID properties. If IoT system is closed (used for

specific purpose) then these traditional methods can

apply. But for wide-open IoT systems these ACID

properties must be relaxed. IoT sensors generate

data rapidly, they do not entail the same kinds of

transactions one finds in traditional enterprise

business applications. This reduces the need for

ACID transactions. The execution of distributed

queries is based on the transparency principle,

which dictates that the database is still viewed

logically as one centralized unit, and the ACID

properties are guaranteed via the two-phase commit

protocol. Sometimes innovative applications and

services may require location and context

awareness. In this case transparency may not even

be required in IoT.

5. High availability: If a node in the database cluster

is down, it should still be able to accept read and

write requests. DoT must be built to eliminate single

points of failure and are optimized to ensure that the

end user does not experience an interruption in

service or degradation in user experience when

hardware or networks fail. High availability can be

ensured with redundancy features as done in most

big data databases. Another approach to ensuring

high availability with regards to writes is to use a

distributed messaging system such as Apache Kafka

or Amazon Kinesis, which is based on Apache

Kafka[5]. These systems can accept writes at high

volumes and store them persistently in a publish-

and-subscribe system. If a server is down or the

volume of writes is too high for the distributed

database to ingest in real time, data can be stored in

the messaging system until the database processes

the backlog of data or additional nodes are added to

the database cluster.

6. Spatiotemporal scalability: IoT systems gather

real world data which shows spatial as well as

temporal characteristics. Spatiotemporal phenomena

have become an important aspect of many of the

real world applications. Many data objects in real

world have attributes related to both space and time,

and managing them using existing RDBMS is

complex and in-efficient, as these objects which

show spatio-temporal behavior are multi-

dimensional in nature.

7. Fast and reliable: Users of IoT systems needs

different data as per the context. A casual user may

need some information whereas an expert user

needs data for analysis. So the query language for

IoT must produce this data at very fast rate. The

quantities of data are so vast that it would be

unrealistic to expect any sort of uniform structure

except for closed systems. Current popular query

languages like SQL rely on structured data. Semi-

structured data on internet can be represented in

Extensible Markup Language (XML) It is a well-

accepted technology that supports interoperability at

a technical rather than a semantic level. XQuery, a

language for querying XML, can combine

documents, web pages, and links to relational

databases[6]. Query languages for semi-structured

data usually adopt an underlying hierarchical data

model, for instance a unidirectional graph. There

are, however, inherent problems with hierarchical

data models, such as, difficulty in representing

many-to-many relationships. So query languages for

semi-structured data in IoT must be good enough to

provide fast response to users.

3.2 Selection of DoT
In [1] characteristics of field deployed devices and the cloud

are considered for database selection. Selection of DBMS will

take place at two ends, first DBMS on field-deployed devices

and second cloud DBMS. If IoT is closed system it won‟t

need much scaling and database system would not necessarily

be different. But if IoT system is wide open , DBMS should

be able to handle data which may be unknown and database

system on field-deployed devices may be different from the

database system in the cloud. In order to properly handle IoT

data and its requirements, it is critical to find the right IoT

database. There are many factors to keep in mind when

choosing a database for an IoT application, and they do not

always align with the needs of other more traditional

enterprise databases.

Field-deployed devices in the IoT are resource constraint. For

such devices memory is less and OS is a less resource hungry.

So if we are selecting a database system for field-deployed

devices the database system should:

https://en.wikipedia.org/wiki/Data_dictionary#_blank
https://en.wikipedia.org/wiki/Data_dictionary#_blank
https://en.wikipedia.org/wiki/Data_dictionary#_blank
http://whatis.techtarget.com/definition/sensor
http://searchsqlserver.techtarget.com/definition/ACID
http://whatis.techtarget.com/definition/Apache-Kafka
http://searchaws.techtarget.com/definition/Amazon-Kinesis
http://searchsqlserver.techtarget.com/definition/database

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 8, February 2017

42

1. Have small code size.

2. Use little stack

3. Preferably allocate no heap memory.

4. Have no or minimal external dependencies.

5. Have built-in ability to replicate data(to a gateway

or directly to cloud)

6. Replication should be “open” ,meaning be able to

replicate to a different database system

7. Have built-in security features.

8. Nice to have:

a. Built-in analytics to aggregate data prior to

replicating it.

b. Ability to define schema

c. Ability to operate entirely in memory.

A database system for the cloud is expected to handle

heterogeneous data at a large scale, as well as execute

analytics and will, therefore, need ample resources. So cloud

based DBMS should be able to take maximum advantage of

the resources available, including being able to scale

horizontally (across cores, CPUs, and servers).

Databases like Oracle, MS SQL Server and IBM DB2 have

scalability, spatial, temporal and in-memory technology and

also support big data. However, client will have to pay a

higher price to get enough IoT scalability out of them. Most

NoSQL databases including MongoDb and TempoDB claim

that they can handle the time stamped data, scalability, rich

query and index support but they do not have required

features in terms of transactional integrity features.[7]

4. CONCLUSION
The Internet of Things generates new streams of data

previously unimaginable, both in variety and quantity. DoT

should be scalable, fast and reliable. Current open source big

data and NoSQL databases have little support for these

requirements and traditional databases also have issues with

the same. Based on understating of the IoT requirements,

correct databases must be selected. We have also mentioned

selection criteria for DoT. DBMS at field deployed devices

needs to operate in a constrained environment. A cloud

DBMS needs to be able to effectively and efficiently utilize

the ample resources available to it. There is no one specific

database of IoT systems as the emerging database

technologies have to handle complex IoT operations. It is

important to decide database architecture for IoT systems. It

needs identifying the data storage requirement and then

defining the relevant database architectures to cater to future

IoT related requirements. The various client/server,

distributed, or embedded in-memory/in-process DBMS

architectures are targeted for roles at different levels in the

IoT, on the devices, or cloud level for data management. Thus

at the end we can say that no one database system will be able

to span the range of applications that will emerge, requiring

developers to not depend on just one but several, and pick

database as per the requirement.

5. REFERENCES
[1] Bowman, M., Debray, S. K., and Peterson, L. L. 1993.

Reasoning about naming systems. .

[2] Ding, W. and Marchionini, G. 1997 A Study on Video

Browsing Strategies. Technical Report. University of

Maryland at College Park.

[3] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new

device for three-dimensional input. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems

[4] Tavel, P. 2007 Modeling and Simulation Design. AK

Peters Ltd.

[5] Sannella, M. J. 1994 Constraint Satisfaction and

Debugging for Interactive User Interfaces. Doctoral

Thesis. UMI Order Number: UMI Order No. GAX95-

09398., University of Washington.

[6] Forman, G. 2003. An extensive empirical study of

feature selection metrics for text classification. J. Mach.

Learn. Res. 3 (Mar. 2003), 1289-1305.

[7] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[8] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions", Journal of Systems and Software, 2005, in

press.

[9] Spector, A. Z. 1989. Achieving application requirements.

In Distributed Systems, S. Mullender

IJCATM : www.ijcaonline.org

