
International Journal of Computer Applications (0975 – 8887) 

Volume 159 – No 9, February 2017  

28 

Secured Data Sharing System using Key Aggregate 

Cryptosystem in Cloud 

Sasiniveda G. 
Assistant Professor, Sri Krishna  

College of Engineering and Technology,  
Kuniyamuthur, 

Coimbatore-641008,Tamil Nadu 

 
 
ABSTRACT 

Data sharing is an important functionality in cloud storage. In 

this paper, it shows how to securely, efficiently, and flexibly 

share data with others in cloud storage. It describes new 

public-key cryptosystems that produce constant-size cipher 

texts such that efficient delegation of decryption rights for any 

set of cipher texts is possible. The novelty is that one can 

aggregate any set of secret keys and make them as compact as 

a single key, but encompassing the power of all the keys being 

aggregated. In other words, the secret key holder can release a 

constant-size aggregate key for flexible choices of cipher text 

set in cloud storage, but the other encrypted files outside the 

set remain confidential. This compact aggregate key can be 

conveniently sent to others or be stored in a smart card with 

very limited secure storage. It provides formal security 

analysis of our schemes in the standard model. It also describe 

other application of our schemes. In particular, our schemes 

give the first public-key patient-controlled encryption for 

flexible hierarchy, which was yet to be known. The novelty is 

that one can aggregate any set of secret keys and make them 

as compact as a single key, but encompassing the power of all 

the keys being aggregated. In other words, the secret key 

holder can release a constant-size aggregate key for flexible 

choices of cipher text set in cloud storage, but the other 

encrypted files outside the set remain confidential. 

Keywords 

VirtualMachines, Cryptography, Encryption, Decryption, 

Cipertext, Plain text, Random oracles  

1. INTRODUCTION 
Cloud storage is gaining popularity recently. In enterprise 

settings, see the rise in demand for data outsourcing, which 

assists in the strategic management of corporate data. It is also 

used as a core technology behind many online services for 

personal applications. Nowadays, it is easy to apply for free 

accounts for email, photo album, file sharing and/or remote 

access, with storage size more than 25 GB. Together with the 

current wireless technology, users can access almost all of 

their files and emails by a mobile phone in any corner of the 

world. Considering data privacy, a traditional way to ensure it 

is to rely on the server to enforce the access control after 

authentication, which means any unexpected privilege 

escalation will expose all data. In a shared-tenancy cloud 

computing environment, things become even worse. Data 

from different clients can be hosted on separate virtual 

machines (VMs) but reside on a single physical machine. 

Data in a target VM could be stolen by instantiating another 

VM coresident with the target one [2]. Regarding availability 

of files, there are a series of cryptographic schemes which go 

as far as allowing a third-party auditor to check the 

availability of files on behalf of the data owner without 

leaking anything about the data [3], or without compromising 

the data owners anonymity [4]. Likewise, cloud users 

probably will not hold the strong belief that the cloud server is 

doing a good job in terms of confidentiality. A cryptographic 

solution, for example, [5], with proven security relied on 

number-theoretic assumptions is more desirable, whenever the 

user is not perfectly happy with trusting the security of the 

VM or the honesty of the technical staff. These users are 

motivated to encrypt their data with their own keys before 

uploading them to the server. Data sharing is an important 

functionality in cloud storage. For example, bloggers can let 

their friends view a subset of their private pictures; an 

enterprise may grant her employees access to a portion of 

sensitive data.  

The challenging problem is how to effectively share encrypted 

data. Of course users can download the encrypted data from 

the storage, decrypt them, then send them to others for 

sharing, but it loses the value of cloud storage. Users should 

be able to delegate the access rights of the sharing data to 

others so that they can access these data from the server 

directly. However, finding an efficient and secure way to 

share partial data in cloud storage is not trivial. Below it will 

take Dropbox1 as an example for illustration. Assume that 

Alice puts all her private photos on Dropbox, and she does not 

want to expose her photos to everyone. Due to various data 

leakage possibility Alice cannot feel relieved by just relying 

on the privacy protection mechanisms provided by Dropbox, 

so she encrypts all the photos using her own keys before 

uploading. One day, Alice’s friend, Bob, asks her to share the 

photos taken over all these years which Bob appeared in. 

Alice can then use the share function of Dropbox, but the 

problem now is how to delegate the decryption rights for these 

photos to Bob. A possible option Alice can choose is to 

securely send Bob the secret keys involved. Naturally, there 

are two extreme ways for her under the traditional encryption 

paradigm: 

1) Alice encrypts all files with a single encryption key and 

gives Bob the corresponding secret key directly. 

2) Alice encrypts files with distinct keys and sends Bob the 

corresponding secret keys.  

Obviously, the first method is inadequate since all unchosen 

data may be also leaked to Bob. For the second method, there 

are practical concerns on efficiency. The number of such keys 

is as many as the number of the shared photos, say, a 

thousand. Transferring these secret keys inherently requires a 

secure channel, and storing these keys requires rather 

expensive secure storage. The costs and complexities involved 

generally increase with the number of the decryption keys to 

be shared. In short, it is very heavy and costly to do that. 

Encryption keys also come with two flavors—symmetric key 



International Journal of Computer Applications (0975 – 8887) 

Volume 159 – No 9, February 2017  

29 

or asymmetric (public) key. Using symmetric encryption, 

when Alice wants the data to be originated from a third party, 

she has to give the encryptor her secret key; obviously, this is 

not always desirable. By contrast, the encryption key and 

decryption key are different in publickey encryption. The use 

of public-key encryption gives more flexibility for our 

applications. For example, in enterprise settings, every 

employee can upload encrypted data on the cloud storage 

server without the knowledge of the company’s master-secret 

key.  

Therefore, the best solution for the above problem is that 

Alice encrypts files with distinct public-keys, but only sends 

Bob a single (constant-size) decryption key. Since the 

decryption key should be sent via a secure channel and kept 

secret, small key size is always desirable. For example, it 

cannot expect large storage for decryption keys in the 

Resource-constraint devices like smart phones, smart cards, or 

wireless sensor nodes. Especially, these secret keys are 

usually stored in the tamper-proof memory, which is 

relatively expensive. The present research efforts mainly 

focus on minimizing the communication requirements (such 

as bandwidth, rounds of communication) like aggregate 

signature [6]. However, not much has been done about the key 

itself. 

2. EXISTING SYSTEM 
In the current existing system, a user provides an untrusted 

server, say a proxy operated by a cloud service provider, with 

a transformation key TK that allows the latter to translate any 

ABE ciphertext CT satisfied by that user’s attributes or access 

policy into a simple ciphertext CT’, and it only incurs a small 

overhead for the user to recover the plaintext from the 

transformed ciphertext CT’. The security property of the ABE 

scheme with outsourced decryption guarantees that an 

adversary (including the malicious cloud server) be not able to 

learn anything about the encrypted message; however, the 

scheme provides no guarantee on the correctness of the 

transformation done by the cloud server. In the cloud 

computing setting, cloud service providers may have strong 

financial incentives to return incorrect answers, if such 

answers require less work and are unlikely to be detected by 

users. 

One of the main efficiency drawbacks of the most existing 

ABE schemes is that decryption is expensive for resource-

limited devices due to pairing operations, and the number of 

pairing operations required to decrypt a ciphertext grows with 

the complexity of the access policy. 

The above observation motivates us to study ABE with 

verifiable outsourced decryption in this thesis work. Here 

emphasized that an ABE scheme with secure outsourced 

decryption does not necessarily guarantee verifiability (i.e., 

correctness of the transformation done by the cloud server). 

It considered the verifiability of the cloud’s transformation 

and provided a method to check the correctness of the 

transformation. However, not formally define verifiability. 

But it is not feasible to construct ABE schemes with verifiable 

outsourced decryption following the model defined in the 

existing. Moreover, the method proposed in existing relies on 

random oracles (RO). Unfortunately, the RO model is 

heuristic, and a proof of security in the RO model does not 

directly imply anything about the security of an ABE scheme 

in the real world. It is well known that there exist 

cryptographic schemes which are secure in the RO model but 

are inherently insecure when the RO is instantiated with any 

real hash function. 

In this thesis work, firstly modify the original model of ABE 

with outsourced decryption in the existing to allow for 

verifiability of the transformations. After describing the 

formal definition of verifiability, it propose a new ABE model 

and based on this new model construct a concrete ABE 

scheme with verifiable outsourced decryption. Our scheme 

does not rely on random oracles. 

In this paper it only focuses on CP-ABE with verifiable 

outsourced decryption. The same approach applies to KP-

ABE with verifiable outsourced decryption.To assess the 

performance of our ABE scheme with verifiable outsourced 

decryption, it implement the CP-ABE scheme with verifiable 

outsourced decryption and conduct experiments on both an 

ARM-based mobile device and an Intel-core personal 

computer to model a mobile user and a proxy, respectively.   

3. ARCHITECTURE DESIGN 
The architecture of the key aggregate cryptosystem is shown 

below where the data, attributes and key are encrypted and 

stored in cloud and the aggregate key is developed and sent to 

the receiver’s mail and it is used to download the desired 

pictures. The corresponding expression is then represented via 

alert dialog box. 

key

data

attributes
Encryption

ciphertext

Encrypted
attributes

Encrypted
attributes

Access
structure

ciphertext

attributes

key

encryption

Outsource
decryption plaintext

cloud

user

retriever

verification

Fig 1:-Architecture of Key Aggregate System 

3.1   Setup Phase 
The setup algorithm takes no input other than the implicit 

security parameter. It outputs the public parameters PK and a 

master key MK 

3.2  Encrypt Phase 
Encrypt (PK,M, A). The encryption algorithm takes as input 

the public parameters PK, a message M, and an access 

structure A over the universe of attributes. The algorithm will 

encrypt M and produce a ciphertext CT such that only a user 

that possesses a set of attributes that satisfies the access 

structure will be able to decrypt the message. It will assume 

that the ciphertext implicitly contains A. 

  



International Journal of Computer Applications (0975 – 8887) 

Volume 159 – No 9, February 2017  

30 

3.3 Key Gen Phase 
Key Generation(MK,S). The key generation algorithm takes 

as input the master key MK and a set of attributes S that 

describe the key. It outputs a private key SK  

3.4 Decrypt Phase  
Decrypt (PK, CT, SK). The decryption algorithm takes as 

input the public parameters PK, a ciphertext CT, which 

contains an access policy A, and a private key SK, which is a 

private key for a set S of attributes. If the set S of attributes 

satisfies the access structure A then the algorithm will decrypt 

the ciphertext and return a message M.  
The diagram explains the working of the login process. If the 

user is an existing user, then he logs in with the user name and 

password. Else the user registers himself/ herself as an 

registered user and then the database checks if the logging in 

user is a valid user or not 

Table 1. System Specifications 

Hardware 

requirements 
Specifications 

Hard Drive   20 GB 

Processor 

1GHz x86-64 processor (64-bit) 

1GHz IA-32 processor (32-bit)  

Memory (RAM) 

1 GB (Required) 

2 GB (Recommended)  

3.5 Software Requirements 
 Operating System: Microsoft Windows 7 x64 (Any 

edition) (Compatible with Microsoft Windows XP, 

Microsoft Windows Vista x64) 

 Front End:  Java 7.1 

 Back End: SQL Server 2005 

 

Fig 2: System  Flow  Diagram 

4.  CONCLUSION 
How to protect users’ data privacy is a central question of 

cloud storage. With more mathematical tools, cryptographic 

schemes are getting more versatile and often involve multiple 

keys for a single application. In this paper, it considers how to 

―compress‖ secret keys in public-key cryptosystems which 

support delegation of secret keys for different ciphertext 

classes in cloud storage. No matter which one among the 

power set of classes, the delegatee can always get an 

aggregate key of constant size. Our approach is more flexible 

than hierarchical key assignment which can only save spaces 

if all key-holders share a similar set of privileges.  

5. FUTURE WORK  
A limitation in our work is the predefined bound of the 

number of maximum ciphertext classes. In cloud storage, the 

number of ciphertexts usually grows rapidly. So it have to 

reserve enough ciphertext classes for the future extension. 

Otherwise, it need to expand the public-key as it described. 

USER 

EXISTING 

USER 

CONNECT WITH THE 

SERVER 

NON-EXISTING 

USER 

 

REGISTER WITH THE 

SERVER 

ENTER 

USERNAME & 

PWD 

IS VALID 

NO 

YES 



International Journal of Computer Applications (0975 – 8887) 

Volume 159 – No 9, February 2017  

31 

Although the parameter can be downloaded with ciphertexts, 

it would be better if its size is independent of the maximum 

number of ciphertext classes. On the other hand, when one 

carries the delegated keys around in a mobile device without 

using special trusted hardware, the key is prompt to leakage, 

designing a leakage-resilient cryptosystem yet allows efficient 

and flexible key delegation is also an interesting direction. 

6. REFERENCES 
[1] S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu, 

―SPICE – Simple Privacy-Preserving Identity-

Management for Cloud Environment,‖ Proc. 10th Int’l 

Conf. Applied Cryptography and Network Security 

(ACNS), vol. 7341, pp. 526-543, 2012. 

[2] S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R.H. 

Deng, ―Dynamic Secure Cloud Storage with 

Provenance,‖ Cryptography and Security, pp. 442-464, 

Springer, 2012. 

[3] G. Ateniese, A.D. Santis, A.L. Ferrara, and B. Masucci, 

―Provably- Secure Time-Bound Hierarchical Key 

Assignment Schemes,‖ J. Cryptology, vol. 25, no. 2, pp. 

243-270, 2012 

[4] L. Hardesty, Secure Computers Aren’t so Secure. MIT 

press, http:// www.physorg.com/news176107396.html, 

2009. 

[5] M.J. Atallah, M. Blanton, N. Fazio, and K.B. Frikken, 

―Dynamic and Efficient Key Management for Access 

Hierarchies,‖ ACM Trans. Information and System 

Security, vol. 12, no. 3, pp. 18:1-18:43, 2009. 

[6]  J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, 

―Patient Controlled Encryption: Ensuring Privacy of 

Electronic Medical Records,‖ Proc. ACM Workshop 

Cloud Computing Security (CCSW ’09), pp. 103-114, 

2009  

[7] F. Guo, Y. Mu, Z. Chen, and L. Xu, ―Multi-Identity 

Single-Key Decryption without Random Oracles,‖ Proc. 

Information Security and Cryptology (Inscrypt ’07), vol. 

4990, pp. 384-398, 2007. 

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters, 

―Attribute-Based Encryption for Fine-Grained Access 

Control of Encrypted Data,‖ Proc. 13th ACM Conf. 

Computer and Comm. Security (CCS ’06), pp. 89-98, 

2006. 

[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, 

―Aggregate and Verifiably Encrypted Signatures from 

Bilinear Maps,‖ Proc. 22nd Int’l Conf. Theory and 

Applications of Cryptographic Techniques 

(EUROCRYPT ’03), pp. 416-432, 2003. 

[10]  C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, 

―Privacy- Preserving Public Auditing for Secure Cloud 

Storage,‖ IEEE Trans. Computers, vol. 62, no. 2, pp. 

362-375, Feb. 2013.  

[11] B. Wang, S.S.M. Chow, M. Li, and H. Li, ―Storing 

Shared Data on the Cloud via Security-Mediator,‖ Proc. 

IEEE 33rd Int’l Conf. Distributed Computing Systems 

(ICDCS), 2013.  

 

IJCATM : www.ijcaonline.org 


