
International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 9, February 2017

23

Study and Experimental Setup of Testing of

Performance Parameters on Various Distributed File

Systems

Madhavi Vaidya
Asst Professor, Computer

 Science Department
VES College, Mumbai, India

Shrinivas Deshpande, PhD
Associate Professor and Head
Computer Science Department

HVPM, Amravati, India

ABSTRACT
Distributed File System (DFS) is acting as an extension to file

system which manages files and data on multiple storage

devices and provides more performance and reliability using

various modern techniques. Outside world only sees the

distributed file system as a single storage device and it is

nothing but an interface to a great extent. In case of failure or

heavy load very few Distributed file systems provide location

transparency and redundancy to improve the data availability.

Significant challenges for such a distributed file system are

extended to a large number of storage nodes and providing

reasonably. In this paper, there is been a few performance

collaborative parameters have been studied viz. replication,

fault tolerance and load balancing experimentally on various

DFS.

Keywords
DFS; Hadoop; Ceph; Balancing

1. INTRODUCTION
In this paper, there is a summary given on the literature and on

the glitches in connection of two or more file systems to one

another, in addition to few collaborative parameters have been

studied here, named Fault Tolerance which means if any node

goes down then how to perform recovery, along with few

more performance parameters such as replication and Load

balancing have been elaborated using implementation of those

parameters using commands and their explanation of

respective file systems. As a part of studying the data analysis

on various distributed file systems, the study done and

implemented various distributed file systems viz. Hadoop

Distributed File System, Ceph File system, Glusterfs and zfs.

1.1 Glusterfs - GlusterFS is a scalable network file-system

suitable for the bulky data processing tasks and this data

processing can be done on cloud storage. GlusterFS is

free and open source software. It is an open source

distributed file system which provides replication over

multiple storage nodes and it uses user space, i.e. File

System in User Space and is known as FUSE. As a part

of implementation, the nodes have been mounted on

various nodes, which are combined into storage volumes

using fstab in CentOS.

1.2 Hadoop Distributed File System – Hadoop Distributed

File System is based on the Google File System. The

main components in HDFS are the NameNode that

manages the HDFS namespace and a collection of

DataNodes that store the actual data in HDFS files.

MapReduce utilizes the Google File System(GFS) as an

underlying storage layer to read input and store

output[[1]. MapReduce, which has been popularized by

Google, is a scalable and fault-tolerant data processing

tool that enables to process a massive volume of data in

parallel with many low-end computing nodes [2,3].

1.3 Ceph file system - Ceph is designed to be a fault-tolerant,

scalable storage system. In CephFS, the Metadata Server

(MDS) plays a role in solving this problem. Metadata

management is completely distributed, using a cluster of

MDSs to handle metadata request from clients. The

operation is adapted dynamically based on the workload

generated by the clients (e.g., moving and replicating

metadata depending on how often a file is accessed).

Ceph cluster has POOLS, pools are the logical group for

storing objects. These pools are made up of Placement

Groups were the data is placed from the nodes in the

cluster. Ceph is based on an object storage paradigm,

where file data is stored by object storage devices

(OSDs) and metadata is stored by metadata servers

(MDSs). In comparison with few other distributed file

systems, might rely on ‘dumb’ OSDs, the Ceph OSDs

have responsibilities for data migration, replication and

failure handling and communicate between each other.

1.4 zFS is designed as a distributed file system that offers

comprehensive scalability by separating storage

management from file management. It has been built in

20014 by Sun Microsystems which is free and open

source. It provides the logical volume manager for using

it in their Solaris Operating Systems [4]. Storage

management is carried out using Object Store Devices

(OSDs), and file management is distributed over a set of

cooperative machines [5] All storage allocation and

management in zFS is delegated to the OSDs. When a

file is created and written to, the data blocks are sent to

the OSD, which allocates space on the physical disk and

writes the data on the allocated space.

2. LITERATURE REVIEW
Data replication consists of maintaining multiple copies of

critical data, called replicas, on separate computers. It is a

critical enabling technology of distributed services, improving

both their availability and performance. Availability is

improved by allowing access to the data even when some of

the replicas are unavailable. This paper surveys and displays

the replication fundamentals of each of the distributed file

system along with balancing techniques used by them. In

general, load balancing provides an ability to avoid the

situation where some resources of the systems are overloaded

while others remain idle or under loaded. It is well understood

that excessively overloading a portion of resources

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 9, February 2017

24

substantially reduces the overall performance of the systems.

Existing load balancing approaches are classified into two

broad categories-Static and Dynamic.

Glusterfs is an open source distributed file system which

provides replication over multiple storage nodes and it uses

user space, i.e. File System in User Space and is

Known as FUSE.

Replication simply takes a file and stores multiple replicas of

it on multiple bricks. The failure of a brick is transparent for

the user with a replicating volume except where it affects the

last remaining brick. The user can continue working while the

repair procedures take place. After the work is completed,

GlusterFS can reintegrate the brick and then automatically

start data synchronization.

 A large amount of work has been done for static load-

balancing schemes that do not rely on the current state of

hosts. Based on this study, Kim and Kameda [6] have

proposed two static load balancing algorithms, which are quite

effective to improve system performance.

In contrast, the dynamic load balancing approaches provides

an ability to improve the quality of load distribution at run

time at a reasonable cost of communication and processing

overhead. McCann et al [7] have studied a dynamic

scheduling strategy, which is aware of resource requirements

of submitted tasks. Their design is based on a centralized

manager that handles scheduling on each processor. Condor

[8] has been developed to harvest the idle cycles of a cluster

of computers by distributing batch jobs to idle workstations.

One of the very important goal of Condor is the guarantee that

other clients will become available for their owners when the

owners are about to access the machines. This goal is

approached by detecting an owner’s activity at an idle

machine, and migrating background jobs to other idle

machines when the owner begins accessing his/her machine.

Even Condor has elaborated on making periodically

checkpoints on tasks, thereby making it possible to restore and

resume jobs in presence of software and hardware failures for

reliability purposes. In addition, Condor offers a flexible

mechanism where each machine’s owner specify conditions

under which the machine is considered idle. In centralized

approach, the global state information is collected or

estimated at a single host (server) which makes request task

distribution decisions based on the collected information. This

approach may impose fewer overheads for maintaining the

state information, but has lower reliability. Failure of the

central server makes load sharing inoperable.

3. STUDY AND EXPERIMENTAL

SETUP GLUSTERFS
In case of Glustefs, the replicated volume stripes across bricks

in a volume. This means that the each file is split up into

multiple parts and stored on different bricks. Striped

replicated volumes stripes data across replicated bricks in the

cluster. For best results, striped replicated volumes can be

used in highly concurrent environments where there is parallel

access of very large files and performance is critical. The

subtle difference between stripe-replication and distributed

replication is that stripe replication will partition files and

replicate the partitions of the files for added redundancy along

with concurrency already present in striped volumes. On the

other hand distributed-replicated drives simply replicate

complete files. Glusterfs can handle failover mechanism very

easily and simple manner using replicated Gluster. Making a

copy of data in real time is replication which has been

observed here. When the glusterfs file system is mounted from

any one of the server, the server actually provides a file that

contains details about all nodes taking part in the storage.

When the glusterfs file system is mounted from any one of the

server, the server actually provides a file that contains details

about all nodes taking part in the storage. It has been

experienced, this way the failover is pretty seamless, as if one

of the server stops responding another node is selected from

the cluster. The performance changes and depends on the kind

of storage has been used in the Glusterfs installation. When

the stripped volume was used, it has been experienced that the

performance was much better as read and write will be

distributed across nodes.As per given in the output attached,

the files have been striped and replicated across nodes, they

have been divided on gluster1 and gluster2 as the reads and

writes will be distributed across the nodes. The two bricks are

added, originally they were 2 in number and in later output

there are 4 bricks. After implementation of rebalancing

operation, it has been seen that the files have been

automatically spread across new nodes which is seen in Figure

1 and 2. Performance depends upon the kind of storage has

been used. It has been experienced that if a stripped volume

has been used, it has been found that performance is much

better as read and write will be distributed across nodes.

Fig 1: Creation of Volume and Bricks on Glusterfs

Fig 2: Stripe Replication on gluster1 and gluster2

#gluster volume rebalance distribute start

Rebalancing in Glusterfs is possible by rebalance statement

It has been experienced that, the files on gluster1 and gluster2

have been scattered properly with few files on gluster1 and

remaining on gluster2.

3.1 Ceph File System–
Distributing metadata for balance in Ceph, tries to spread

metadata evenly across the metadata cluster. The benefit of

this approach is that clients can contact different servers for

their metadata in parallel. CEPH RADOS is a very important

aspect that manages the data storage as well as replication

among the cluster nodes. It consists of two daemons: the

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 9, February 2017

25

CEPH OSD Daemon that runs on each storage node as given

in Figure 3 and handles the storage operations, and the CEPH

Monitor that keeps track of the cluster state, i.e. the map of

active nodes and their roles.

Fig 3 : Replication on Ceph

RADOS offers the possibility to divide the logical storage

area into different pools, and allows pool-based access control

mechanisms. RADOS automatically monitors usage statistics

in order to perform load-balancing between the nodes

composing the cluster

Many metadata balancers distribute metadata for complete

balance by hashing a unique identifier, like the inode or

filename[9]. Ceph is designed to handle two things: 1) it

enables fault tolerance by distributing data (replicated or

erasure-coded) across a cluster of nodes, and 2) it provides

user access to the data [10].

Although conventional storage systems often use various

tricks to ensure redundancy over replication, the subject of

replication (in combination with high data availability) is

almost inherently incorporated in the design at Ceph. It

acknowledges the failure of a hard drive after a set time

(default setting is five minutes) and then copies all missing

Fig 4 : Load Balancing in Ceph

objects and their replicas to other OSDs. This way, Ceph

ensures that the admin’s requirements are consistently met –

except for the wait immediately after the failure of a disk.

Controlled Replication Under Scalable Hashing (CRUSH) is

the algorithm that Ceph uses to determine how and where to

place data to satisfy replication and resiliency rules. The

CRUSH Map gives CRUSH a view of what the cluster

physically looks like, and the replication rules for each node

[11].

Ceph cluster has POOLs , pools are the logical group for

storing objects. These pools are made up of Placement

Groups. In our case, in the production environment, it is

expected that at a minimum, there will be three Ceph nodes in

a cluster. The output generated by them has been given in

Figure 4.

This means all the objects of pool-D will be replicated 3 times

on 3 different OSD’s. Ceph is designed in such a way that,

everything in ceph is designed in terms of objects. Hence ceph

cluster known as Object Storage cluster. The objects are

mapped to placement groups and their copies are scattered

across different OSDs.

3.2 Zfs
ZFS offers superb data integrity as well as compression, raid-

like redundancy and de-duplication. When data integrity is the

priority the zfs is the solution as it is the file system which is

ready to meet and take up the demands of huge redundant data

volumes [12].

zFS is a scalable distributed file system that uses Object Store

Devices (OSDs) for storage management and a set of

cooperative machines for distributed file management. It

offers extended scalability by separating storage management

from file management. Storage management is done by OSDS

[13].

Clone, Snapshot, and replication are the most powerful

features of ZFS. Cloning is used to create a duplicate dataset,

Snapshots are used to create point-in-time copies of file

systems or volumes, and replication is used to replicate a

dataset from one datapool to another datapool on the same

machine or on two different machines the replicas in

datapool's can be created between two or more different

machines.

Snapshot is one of the most powerful features of ZFS, a

snapshot which is executed and given in Figure 5, which

provides a read-only, point-in-time copy of a file system

Fig 5 : creating snapshot on zfs

or volume that does not consume extra space in the ZFS pool.

The snapshot uses only space when the block references are

changed. Snapshots preserve disk space by recording only the

differences between the current dataset and a previous

version.

#zpool create mypool mirror /dev/sdb/ dev/sdc

#zfs list –r mypool

#zfs snapshot mypool/docs@version1

#zfs list –t snapshot

For replication

#zfs send mypool/docs@today | zfs receive

backuppool/backup

#ls /backuppool/backup

root@newceph22#ceph osd pool create pool-D

128

root@newceph22#ceph osd lspools

0 data, 1 metadata, 2 rbd, 3 pool-A, 4 pool-B,5-

pool-D

root@newceph31# ceph osd lspools

0 data, 1 metadata, 2 rbd, 3 pool-A, 4 pool-B,5-

pool-D

root@newceph22#

#to find the replication level

root@newceph22# ceph osd dump | grep –i pool-D

pool 5 ‘pool-D’ replicated size 1 min-size 1….

root@newceph22# ceph osd pool set pool-D size 3

Set pool 5 size 3

#changing replication level

root@newceph31#ceph osd dump | grep –I pool-D

pool 5 ‘pool-D’ replicated size 3 min-size 1…….

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 9, February 2017

26

3.3 Hadoop Distributed File System

Fig 6 : Replication factor on Hadoop

The Hadoop Distributed File System (HDFS) is a distributed

file system designed to run on commodity hardware. HDFS is

highly fault-tolerant and is designed to be deployed on low-

cost hardware. There is a different scenario in Hadoop

Distributed File System. HDFS has a

Fig 7 : Node Balancing on Hadoop

Master Slave Architecture. HDFS cluster consists of a single

NameNode. In addition, there are a number of DataNodes,

usually one per node in the cluster. The cluster manages

storage attached to the nodes that they run on. HDFS exposes

allows user data to be stored in files. Internally, a file is split

into one or more blocks and these blocks are stored in a set of

DataNodes.

The NameNode executes file system namespace operations

like opening, closing, and renaming files and directories. The

DataNodes are responsible for serving read and write requests

from the file system’s clients. The DataNodes also perform

block creation, deletion, and replication upon instruction from

the NameNode. In case the JobTracker, which runs on

namenode does not receive any heartbeat from a TaskTracker,

which is executed on datanode for a specified period of time

(by default, it is set to 10 minutes), the JobTracker

understands that the worker associated to a specific datanode’s

TaskTracker has been failed [14].

The replication factor has been mentioned in the xml file

which are situated in /conf directory of Hadoop directory as

mentioned in Figure 6, performed Hadoop installation.

Modifying the dfs.replication property in hdfs-site.xml will

change the default replication for all files placed in HDFS.

The block size setting is used by HDFS to divide files into

blocks and then distribute those blocks across the cluster. The

load balancing on the hadoop nodes is done using balancer

command, elaborated an experimental setup in Figure 7.

Availability of the node is managed by maintaining multiple

replicas of each block in an HDFS file, recognizing failure in

a DataNode or corruption of a block, and having mechanisms

to replace a failed DataNode or a corrupt block.

4. COMPARATIVE APPROACH
Distributed file systems like GlusterFS, zfs and HDFS can

spread a single file system namespace across multiple servers.

In fact, various set ups are made for those DFS on each three

nodes of Virtual Machines on two different setups In Ceph’s

case, a single metadata server (MDS), maintained in working

memory of a single node, keeps track of the data across all the

storage nodes, each of which is managed by an object storage

daemon (OSD). If a node falls out, or more nodes are added,

the changes are managed by the MDS. First of all being that

GlusterFS distributes files and works on top of existing file-

systems. It is completely transparent to the system and

applications.

Ceph and Gluster have similar data distribution capabilities.

Ceph stripes data across large node-sets, like most object

storage software. This aims to prevent bottlenecks in storage

accesses. Advantages of Glusterfs includes a global

namespace, compression on write. It can scale to petabytes

with thousands of clients. Ceph supports both replication and

easy to deploy. GlusterFS is easy and quick to set up a basic

constellation, and it ships out-of-the-box with most

distribution repositories. It's understandable very quickly by

any regular Linux administrator.

5. CONCLUSION
In this manner, the comparison of various distributed file

systems especially on collaborative and performance

parameters such as Load Balancing, Fault Tolerance and

Replication has been provided. The wide study is been

provided, based on the concepts and the commands which are

executed and experimental setup is displayed for all the listed

distributed file systems.

In particular, Ceph looks quite promising when stability and

performance issues will be solved, but currently Glusterfs

[root@h1g1 bin]# ./hadoop balancer

Time Stamp Iteration#

Bytes Already Moved Bytes Left To

Move Bytes Being Moved

16/11/03 09:48:36 INFO

net.NetworkTopology: Adding a new

node: /default-

rack/192.168.25.129:50010

16/11/03 09:48:36 INFO

net.NetworkTopology: Adding a new

node: /default-

rack/192.168.25.247:50010

16/11/03 09:48:36 INFO

net.NetworkTopology: Adding a new

node: /default-

rack/192.168.25.245:50010

16/11/03 09:48:36 INFO

balancer.Balancer: 0 over utilized

nodes:

16/11/03 09:48:36 INFO

balancer.Balancer: 0 under utilized

nodes:

The cluster is balanced. Exiting...

Balancing took 4.817 seconds

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"
href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
 <name>dfs.replication</name>
 <value>2</value>
</property>

<property>

<name>dfs.name.dir</name>

<value>file:///home/hadoop/hadoop/hdfs/nam

enode</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>file:///home/hadoop/hadoop/hdfs/data

node</value>

</property>

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

</configuration>

International Journal of Computer Applications (0975 – 8887)

Volume 159 – No 9, February 2017

27

remains the best system in few performance tests which were

carried out. The Glusterfs was the most easiest distributed file

system to install and to work on it, able to make working file-

system by simply adding a new volume to the persistent

volumes and see the replicated data very easily on other nodes

of cluster. ZFS offers superb data integrity as well as

compression, raid-like redundancy and de-duplication.

Hadoop Distributed File System instead appears the more

stable and reliable storage system, performs quite well. The

future plan is to perform the study on unstructured files on all

listed distributed file systems.

6. REFERENCES
[1] S. Ghemawat et al, 2003, The Google File System. ACM

SIGOPS Operating Systems Review, 37(5):29–43.

[2] J. Dean et al. 2008, MapReduce Simplified Data

Processing on Large Clusters. Communications of the

ACM, 51(1):107–113.

[3] Jeffrey Dean et al., 2004, Mapreduce: Simplified Data

Processing on Large Clusters. In In Proceedings of the

6th USENIX OSDI, pages 137–150.

[4] Rodeh and Teperman, 2003,A Scalable Distributed File

System Using Object Disks. Proceedings of the 20th

IEEE Conference on Mass Storage Systems and

Technology (MSS’03), San Diego, CA, pp. 207–218.

 [5] http://www.lustre.org/docs/whitepaper.pdf

 [6] C. Kim and H. Kameda, March 1992, An Algorithm for

Optimal Static Load Balancing in Distributed Computer

Systems. IEEE Trans. Compute., 41(3):381–384.

 [7] C. McCann, R. Vaswani, and J. Zarhojan, May 1993, A

Dynamic Processor Allocation Policy for

Multiprogrammed Shared-Memory Multiprocessors.

ACM Transactions on Computer Systems (TOCS), vol.

11, no. 2, pp. 146–178.

 [8] M. Litzkow, M. Livny, and M. Mutka, Condor, June 1988

A Hunter of Idle Workstations. International Conference

on Distributed Computing Systems, pp. 104-111.

 [9] Sevilla, Michael A., et al., 2015, Mantle: A Programmable

Metadata Load Balancer for the Ceph File System.

Proceedings of the International Conference for High

Performance Computing, Networking, Storage and

Analysis. ACM.

 [10]Petros Koutoupis, June 2016,

http://www.linuxjournal.com/content/understanding-

ceph-and-its-place-market,

 [11]Weil, Sage A., et al. Ceph: A Scalable, High-

Performance Distributed , 2006, File System.

Proceedings of the 7th symposium on Operating Systems

Design and Implementation. USENIX Association.

[12] Teperman, A. and A. Weit, 2004, Improving

Performance of a Distributed File System using OSDs

and Cooperative Cach. IBM Journal of Research and

Development.

[13] O. Rodeh and A. Teperman, 2003, zFS, A Scalable

Distributed File System using Object Disks.

InProceedings of the IEEE Mass Storage Systems and

Technologies Conference, pp 207-218,San Diego, CA,

USA.

[14] Apache Hadoop Documentation

IJCATM : www.ijcaonline.org

