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ABSTRACT 

The recent technological advancement and complexity of 

software makes it very difficult to maintain and improve the 

quality of software. Software testing is a technique used in 

validating and verifying that a develop software meets it 

requirements and specification hence the need to properly 

generate suitable test case to test programs. Software testing 

consumers a lot of time, effort and money, therefore the focus 

of testing largely depends on test case generation, execution 

and evaluation. Automated testing is a technique used to 

maximize test coverage, detect more errors, increase test 

execution, decrease cost as well as improving the quality of 

software.  This paper reviews the use of Genetic algorithm to 

automatically generate test case using the random method. 

Keywords 
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1. INTRODUCTION 
Software testing remains an integral part of the software 

development life cycle (SDLC); it is an important phase in the 

SDLC as it helps remove errors in different forms ranging 

from minor to major errors that can seriously affect the quality 

of product when delivered to the intended users. Previous 

research shows that, software testing phase takes a lot of 

effort, time and cost hence the need to find appropriate test 

case generation technique to effectively improve the testing 

process. Different test case generation techniques have been 

proposed in several research work with an objective of 

enhancing the testing process, these include random test data 

generators [1-3], path oriented test data generators[4-6], goal 

oriented test data technique[7], intelligent test data generator 

technique[8], other automatic test generation technique for 

java programs [9-15]. In this paper, we review the use of 

Genetic Algorithm to automatically generate test case using 

the simple random testing technique. Random testing is a 

simple and effective testing technique that allows a test case 

to be selected randomly from the input domain [16-18]. The 

uniform technique of random testing helps ensures that all 

inputs have the same probability of being selected from the 

input domain. The application of Genetic Algorithm (GA) in 

software testing is a young and active area of scientific 

research since much study has not been conducted in the field.  

The paper review the application of Evolutionary algorithm 

(EA) specifically genetic algorithm based on test case 

generation using the simple random testing technique. An 

evolutionary algorithm (EA) is a stochastic search for an 

optimal solution to a given problem [19]. It uses a population 

of individuals; where each individual is classified as a 

chromosome. Chromosome represents the characteristics of 

individuals in the population; these characteristics are thus 

referred as gene[20, 21].  

Genetic algorithm is one of the evolutionary algorithms that 

implements optimization strategies by simulating evolution of 

species through the process of natural selection, survival of 

the fittest and reproduction [22-24]. Genetic Algorithm is a 

subset of a branch of Evolutionary algorithms that include 

Evolutionary programing[25], evolutionary strategies[26, 27], 

differential evolution[28], cultural evolution and coevolution 

[29, 30].  This paper reviews the application of genetic 

algorithm in software testing specifically the generation of test 

case using the simple random testing technique.  The structure 

of the paper is as follows, Section 2 will briefly give a 

background to genetic algorithm, application of genetic 

algorithm for the test case generation using the random 

technique is given in Section 3, Section 4 gives a detail 

analysis of Genetic Algorithm with other test case generation 

techniques, the related work is presented in Section 5 and 

Section 6 concludes and gives recommendations for future 

works.    

2. GENETIC ALGORITHM 
Genetic algorithm was proposed by John Holland and his 

fellow colleagues in Michigan University [31]. However the 

initial concept was first investigated by J.D. Bagley‘s in 1967 

―The behavior of Adaptive systems which employ Genetic 

and Correlative Algorithms‖[32]. Other independent study of 

Evolutionary algorithms include [33-38]. Genetic algorithm is 

a search based optimization technique [39-41] that evolve 

through a search space of candidate population to identify the 

best pool of population.  To help understand the concept and 

its application in software testing, we will briefly explain 

some of the related concepts used in Genetic Algorithm. 

A. Related Terms 
i. Chromosome: are the strings or numerical values 

which represent the candidate solution to the search 

problem[42-44] 

ii. Gene: the elements of the solution are known as the 

gene. 

iii. Population: refers to the total number of candidate 

solutions to be used in the optimization problem.  

iv. Allele: the possible values of a gene are known as 

allele. 

v. Genotype refers to the set of genes contained in a 

genome. 

vi. Phenotype: Are the behavioral traits or 

characteristics of an individual[45, 46].  
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B. Pseudocode For Genetic Algorithm 

The general pseudocode is shown below 

{ 

} 

Initialize population; 

Randomly generate t number of individuals; 

 Evaluate fitness of individuals; 

 While (fitness value! =termination criteria) do 

{ 

 Selection; 

Crossover; 

Mutation; 

Calculate fitness function; 

} 

} 

Fig 1: Flow chart of GA 

2.1 Genetic Operators 
Genetic algorithm uses three main operators which are 

selection, crossover and mutation. 

2.1.1 Selection 
The selection process determines which solutions are to be 

preserved and allowed to reproduce and which ones deserves 

to die out. The process normally involves identifying the good 

solutions in a population, making multiple copies of the good 

solutions, eliminating bad solutions from the population.[45, 

47, 48]. The final stage is applying the fitness function to 

evaluate the solutions. A fitness function represents the 

quality of the solution[49, 50]. There are different types of 

selection methods used by GA, this include rank 

selection[51], proportionate selection[51, 52], roulette wheel 

selection [49], tournament selection [53], and steady selection 

2.1.1.1 Crossover Operator 
The crossover operator is used to create new solutions from 

the existing solutions by recombination of the information 

from both parents.[54]. It thus involves the exchange of genes 

randomly between the chromosomes of two parents to create 

new offspring [55, 56]. Crossover can either be one point or 

two points. 

2.1.1.2 Mutation  
The final genetic operator is mutation which introduces new 

features to a given population or problem to obtain and 

maintain diversity in the population. It thus involves randomly 

changing individuals to allow diversity among the population. 

The various types of mutation are Flip mutation, Uniform 

mutation inversion mutation, Scramble mutation, Swap 

mutation, interchanging mutation and Creep mutation [57-60] 

3. TEST CASE GENERATION USING 

GENETIC ALGORITHM 
Manual testing and automated testing are the two main testing 

techniques that have been employed over the past decades[61, 

62], however automated testing appears to be the most 

efficient and effective method based on previous research[63], 

due partly to its efficiency and effectiveness in maximizing 

test coverage, detecting more errors, increasing test execution, 

decreasing cost and improving the quality of the product. The 

application of GA in test case generation usually starts with an 

initial population. Previous studies on the population size[64] 

indicate that, the size of the population used in any 

optimization problem could affect an optimization process, C. 

R. Reeves investigated the use GA with small population [65] 

and other studies that involve the use of large population 

are[66, 67] based on this, P. A. Diaz-Gomez and D. F. 

Hougen[68] proposed  three types of metrics to help evaluate 

diversity of fixed length population of chromosomes. Based 

on the randomly generated test case from the population or 

input domain, a fitness function is used to evaluate the test 

cases to determine if it can be used for future generation of 

more test cases; the fitness function must be defined in 

relation to the testing goals. The test case is executed and 

feedback information is collected, all test cases with high 

fitness value are selected and added to the best test pool. Test 

cases with low fitness value are discarded and not used for 

future generation or can be recombine and mutated to produce 

new test cases, the newly created offspring are evaluated 

against the fitness value, this process continues until a 

stopping condition is achieved. 

4. ANALYSIS OF GENETIC 

ALGORITHM WITH OTHER TEST 

CASE GENERATION TECHNIQUES 
Based on previous studies conducted, genetic algorithm 

proves to be an effective technique for the generation of test 

case for detecting errors in complex systems[69] as compared 

to other test case generation techniques investigated by [10, 

70] N. Kosindrdecha and J. Daengdej presented a number of 

test case generation process and techniques such as random 

testing technique, goal oriented techniques, specification-

based techniques and sketch diagram based techniques, the 

findings shows a  number of weakness related to these  test 

data generation techniques. Some of the problems identified 

include the following: 

i. Existing methods lacks the ability to identify and 

reserve the critical domain requirements in the test 

case generation process 

Start 
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Randomly generate 

population 

 

 

Evaluate fitness  

 

 Optimum 

solution 

Yes 

No 

Selection 

 
Crossover 

 
Mutation 
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ii. Inefficient automated test case generation 

techniques 

iii. Failure to use most of the generated test cases 

iv. Inefficient test case generation techniques with 

limited resources. 

Although genetic algorithm has been considered an efficient 

and efficient method, D. J. Berndt and A. Watkins proposed 

two new strategies to help improve the performance of genetic 

algorithm: 

i. Neural Network Based oracles: this method 

invovles replacing the real target sytem  execution 

to avoid expensive execution costs for evaluating 

test cases. 

ii. The second method invloves improving and 

enhancing the major genetic operators such as 

selection, crossover and mutation. 

5. RELATED WORK 
Genetic algorithm is applied in several fields of studies such 

as machine learning,[71, 72] business [40], Ecological[73] as 

well as medical data mining[74, 75]     

Jarmo T. et al. [76] study program testing automation by using 

optimization via genetic algorithm. The findings of their 

investigation show that, genetic optimization performs better 

than simple random testing. 

Rakesh Kumar et al. [77] showed how genetic algorithm can 

used to Automate test case generation. The findings shows 

that the use of genetic algorithm for full automation of test 

case generation enhance the overall quality of the software as 

compared with random testing. 

Amit Kumar Sharma [26] also investigated how Genetic 

algorithm can be used to improve the quality and reliability of 

the software by generating optimized test cases, the results 

show that GA is a good technique in searching the input 

domain for the required test cases and as well improving the 

test case optimization process.  

R.P. Pargas et.al [15] presented a GenerateData, an algorithm 

for automatic generation of test data using genetic algorithm 

directed by the control- dependence graph of the program, the 

approach adopted in the paper shows a potentially useful way 

of generating test data using the Genetic algorithm.  

Kuvinder Singh et.al [78] generated test case using the genetic 

algorithm with anti-random population, experimental results 

of the works shows a significant average of 20% and 

maximum 40% improvement over random test case 

generation technique. 

F. S. Babamir et al. [79] investigated the application of  

genetic algorithm based tester using different parameters to 

automate the structural oriented test data generation on the 

principle of internal program structure. 

S. P. Tripathy and D. Kanhar proposed a heuristic algorithm 

with sampling techniques to optimize test suite. The genetic 

algorithm was used as an element to optimize the testsuite    

[80].  

J. McCart et al. [81] used genetic algorithm to improve the 

testing technique process by reducing the execution time as 

well as improving the ability of the technique in detecting 

more error 

N. K. Gupta and M. K. Rohil conducted a research by using 

the genetic algorithm to generate test cases for testing object 

oriented programs(OOP). The method uses a tree 

representation of statements in test cases. The approach 

adopted facilitates the automatic generation of  object oriented 

programs using genetic algorithm[82]. 

S. Wappler and F. Lammermann [83] in their study proposed 

an evolutionary algorithm for the automatic generation of test 

cases for white- box testing of object-oriented programs. The 

experimental result of their approach outperforms random 

testing. 

P. Tonella proposed a genetic algorithm to automatically 

generate test case to test classes in Java programs. The 

approach employed effectively achieves good coverage.  [84] 

A. Rauf et al.  [85] proposed a graphical User Interface (GUI) 

testing and coverage analysis technique using genetic 

algorithm to help generate the best possible test parameter 

based on  a predefined testing goals. They used some of the 

modern tools and techniques of automating GUI testing such 

as control- flow graph, even-flow graph and event-flow model 

etc. to help reduce the challenges associated with testing of 

such systems. 

B. F. Jones [86] also investigated structural testing using 

genetic algorithm. 

6. CONCLUSION 
The work review various application of Genetic Algorithm in 

software testing specifically automated test generation. The 

ultimate aim of testing is to produce quality programs that 

meet the needs of customer‘s hence the need to select 

appropriate test generation techniques to help improve the 

testing process. Based on the study conducted we can 

conclude that, the application of Genetic Algorithm as an 

optimization technique to automatically generate test case 

helps detect more errors in program as it uses the best possible 

test case. The findings further shows that, Genetic algorithm 

performs better than other automated test generation 

techniques such as random testing and also increases the 

number of test cases thereby improving efficiency.  Future 

study will be focus on investigating the application of GA and 

Particle Swarm Optimization (PSO) in test case automation. 

Another area of study that can be investigated is the use of 

Genetic algorithm in regression testing as well as test case 

prioritization. Finally a more robust way of improving upon 

the fitness function can be investigated. 
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