
International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 2, February 2017

1

Review of Genetic Algorithm and Application in Software

Testing

Patrick Kwaku Kudjo
Jiangsu University
China Zhenjiang

P.R.China, 212013

Elias Nii Noi Ocquaye
Jiangsu University
China Zhenjiang

P.R.China, 212013

Wolali Ametepe
Jiangsu University
China Zhenjiang

P.R.China, 212013

ABSTRACT

The recent technological advancement and complexity of

software makes it very difficult to maintain and improve the

quality of software. Software testing is a technique used in

validating and verifying that a develop software meets it

requirements and specification hence the need to properly

generate suitable test case to test programs. Software testing

consumers a lot of time, effort and money, therefore the focus

of testing largely depends on test case generation, execution

and evaluation. Automated testing is a technique used to

maximize test coverage, detect more errors, increase test

execution, decrease cost as well as improving the quality of

software. This paper reviews the use of Genetic algorithm to

automatically generate test case using the random method.

Keywords
Automated Testing; Genetic Algorithm; Evolutionary

Algorithms; Random Testing; Test Case

1. INTRODUCTION
Software testing remains an integral part of the software

development life cycle (SDLC); it is an important phase in the

SDLC as it helps remove errors in different forms ranging

from minor to major errors that can seriously affect the quality

of product when delivered to the intended users. Previous

research shows that, software testing phase takes a lot of

effort, time and cost hence the need to find appropriate test

case generation technique to effectively improve the testing

process. Different test case generation techniques have been

proposed in several research work with an objective of

enhancing the testing process, these include random test data

generators [1-3], path oriented test data generators[4-6], goal

oriented test data technique[7], intelligent test data generator

technique[8], other automatic test generation technique for

java programs [9-15]. In this paper, we review the use of

Genetic Algorithm to automatically generate test case using

the simple random testing technique. Random testing is a

simple and effective testing technique that allows a test case

to be selected randomly from the input domain [16-18]. The

uniform technique of random testing helps ensures that all

inputs have the same probability of being selected from the

input domain. The application of Genetic Algorithm (GA) in

software testing is a young and active area of scientific

research since much study has not been conducted in the field.

The paper review the application of Evolutionary algorithm

(EA) specifically genetic algorithm based on test case

generation using the simple random testing technique. An

evolutionary algorithm (EA) is a stochastic search for an

optimal solution to a given problem [19]. It uses a population

of individuals; where each individual is classified as a

chromosome. Chromosome represents the characteristics of

individuals in the population; these characteristics are thus

referred as gene[20, 21].

Genetic algorithm is one of the evolutionary algorithms that

implements optimization strategies by simulating evolution of

species through the process of natural selection, survival of

the fittest and reproduction [22-24]. Genetic Algorithm is a

subset of a branch of Evolutionary algorithms that include

Evolutionary programing[25], evolutionary strategies[26, 27],

differential evolution[28], cultural evolution and coevolution

[29, 30]. This paper reviews the application of genetic

algorithm in software testing specifically the generation of test

case using the simple random testing technique. The structure

of the paper is as follows, Section 2 will briefly give a

background to genetic algorithm, application of genetic

algorithm for the test case generation using the random

technique is given in Section 3, Section 4 gives a detail

analysis of Genetic Algorithm with other test case generation

techniques, the related work is presented in Section 5 and

Section 6 concludes and gives recommendations for future

works.

2. GENETIC ALGORITHM
Genetic algorithm was proposed by John Holland and his

fellow colleagues in Michigan University [31]. However the

initial concept was first investigated by J.D. Bagley‘s in 1967

―The behavior of Adaptive systems which employ Genetic

and Correlative Algorithms‖[32]. Other independent study of

Evolutionary algorithms include [33-38]. Genetic algorithm is

a search based optimization technique [39-41] that evolve

through a search space of candidate population to identify the

best pool of population. To help understand the concept and

its application in software testing, we will briefly explain

some of the related concepts used in Genetic Algorithm.

A. Related Terms
i. Chromosome: are the strings or numerical values

which represent the candidate solution to the search

problem[42-44]

ii. Gene: the elements of the solution are known as the

gene.

iii. Population: refers to the total number of candidate

solutions to be used in the optimization problem.

iv. Allele: the possible values of a gene are known as

allele.

v. Genotype refers to the set of genes contained in a

genome.

vi. Phenotype: Are the behavioral traits or

characteristics of an individual[45, 46].

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 2, February 2017

2

B. Pseudocode For Genetic Algorithm

The general pseudocode is shown below

{

}

Initialize population;

Randomly generate t number of individuals;

 Evaluate fitness of individuals;

 While (fitness value! =termination criteria) do

{

 Selection;

Crossover;

Mutation;

Calculate fitness function;

}

}

Fig 1: Flow chart of GA

2.1 Genetic Operators
Genetic algorithm uses three main operators which are

selection, crossover and mutation.

2.1.1 Selection
The selection process determines which solutions are to be

preserved and allowed to reproduce and which ones deserves

to die out. The process normally involves identifying the good

solutions in a population, making multiple copies of the good

solutions, eliminating bad solutions from the population.[45,

47, 48]. The final stage is applying the fitness function to

evaluate the solutions. A fitness function represents the

quality of the solution[49, 50]. There are different types of

selection methods used by GA, this include rank

selection[51], proportionate selection[51, 52], roulette wheel

selection [49], tournament selection [53], and steady selection

2.1.1.1 Crossover Operator
The crossover operator is used to create new solutions from

the existing solutions by recombination of the information

from both parents.[54]. It thus involves the exchange of genes

randomly between the chromosomes of two parents to create

new offspring [55, 56]. Crossover can either be one point or

two points.

2.1.1.2 Mutation
The final genetic operator is mutation which introduces new

features to a given population or problem to obtain and

maintain diversity in the population. It thus involves randomly

changing individuals to allow diversity among the population.

The various types of mutation are Flip mutation, Uniform

mutation inversion mutation, Scramble mutation, Swap

mutation, interchanging mutation and Creep mutation [57-60]

3. TEST CASE GENERATION USING

GENETIC ALGORITHM
Manual testing and automated testing are the two main testing

techniques that have been employed over the past decades[61,

62], however automated testing appears to be the most

efficient and effective method based on previous research[63],

due partly to its efficiency and effectiveness in maximizing

test coverage, detecting more errors, increasing test execution,

decreasing cost and improving the quality of the product. The

application of GA in test case generation usually starts with an

initial population. Previous studies on the population size[64]

indicate that, the size of the population used in any

optimization problem could affect an optimization process, C.

R. Reeves investigated the use GA with small population [65]

and other studies that involve the use of large population

are[66, 67] based on this, P. A. Diaz-Gomez and D. F.

Hougen[68] proposed three types of metrics to help evaluate

diversity of fixed length population of chromosomes. Based

on the randomly generated test case from the population or

input domain, a fitness function is used to evaluate the test

cases to determine if it can be used for future generation of

more test cases; the fitness function must be defined in

relation to the testing goals. The test case is executed and

feedback information is collected, all test cases with high

fitness value are selected and added to the best test pool. Test

cases with low fitness value are discarded and not used for

future generation or can be recombine and mutated to produce

new test cases, the newly created offspring are evaluated

against the fitness value, this process continues until a

stopping condition is achieved.

4. ANALYSIS OF GENETIC

ALGORITHM WITH OTHER TEST

CASE GENERATION TECHNIQUES
Based on previous studies conducted, genetic algorithm

proves to be an effective technique for the generation of test

case for detecting errors in complex systems[69] as compared

to other test case generation techniques investigated by [10,

70] N. Kosindrdecha and J. Daengdej presented a number of

test case generation process and techniques such as random

testing technique, goal oriented techniques, specification-

based techniques and sketch diagram based techniques, the

findings shows a number of weakness related to these test

data generation techniques. Some of the problems identified

include the following:

i. Existing methods lacks the ability to identify and

reserve the critical domain requirements in the test

case generation process

Start

 Initialize population

Randomly generate

population

Evaluate fitness

 Optimum

solution

Yes

No

Selection

Crossover

Mutation

End

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 2, February 2017

3

ii. Inefficient automated test case generation

techniques

iii. Failure to use most of the generated test cases

iv. Inefficient test case generation techniques with

limited resources.

Although genetic algorithm has been considered an efficient

and efficient method, D. J. Berndt and A. Watkins proposed

two new strategies to help improve the performance of genetic

algorithm:

i. Neural Network Based oracles: this method

invovles replacing the real target sytem execution

to avoid expensive execution costs for evaluating

test cases.

ii. The second method invloves improving and

enhancing the major genetic operators such as

selection, crossover and mutation.

5. RELATED WORK
Genetic algorithm is applied in several fields of studies such

as machine learning,[71, 72] business [40], Ecological[73] as

well as medical data mining[74, 75]

Jarmo T. et al. [76] study program testing automation by using

optimization via genetic algorithm. The findings of their

investigation show that, genetic optimization performs better

than simple random testing.

Rakesh Kumar et al. [77] showed how genetic algorithm can

used to Automate test case generation. The findings shows

that the use of genetic algorithm for full automation of test

case generation enhance the overall quality of the software as

compared with random testing.

Amit Kumar Sharma [26] also investigated how Genetic

algorithm can be used to improve the quality and reliability of

the software by generating optimized test cases, the results

show that GA is a good technique in searching the input

domain for the required test cases and as well improving the

test case optimization process.

R.P. Pargas et.al [15] presented a GenerateData, an algorithm

for automatic generation of test data using genetic algorithm

directed by the control- dependence graph of the program, the

approach adopted in the paper shows a potentially useful way

of generating test data using the Genetic algorithm.

Kuvinder Singh et.al [78] generated test case using the genetic

algorithm with anti-random population, experimental results

of the works shows a significant average of 20% and

maximum 40% improvement over random test case

generation technique.

F. S. Babamir et al. [79] investigated the application of

genetic algorithm based tester using different parameters to

automate the structural oriented test data generation on the

principle of internal program structure.

S. P. Tripathy and D. Kanhar proposed a heuristic algorithm

with sampling techniques to optimize test suite. The genetic

algorithm was used as an element to optimize the testsuite

[80].

J. McCart et al. [81] used genetic algorithm to improve the

testing technique process by reducing the execution time as

well as improving the ability of the technique in detecting

more error

N. K. Gupta and M. K. Rohil conducted a research by using

the genetic algorithm to generate test cases for testing object

oriented programs(OOP). The method uses a tree

representation of statements in test cases. The approach

adopted facilitates the automatic generation of object oriented

programs using genetic algorithm[82].

S. Wappler and F. Lammermann [83] in their study proposed

an evolutionary algorithm for the automatic generation of test

cases for white- box testing of object-oriented programs. The

experimental result of their approach outperforms random

testing.

P. Tonella proposed a genetic algorithm to automatically

generate test case to test classes in Java programs. The

approach employed effectively achieves good coverage. [84]

A. Rauf et al. [85] proposed a graphical User Interface (GUI)

testing and coverage analysis technique using genetic

algorithm to help generate the best possible test parameter

based on a predefined testing goals. They used some of the

modern tools and techniques of automating GUI testing such

as control- flow graph, even-flow graph and event-flow model

etc. to help reduce the challenges associated with testing of

such systems.

B. F. Jones [86] also investigated structural testing using

genetic algorithm.

6. CONCLUSION
The work review various application of Genetic Algorithm in

software testing specifically automated test generation. The

ultimate aim of testing is to produce quality programs that

meet the needs of customer‘s hence the need to select

appropriate test generation techniques to help improve the

testing process. Based on the study conducted we can

conclude that, the application of Genetic Algorithm as an

optimization technique to automatically generate test case

helps detect more errors in program as it uses the best possible

test case. The findings further shows that, Genetic algorithm

performs better than other automated test generation

techniques such as random testing and also increases the

number of test cases thereby improving efficiency. Future

study will be focus on investigating the application of GA and

Particle Swarm Optimization (PSO) in test case automation.

Another area of study that can be investigated is the use of

Genetic algorithm in regression testing as well as test case

prioritization. Finally a more robust way of improving upon

the fitness function can be investigated.

7. ACKNOWLEDGMENTS
Our sincere thanks go to all the Professors and PhD students

in the Computer Science and Communication Engineering

Department of Jiangsu University China.

8. REFERENCES
[1] H. D. Mills, M. Dyer, and R. C. Linger, "Cleanroom

software engineering," IEEE Software, vol. 4, p. 19,

1987.

[2] J. Voas, L. Morell, and K. Miller, "Predicting where

faults can hide from testing," IEEE Software, vol. 8, pp.

41-48, 1991.

[3] P. Thevenod-Fosse and H. Waeselynck, "STATEMATE

applied to statistical software testing," in ACM SIGSOFT

Software Engineering Notes, 1993, pp. 99-109.

[4] L. A. Clarke, "A system to generate test data and

symbolically execute programs," IEEE Transactions on

software engineering, pp. 215-222, 1976.

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 2, February 2017

4

[5] R. S. Boyer, B. Elspas, and K. N. Levitt, "SELECT—a

formal system for testing and debugging programs by

symbolic execution," ACM SigPlan Notices, vol. 10, pp.

234-245, 1975.

[6] R. DeMilli and A. J. Offutt, "Constraint-based automatic

test data generation," IEEE Transactions on Software

Engineering, vol. 17, pp. 900-910, 1991.

[7] B. Korel, "Automated software test data generation,"

IEEE Transactions on software engineering, vol. 16, pp.

870-879, 1990.

[8] I. Hermadi and M. A. Ahmed, "Genetic algorithm based

test data generator," in Evolutionary Computation, 2003.

CEC'03. The 2003 Congress on, 2003, pp. 85-91.

[9] M. Prasanna, S. Sivanandam, R. Venkatesan, and R.

Sundarrajan, "A survey on automatic test case

generation," Academic Open Internet Journal, vol. 15,

2005.

[10] N. Kosindrdecha and J. Daengdej, "A test case

generation process and technique," J. Software Eng, vol.

4, pp. 265-287, 2010.

[11] N. Kaushik, K. Choudhary, and N. S. Yadav, "Year of

Publication: 2016."

[12] N. Kosindrdecha and J. Daengdej, "A TEST CASE

GENERATION TECHNIQUE AND PROCESS," in

International Workshop on Design, Evaluation and

Refinement of Intelligent Systems (DERIS2010), 2010, p.

59.

[13] M. G. Xu, Y. M. Mu, Z. H. Zhang, and A. Liu,

"Research on Automatic Test Case Generation

Framework for Java," in Applied Mechanics and

Materials, 2014, pp. 1488-1496.

[14] H.-H. Sthamer, "The automatic generation of software

test data using genetic algorithms," University of

Glamorgan, 1995.

[15] R. P. Pargas, M. J. Harrold, and R. R. Peck, "Test-data

generation using genetic algorithms," Software Testing

Verification and Reliability, vol. 9, pp. 263-282, 1999.

[16] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu,

"Random test run length and effectiveness," in

Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, 2008,

pp. 19-28.

[17] G. Myers, "The Art of Software Testing. revised and

updated by T. Badgett and TM Thomas with C. Sandler,"

ed: John Wiley & Sons, Inc, 2004.

[18] R. Hamlet, "Random testing," Encyclopedia of software

Engineering, 1994.

[19] Z. W. Geem, J. H. Kim, and G. Loganathan, "A new

heuristic optimization algorithm: harmony search,"

Simulation, vol. 76, pp. 60-68, 2001.

[20] D. Beasley, D. R. Bull, and R. R. Martin, "An overview

of genetic algorithms: Part 1, fundamentals," University

computing, vol. 15, pp. 56-69, 1993.

[21] H. Bati, L. Giakoumakis, S. Herbert, and A. Surna, "A

genetic approach for random testing of database

systems," in Proceedings of the 33rd international

conference on Very large data bases, 2007, pp. 1243-

1251.

[22] S. Suman, "A genetic algorithm for regression test

sequence optimization," Int. J. Adv. Res. Comput.

Commun. Eng, vol. 1, 2012.

[23] C. Sharma, S. Sabharwal, and R. Sibal, "A survey on

software testing techniques using genetic algorithm,"

arXiv preprint arXiv:1411.1154, 2014.

[24] E. D. Goodman, "Introduction to genetic algorithms," in

Proceedings of the Companion Publication of the 2014

Annual Conference on Genetic and Evolutionary

Computation, 2014, pp. 205-226.

[25] L. J. Fogel, A. J. Owens, and M. J. Walsh, "Artificial

intelligence through simulated evolution," 1966.

[26] H.-G. Beyer and H.-P. Schwefel, "Evolution strategies–A

comprehensive introduction," Natural computing, vol. 1,

pp. 3-52, 2002.

[27] I. Rechenberg, "Evolution Strategy: Optimization of

Technical systems by means of biological evolution,"

Fromman-Holzboog, Stuttgart, vol. 104, 1973.

[28] A. K. Qin, V. L. Huang, and P. N. Suganthan,

"Differential evolution algorithm with strategy

adaptation for global numerical optimization," IEEE

transactions on Evolutionary Computation, vol. 13, pp.

398-417, 2009.

[29] K. E. Kinnear Jr, "A perspective on the work in this

book," Advances in Genetic Programming, pp. 3-19,

1994.

[30] S. Shennan, "Genes, memes, and human history:

Darwinian archaeology and cultural evolution," 2002.

[31] J. H. Holland, "Genetic algorithms," Scientific american,

vol. 267, pp. 66-72, 1992.

[32] J. D. Bagley, "The behavior of adaptive systems which

employ genetic and correlation algorithms," 1967.

[33] G. J. Friedman, "Digital simulation of an evolutionary

process," General Systems Yearbook, vol. 4, 1959.

[34] D. B. Fogel, "An introduction to simulated evolutionary

optimization," IEEE transactions on neural networks,

vol. 5, pp. 3-14, 1994.

[35] K. De Jong, "Genetic algorithm based learning," 1990.

[36] K. A. De Jong, "Genetic algorithms are NOT function

optimizers," Foundations of genetic algorithms, vol. 2,

pp. 5-17, 1993.

[37] H. J. Bremermann, The evolution of intelligence: The

nervous system as a model of its environment: University

of Washington, Department of Mathematics, 1958.

[38] E. Falkenauer, Genetic algorithms and grouping

problems: John Wiley & Sons, Inc., 1998.

[39] D. E. Goldberg, "Genetic algorithms in search,

optimization and machine learning ‗addison-wesley,

1989," Reading, MA, 1989.

[40] L. Davis, "Handbook of genetic algorithms," 1991.

[41] J. A. Joines and C. R. Houck, "On the use of non-

stationary penalty functions to solve nonlinear

constrained optimization problems with GA's," in

Evolutionary Computation, 1994. IEEE World Congress

on Computational Intelligence., Proceedings of the First

IEEE Conference on, 1994, pp. 579-584.

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 2, February 2017

5

[42] M. Mitchell, "Genetic algorithms: An overview,"

Complexity, vol. 1, pp. 31-39, 1995.

[43] J. F. Gonçalves, J. J. de Magalhães Mendes, and M. c. G.

Resende, "A hybrid genetic algorithm for the job shop

scheduling problem," European journal of operational

research, vol. 167, pp. 77-95, 2005.

[44] K. Sastry, D. E. Goldberg, and G. Kendall, "Genetic

algorithms," in Search methodologies, ed: Springer,

2014, pp. 93-117.

[45] M. Mitchell, An introduction to genetic algorithms: MIT

press, 1998.

[46] A. P. Engelbrecht, Fundamentals of computational

swarm intelligence: John Wiley & Sons, 2006.

[47] S. Sivanandam and S. Deepa, Introduction to genetic

algorithms: Springer Science & Business Media, 2007.

[48] J. Stender, "Introduction to genetic algorithms," in

Applications of Genetic Algorithms, IEE Colloquium on,

1994, pp. 1/1-1/4.

[49] S. A. Kazarlis, A. Bakirtzis, and V. Petridis, "A genetic

algorithm solution to the unit commitment problem,"

IEEE transactions on power systems, vol. 11, pp. 83-92,

1996.

[50] A. Baresel, H. Sthamer, and M. Schmidt, "Fitness

function design to improve evolutionary structural

testing," in Proceedings of the 4th Annual Conference on

Genetic and Evolutionary Computation, 2002, pp. 1329-

1336.

[51] D. E. Goldberg and K. Deb, "A comparative analysis of

selection schemes used in genetic algorithms,"

Foundations of genetic algorithms, vol. 1, pp. 69-93,

1991.

[52] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A

survey," Computer, vol. 27, pp. 17-26, 1994.

[53] B. L. Miller and D. E. Goldberg, "Genetic algorithms,

tournament selection, and the effects of noise," Complex

systems, vol. 9, pp. 193-212, 1995.

[54] M. Srinivas and L. M. Patnaik, "Adaptive probabilities of

crossover and mutation in genetic algorithms," IEEE

Transactions on Systems, Man, and Cybernetics, vol. 24,

pp. 656-667, 1994.

[55] U. Bodenhofer, "Genetic algorithms: theory and

applications," ed: Lecture notes, Fuzzy Logic

Laboratorium Linz-Hagenberg, Winter, 2003.

[56] C. Reeves, "Genetic algorithms," in Handbook of

metaheuristics, ed: Springer, 2003, pp. 55-82.

[57] N. Soni and T. Kumar, "Study of various mutation

operators in genetic algorithms," IJCSIT) International

Journal of Computer Science and Information

Technologies, vol. 5, pp. 4519-4521, 2014.

[58] L. Davis, "Applying adaptive algorithms to epistatic

domains," in IJCAI, 1985, pp. 162-164.

[59] D. E. Goldberg, Genetic algorithms: Pearson Education

India, 2006.

[60] D. Beasley, D. R. Bull, and R. R. Martin, "An overview

of genetic algorithms: Part 2, research topics," University

computing, vol. 15, pp. 170-181, 1993.

[61] J. Itkonen, M. V. Mantyla, and C. Lassenius, "How do

testers do it? An exploratory study on manual testing

practices," in Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering and

Measurement, 2009, pp. 494-497.

[62] C. M. Miller, "Automated testing system," ed: Google

Patents, 1995.

[63] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C.

Walton, "Genetic algorithms for dynamic test data

generation," in Automated Software Engineering, 1997.

Proceedings., 12th IEEE International Conference,

1997, pp. 307-308.

[64] D. E. Goldberg, Optimal initial population size for

binary-coded genetic algorithms: Clearinghouse for

Genetic Algorithms, Department of Engineering

Mechanics, University of Alabama, 1985.

[65] C. R. Reeves, "Using Genetic Algorithms with Small

Populations," in ICGA, 1993, p. 92.

[66] C. W. Ahn and R. S. Ramakrishna, "A genetic algorithm

for shortest path routing problem and the sizing of

populations," IEEE transactions on evolutionary

computation, vol. 6, pp. 566-579, 2002.

[67] J. Horn, N. Nafpliotis, and D. E. Goldberg, "A niched

Pareto genetic algorithm for multiobjective

optimization," in Evolutionary Computation, 1994. IEEE

World Congress on Computational Intelligence.,

Proceedings of the First IEEE Conference on, 1994, pp.

82-87.

[68] P. A. Diaz-Gomez and D. F. Hougen, "Initial Population

for Genetic Algorithms: A Metric Approach," in GEM,

2007, pp. 43-49.

[69] D. J. Berndt and A. Watkins, "Investigating the

performance of genetic algorithm-based software test

case generation," in High Assurance Systems

Engineering, 2004. Proceedings. Eighth IEEE

International Symposium on, 2004, pp. 261-262.

[70] A. Sharma, R. Patani, and A. Aggarwal, "SOFTWARE

TESTING USING GENETIC ALGORITHMS."

[71] D. E. Goldberg and J. H. Holland, "Genetic algorithms

and machine learning," Machine learning, vol. 3, pp. 95-

99, 1988.

[72] K. A. De Jong, W. M. Spears, and D. F. Gordon, "Using

genetic algorithms for concept learning," in Genetic

Algorithms for Machine Learning, ed: Springer, 1993,

pp. 5-32.

[73] A. Peterson, J. Soberón, and V. Sánchez-Cordero,

"Conservatism of ecological niches in evolutionary

time," Science, vol. 285, pp. 1265-1267, 1999.

[74] M. Brameier and W. Banzhaf, "A comparison of linear

genetic programming and neural networks in medical

data mining," IEEE Transactions on Evolutionary

Computation, vol. 5, pp. 17-26, 2001.

[75] E. A. Sconce, T. I. Khan, H. A. Wynne, P. Avery, L.

Monkhouse, B. P. King, et al., "The impact of CYP2C9

and VKORC1 genetic polymorphism and patient

characteristics upon warfarin dose requirements:

proposal for a new dosing regimen," Blood, vol. 106, pp.

2329-2333, 2005.

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 2, February 2017

6

[76] J. T. Alander and T. Mantere, "Automatic software

testing by genetic algorithm optimization, a case study,"

in Proceedings of the 1st International Workshop on Soft

Computing Applied to Software Engineering, 1999, pp.

1-9.

[77] R. Kumar, S. Singh, and G. Gopal, "Automatic Test Case

Generation Using Genetic Algorithm," International

Journal of Scientific & Engineering Research (IJSER),

vol. 4, pp. 1135-1141, 2013.

[78] K. Singh and R. Kumar, "Optimization of functional

testing using Genetic algorithms," International Journal

of Innovation, Management and Technology, vol. 1, p.

43, 2010.

[79] F. S. Babamir, A. Hatamizadeh, S. M. Babamir, M.

Dabbaghian, and A. Norouzi, "Application of genetic

algorithm in automatic software testing," in International

Conference on Networked Digital Technologies, 2010,

pp. 545-552.

[80] S. P. Tripathy and D. Kanhar, "Optimization of Software

Testing for Discrete Testsuite using Genetic Algorithm

and Sampling Technique," International Journal of

Computer Applications, vol. 63, 2013.

[81] J. McCart, D. Berndt, and A. Watkins, "Using genetic

algorithms for software testing: Performance

improvement techniques," AMCIS 2007 Proceedings, p.

222, 2007.

[82] N. K. Gupta and M. K. Rohil, "Using genetic algorithm

for unit testing of object oriented software," in 2008 First

International Conference on Emerging Trends in

Engineering and Technology, 2008, pp. 308-313.

[83] S. Wappler and F. Lammermann, "Using evolutionary

algorithms for the unit testing of object-oriented

software," in Proceedings of the 7th annual conference

on Genetic and evolutionary computation, 2005, pp.

1053-1060.

[84] P. Tonella, "Evolutionary testing of classes," in ACM

SIGSOFT Software Engineering Notes, 2004, pp. 119-

128.

[85] A. Rauf, S. Anwar, M. A. Jaffer, and A. A. Shahid,

"Automated GUI test coverage analysis using GA," in

Information Technology: New Generations (ITNG), 2010

Seventh International Conference on, 2010, pp. 1057-

1062.

[86] B. F. Jones, H.-H. Sthamer, and D. E. Eyres, "Automatic

structural testing using genetic algorithms," Software

Engineering Journal, vol. 11, pp. 299-306, 1996.

IJCATM : www.ijcaonline.org

