
International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 3, February 2017

6

A Univariate Marginal Approach for Pairwise Testing of

Software Product Lines

Mohd Zanes
Sahid

Universiti Tun
Hussein Onn

Malaysia (UTHM),
Johor, Malaysia.

Abu Bakar Md
Sultan

Universiti Putra
Malaysia (UPM),

Selangor, Malaysia

Abdul Azim Abdul
Ghani

Universiti Putra
Malaysia (UPM),

Selangor, Malaysia

Salmi Baharom
Universiti Putra

Malaysia (UPM),
Selangor, Malaysia

ABSTRACT

Software Product Line (SPL) is a software engineering

paradigm that is inspired by the concept of reusability of

common features, formulated for different software products.

Complete testing of all software products in SPL is known to

be unfeasible. This is due to the very large number of possible

products that can be produced or configured using a

combination of features in the SPL. Pairwise Testing is a type

of Combinatorial Testing, influenced by the perception that

two factors (or features in the context of SPL testing)

stimulate most faults. The effectiveness of SPL testing can be

measured using the pairwise coverage of test configuration.

However, to generate minimal test configuration that

maximizes the pairwise coverage is not trivial, especially

when dealing with a huge number of features and when

constraints have to be satisfied, which is the case in most SPL

scenarios. Therefore, it is the motivation of this work to

investigate the feasibility of an Estimation of Distribution

Algorithm (EDA), specifically the Univariate Marginal

Distribution Algorithm (UMDA), in generating minimal test

configuration for pairwise testing of SPL. The experimental

results show that in certain problem instances, UMDA is able

to compete with existing greedy and search-based algorithms.

General Terms

Algorithms, Software Product Lines Testing.

Keywords

product line testing, pairwise testing, combinatorial testing,

univariate marginal distribution algorithm, estimation of

distribution algorithm

1. INTRODUCTION
Software Product Line (SPL) is a software engineering

paradigm that facilitates the development of software products

that share common functionalities. The main goal of

developing a system as a software product line is to create a

software structure that is customizable to various needs, by

maximizing software artefacts reusability [1]. Though

belonging to a similar domain of usage, it is common for users

to have distinctive requirements. It is uneconomic to develop

software based on distinct requirements separately as some of

the functionalities are similar. However, it is difficult to

employ single product development paradigm to build single

software that fulfill the needs of diverse users of a similar

domain.

In SPL, a unit of system function is represented as a feature.

Features are explicitly defined as common or variable features

and utilized throughout the SPL development process. One

way to model the commonalities and variabilities in an SPL is

using a Feature Model (FM) based on feature modeling

technique [1],[2].

One of the critical activities in SPL is feature configuration; in

which two or more features are combined and utilized

together in a single software product. This could possibly

result in unspecified and unintended system behavior and

might lead to incorrect execution [3]. Hence, it is crucial to

test all possible feature configurations in order to reduce the

potential misbehavior of interacting features. But, to test all

possible feature configurations is unfeasible. The number of

feature configurations increases dramatically as the size of

FM increased. Therefore, exhaustively testing all feature

configurations especially in large-scale FM is not practical

[4],[5].

A number of researchers had proposed a couple of prominent

strategies to reduce the combinatorial explosion of feature

configuration testing [6]. Based on our literature, most of the

current approaches are based on greedy algorithms with only

a few works leveraged the potential of search-based

techniques, which have been widely used in the single

software development testing. Additionally, it is common that

software engineers develop an SPL with some concrete or

predetermined software products as a subset of its final

products [7]. Employment of conventional meta-heuristics

techniques to generate minimized test configuration often

requires these predefined valid software products as seeds or

initial population. Probabilities are implicitly employed in the

selection and re-production operators to produce offspring. In

this sense, by explicitly building a probabilistic model of

features distribution out of this seeds, it allows us to estimate

the distribution of highly fit features in subsequent candidate

solutions. This has remained uninvestigated. Therefore, this

paper reports a first attempt to employ an Estimation of

Distribution Algorithm (EDA) in the context of SPL testing.

Based on the conducted empirical studies, we observed that

our proposed solution is able to compete with other

approaches in certain problem instances, hence suggested that

an EDA is a viable approach towards better SPL testing.

This paper is organized as follows. Section II discusses the

concept of feature modeling, feature configuration testing,

SPL pairwise testing, Estimation of Distribution Algorithms

and related works. In Section III, we present the proposed

solution for SPL pairwise testing based on Univariate

Marginal Distribution Algorithm (UMDA), illustration of the

strategy, and the solution strategy. Section IV reports and

discusses the empirical study. Finally, the Section V

concludes this paper and highlights our future works.

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 3, February 2017

7

2. BACKGROUND AND RELATED

WORKS

2.1 Feature Modeling
Feature Modeling is a variability modeling technique that is

commonly employed to produce Feature Model (FM) [1]. FM

is a notation that represents features and its dependencies. The

tree representation of FM is known as Feature Diagram. It

presents a feature as a node, and relationships between

features as edges. Basically, different types of edges can be

assigned between features, which represent a relationship of

type mandatory, optional, or, or alternative. Apart from that,

FM might encompass some constraints as a rule or condition

that limits the linking between features. Feature modeling is a

popular way to model SPL variability and it is by far the most

reported in industry. Figure 1 depicts a feature model for a

simple ECommerce SPL [8].

Fig 1: A Feature Model of an Ecommerce SPL

FM is created as the formalism to describe features,

relationships and its constraints. The presence of constraint is

unavoidable as it determines the usability and practicality of

an SPL. FM can be translated into Propositional Logic.

Formal methods can be used to analyze its structure. Boolean

logic (AND, NOT, OR) can be used to represent relationships

and constraints. A clause can be constructed to represent

Conjunction/Disjunction of one or more feature. By

transforming the FM into Propositional Logic, Boolean

Satisfiability (SAT) solving techniques can be used to check

the compliance of a given clause with respect to a particular

FM.

2.2 Feature Configuration Testing
Products are configured and produced by combining several

features. These artefacts are called feature configurations. In

view of testing, the test case(s) can be defined for each

feature. Thus, to test a feature configuration, Test

Configuration (TC), which consists of many test cases, can be

generated in the same way the feature configuration is

generated.

Complete testing of all possible feature configurations is not

feasible. For n number of features, it requires 2n number of

test configurations to cover all possible combinations. (why 2,

because it is either selected or excluded). Consider an

example given in Figure 1. A total of 1023 possible test

configurations can be generated, conceiving that a test

configuration requires at least one feature. Given the

representation in Figure 2, we can construct a complete list of

test configuration as shown partially in Table 1.

1ECommerce, 2Catalogue, 3Payment,

4Security, 5Search, 6Bank_Transfer,

7Credit_Card, 8High, 9Standard,

10Public_Report

Fig 2: Number assignment of each feature

Table 1. Partial list of all possible test configurations

Test

Configuration

Feature

1 2 3 4 5 6 7 8 9 10

TC1 √ √ √ √ √ √ √ √ √ √
TC2 √ √ √ √ √ √ √ √ √ -

...

TC500 √ - - - - - √ √ - -

…

TC1023 - - - - - - - - - √
Only partial are shown due to space constraint

2.3 SPL Pairwise Testing
The motivation of pairwise testing is to cover all possible pair

of features, thus testing can be focused on the interaction of

both features. To exhaustively cover all pairs of n number of

features (from n choose r, where r=2), it can be calculated

using the following combinatorial formula:

C(n,r) = (1)

For each pair, each variable can take value of selected or

unselected, thus the total number of pairs is:

C(n,r) * 22 (2)

Pairwise testing is a type of combinatorial testing, where we

choose 2 elements to be considered or included in our test

pool. It can be generalized to another type of combinatorial

testing called as t-wise testing, where t indicates the number

of elements to choose.

As with other context of pairwise testing, SPL pairwise testing

is governed by constraints. Considering two features (1 and 2)

from Ecommerce SPL, four pairs of tuple will have to be

generated, i.e.(1,2), (1,-2), (-1,2) and (-1,-2), where negative

sign indicates that the feature is not selected in the feature

configuration. Due to constraints (cross-tree-constraints and

relationship of features in FM), some invalid pairs will be

eliminated, e.g. feature -1 is invalid because root feature must

always be selected. The same goes with mandatory features

(2, 3 and 4).

If we construct one test configuration, tci, for each pair of

features, pf i, (as an example, pair of feature 1 and -5), defined

as follows;

pfa = (1, -5)

tca = {1, ?, ?, ?, -5, ?, ?, ?, ?, ?}

we can set any arbitrary value for other variables (marked as

?). However, these variables could possibly be matched with

other pairs of features that we should cover. Thus, if we can

systematically set the values of each variable in tci, we could

maximize the number valid pairs in each tc so that it can

minimize the number of required TC.

2.4 Estimation of Distribution Algorithms
Estimation of Distribution Algorithms (EDAs) is a class of

Evolutionary Algorithms (EAs) that explore the space of

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 3, February 2017

8

potential solutions following the principle of survival of the

fittest of individual and populations similar to Genetic

Algorithm (GA) [9],[10]. However, in EDAs, crossover and

mutation operators are removed and replaced by the

estimation of a probability distribution.

The Probability Distribution is a model of (1) the distribution

of genes across all individuals, and (2) the dependence

relations or independence relations of genes between

individuals. The Probability Distribution is calculated from all

or truncated individuals and stored as Probability Vector

(PV). The PV will be used to sample or generate new

individuals in subsequent generations. In short, EDA-based

algorithms utilize statistics and probability to create the next

generation of individuals.

Generally, there are three categories of EDA according to the

complexity of the statistical analysis they employ, (1)

Univariate EDA, (2) Bivariate EDA, and (3) Multivariate

EDA. Each category, respectively, assumes solution variables

to have no dependency, pairwise dependencies, or multiple

dependencies between variables [10].

The Univariate Marginal Distribution Algorithm (UMDA)

belongs to the first category of EDA, and it is one of the most

basic Univariate EDA. UMDA begins with a set of candidate

solution, eliminate those less fit solutions, and then, calculate

probability of each candidate solutions’ elements. The result

will be used to populate new candidate solutions for next

generation [11]. One of the main advantages of Univariate

EDA is it perform much simpler computation and require

smaller memory footprint as compared to bivariate and

multivariate EDAs [12].

2.5 Related Works
In this section, the paper discusses some of the notable works

that are related to combinatorial testing of SPL, and

application of EDAs in search-based software engineering.

Various approaches have been published towards a viable

feature configuration testing of SPL systems. The multitudes

of studies were mainly built around the combinatorial

interaction testing approach, followed by its integration with

other optimization approach such as search-based approach.

Recently, Alsariera et al. [13] proposed SPLs test reduction

using Bat-inspired algorithm. Their motivation was to

minimize the tests suite by formulating the test suite selection

as a swarm of bats hunting for prey. Henard et al. [5] also

employed a search-based algorithm, (1+1) Evolution Strategy

(ES), to generate and prioritise covering array, guided by a

(dis)similarity measure. Henard et al. mentioned that current t-

wise approaches for SPLs are restricted to a small number of

FMs and low strength of t-wise coverage. Both are

constrained by scalability issues that results from intractable

computation for very large FMs or high t values. Therefore,

they formulated the feature configuration generation problem

as a search-based where the search space is defined as all the

valid feature configurations extracted from the FM. Thus,

meta-heuristic techniques can be used to systematically

explore this space. In view of this, dissimilarity between

features are used as a fitness function towards searching for

populations of feature configurations in this space.

Wang et al. [14] use a weighted Genetic Algorithm to

minimize SPL test suites, and at the same time maintain fault

detecting power. Haslinger et al. [15] applied a Simulated

Annealing algorithm to generate t-wise covering array and

demonstrated a tool to improve the performance of SPL

testing. Haslinger et al. report a speed up of over 60% on 133

publicly available feature models, while preserving the

coverage of the generated tests.

Ensan et al. [16] highlighted that comprehensive testing of all

potential products results in exponential test suites in test

space. They proposed to use a Genetic Algorithm with SAT

solver to search for SPL feature interactions. They managed to

automatically generate and find appropriate and minimal test

suites for a given SPL while maintaining practical resource

utilization and achieving acceptable fault detection capability.

However, the limitation of their approach is it does not

manage to scale for FM with over 300 features.

Johansen et al. published their solution [4] and a tool named

ICPL, which capable of processing large feature models,

better execution time and most importantly produced small

covering array. They used the fact that a (t-1)-wise is always a

subset of the t-wise, and employed this principle to recursively

build up a higher strength covering array from a smaller one.

It is deemed necessary to mention works related to EDA, as

our solution is partly based on EDA. EDAs have been adopted

to solve optimization problems in software engineering. We

noticed that EDAs have been utilized in optimizing test data

generation and test suites generation [17],[18],[19] and fault

detection [20]. EDA has also been employed to improve

software reliability prediction [21].

3. UMDA FOR SPL PAIRWISE TESING
This paper reports the first attempt to employ UMDA to

generate a minimal set of SPL test configuration that satisfies

pairwise coverage of features. We define our fitness function

as the number of pairs of features covered by each test

configuration. Hence, the more pairs are covered, the better

the fitness. The algorithm of the original UMDA is shown in

Figure 3.

 Fig 3: Algorithm for UMDA [11]

The intuition behind this work is, during the search for fitter

test configurations, the more frequent a particular feature

present in the current fittest test configuration, the more

frequent it should be included in the subsequent list of test

configuration. For example, if feature 5 appears more frequent

in our 10 best test configurations, we should create more test

configurations with feature 5 instead of -5 for next iteration.

The definition of best test configurations refers to those that

cover a higher number of pairs from our list of all valid pairs.

3.1 Illustrating Test Configuration

Generation using UMDA
To demonstrate the strategy, the following illustrations are

presented for a single iteration of test configuration generation

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 3, February 2017

9

based on the Probability Vector (PV) calculated from the first

randomly generated candidate test configurations. Assuming

we have the following set of valid pairs of features:

Pair of features, pf = { (1,2), (1,3), (1,-3), (1,4), (1,-4),

(1,5), (1,-5), (2,3), (2, 3), (2,4), (2,-4), (2,5), (2,

5), (2,6), (3,4), (3,-4), (3,5), (3,-5), (3,6), (4,7) }

First, we start with randomly generated five valid set of test

configurations as our first population of candidate solutions:

Population 1:

 TC1 { 1, 2, 3, -4, -5, 6, -7 }

 TC2 { 1, 2, -3, 4, 5, -6, 7 }

 TC3 { 1, 2, 3, 4, 5, -6, -7 }

 TC4 { 1, 2, -3, -4, -5, -6, -7 }

 TC5 { 1, 2, 3, -4, -5, 6, 7 }

Next, for each test configuration, we calculate its fitness

value. We count how many pairs from pf are matched with the

respective pair of features in each test configuration, which

results in the following fitness values:

Population 1:

 TC1 { 1, 2, 3, -4, -5, 6, -7 } fitness=11

 TC2 { 1, 2, -3, 4, 5, -6, 7 } fitness=8

 TC3 { 1, 2, 3, 4, 5, -6, -7 } fitness=9

 TC4 { 1, 2, -3, -4, -5, -6, -7 } fitness=7

 TC5 { 1, 2, 3, -4, -5, 6, 7 } fitness=11

Truncation selection operator from GA is borrowed and

applied here. It is a parent selection mechanism one can use to

select potential candidate solutions for reproduction [22]. For

this illustration, we truncate the population by choosing three

most fit individuals (test configurations), i.e.

Truncated Population 1:

 TC1 { 1, 2, 3, -4, -5, 6, -7 } fitness=11

 TC3 { 1, 2, 3, 4, 5, -6, -7 } fitness=9

 TC5 { 1, 2, 3, -4, -5, 6, 7 } fitness=11

Next, we calculate the PV by finding the percentage of each

positive numbered feature out of all values by its position

across all selected test configurations. For example, for

position 7, the value from TC1, TC3 and TC5 are -7, -7 and 7,

respectively. Hence, the probability for positive number of

feature 7 is 1/3, i.e. ≈0.33. The PV for first population is

calculated as follows:

PV = {1.0, 1.0, 1.0, 0.33, 0.33, 0.67, 0.33}

Subsequently , the second population of five candidate

solutions is generated using the estimated distribution

calculated in PV. Populate each position with the respective

value using probability PV(i) where i refers to the position of

probability value in PV. For example, for position 6, we

should have value 6 appear ≈67% times in our five test

configurations. A possible distribution of features in position

6 is -6, 6, 6, -6 and 6. A possible set of test configurations is

generated as follows:

Population 2:

 TC1 { 1, 2, 3, -4, 5, -6, -7 }

 TC2 { 1, 2, 3, -4, 5, 6, 7 }

 TC3 { 1, 2, 3, -4, -5, 6, -7 }

 TC4 { 1, 2, 3, 4, -5, -6, -7 }

 TC5 { 1, 2, 3, 4, -5, 6, 7 }

Evaluate our second population by calculating the fitness

value of each test configurations:

Population 2:

 TC1 { 1, 2, 3, -4, 5, -6, -7 } fitness=9

 TC2 { 1, 2, 3, -4, 5, 6, 7 } fitness=11

 TC3 { 1, 2, 3, -4, -5, 6, -7 } fitness=11

 TC4 { 1, 2, 3, 4, -5, -6, -7 } fitness=9

 TC5 { 1, 2, 3, 4, -5, 6, 7 } fitness=12

In general, it is shown that the second population consists of

better (fitter) test configurations as compared to the first

population. Additionally, in the second population, one test

configuration (TC5) has fitness value 12, greater than any

previous test configuration. It means that, we managed to find

a test configuration that covers more pairs than others.

This strategy can be repeated until we find no more

improvement. Then, we select the best test configuration and

store it in our hall-of-fame, remove pairs that are already

covered and start again with new random candidate solutions.

This process continues until all pairs have been covered, or

when generation limit is achieved. In the case of generation

limit is achieved, we consider that we only managed to cover

partial pairwise test configuration.

3.2 The SPL-Pairwise-UDMA Strategy
Few adjustments have been incorporated to UMDA in our

proposed strategy. Firstly, we changed the initial population

generation approach. Instead of generating random test

configuration naively, we employ Boolean Satisfiability

(SAT) solver to generate random test configurations in a

controlled manner. This controlled generation is crucial to

ensure that only valid test configurations are populated.

Secondly, as we iterate on a number of generations, the fitness

of test configurations in newer generations may be getting

stagnant or no improvement. When this happened, we put

aside the fittest test configuration discovered so far in a space

called as hall-of-fame, and we replace the current generation

with new generation using SAT solver. Then we recalculate

the PV based on the new generation, without considering the

historical distribution. This is repeated until all valid pairs are

covered, or when iteration limit is achieved.

Thirdly, for every new candidate solutions generated using the

PV, we omit all candidate solutions that are invalid. This is

done by checking the clause satisfiability using SAT solver.

This is significant to ensure that the constraints of the FM are

satisfied, and eventually, we only have valid test

configurations. The whole strategy for test configuration

generation using UMDA is formulated as an algorithm

presented in Figure 4.

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 3, February 2017

10

Fig 4: Algorithm of the proposed strategy

4. EMPIRICAL STUDY
The algorithm has been implemented using Java, and we have

performed experiments to evaluate its effectiveness.

4.1 Objectives
An empirical study has been carried out in order to gauge the

effectiveness of applying a univariate estimation distribution

algorithm in generating test configuration fulfilling pairwise

coverage. Two measures of effectiveness have been evaluated,

i.e.:

i. Minimum number of test configurations, eff_min(TC)

ii. Maximum pairwise coverage, eff_max(PC)

4.2 Experiment Operations
The experiments have been performed on 9 datasets of

various number of features and constraints, obtained from

SPLOT [8]. The parameters configured for the experiment are

200 population size with truncation size 5, stagnancy count is

3, maximum iterations is 5000 and timeout is 1800 seconds.

Stagnancy count is the number of consecutive iterations

having the fittest value unchanged. This is used to signal that

the population is stagnant. Comparisons were made against

ICPL [4] and (1+1) ES-based tool [5], for measuring the

eff_min(TC) and eff_max(PC) respectively.

4.3 Results and Discussions
The first experiment was conducted to measure the

effectiveness of the proposed strategy in minimizing the

number of generated test configurations. Results have been

recorded and presented in Table 2. Pairwise coverage was set

to 100% coverage. Cells in the third and fourth columns that

are greyed indicate smaller number of test configuration,

hence better solutions. Our UDMA-based solution managed to

generate a smaller number of test configurations on majority

datasets (small size SPL, having feature count less than 100).

However, we cannot compete with ICPL for the largest

dataset (eShop), with a significant difference.

Table 2. Number of test configurations

Number

of

Features

Number of Test

Config eff_min(TC)

Feature Models

UMDA-

SPL
ICPL

Ecommerce 10 6 7

Cellphone 11 7 8

GPL 20 15 17

SPL-SimulES 32 10 10

Arcade Game PL 61 16 18

J2EE-Web-Arch 77 20 18

Billing 88 13 14

Coche ecologico 94 91 93

eShop 287 39 24

The second experiment measures the effectiveness in

maximizing the number of pairwise coverage. The result is

presented in Table 3. The execution of (1+1) ES-based tool

was driven by the number of required test configuration

(product configuration), thereby, we execute that tool based

on the number of test configuration returned by our UMDA-

based solution, and observed its pairwise coverage. Our

UDMA-based solution was always better in maximizing the

number of pairwise coverage (always 100%), compared to the

(1+1) ES-based tool. However, the effectiveness gain is too

small. Therefore, it is not really fair to compare both in terms

of pairwise coverage. Additionally, the (1+1) ES-based tool is

claimed to perform prioritization, apart from test

configuration generation. Hence, further investigation may

have to be performed to compare both in terms of its

prioritization effectiveness, and probably efficiency

(including, but not limited to execution time and number of

fitness function calculations).

Table 3. Number of pairwise coverage

Number of Pairwise Coverage

eff_max(PC)

Feature Models

UMDA-

SPL

(100%)

(1+1) - ES

Ecommerce 106 101 95.28%

Cellphone 151 149 98.68%

GPL 499 489 98.00%

SPL-SimulES 1448 1434 99.03%

Arcade Game PL 5209 5188 99.60%

J2EE-Web-Arch 9837 9820 99.83%

Billing 8725 8715 99.89%

Coche ecologico 11075 11035 99.64%

eShop 147534 147449 99.94%

4.4 Threats to Validity
This work is intended to demonstrate the feasibility and

effectiveness of UMDA in SPL pairwise testing, and

experiment was conducted on small and moderate-sized SPLs.

As we aware of its generalizability concern, we put aside its

scalability aspect at this moment, which we noticed in order to

achieve high scalability, it requires a more sophisticated

program structure and execution platform (such as parallel

execution during fitness function calculation [23]).

Evaluation of our proposed strategy was only conducted

against two existing tools, in which one might raise concern

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 3, February 2017

11

on the significance of the results obtained. We believe it is

sufficient as the two tools are chosen due to their outstanding

performance as reported in several literatures.

5. CONCLUSION AND FUTURE

WORKS
This first attempt to employ (univariate) EDA shows that the

first variant of EDA is able to compete with a greedy

approach for small SPLs, however, less convincing for large

SPL. In view of this, we planned to conduct further works

based on (i) other variant of first class EDA, such as Compact

Genetic Algorithm (cGA), and Population-Based Incremental

Learning (PBIL) algorithm, and, (ii) SPL having a higher

number of features to substantiate these findings.

The strategy presented in this paper exploits the simple

probability distribution calculated on each variable,

individually. However, considering a pair of features as the

element of the fitness function, we observe that there exists

some dependency between features in our problem space.

Hence, a more rigor statistical analysis (bivariate or

multivariate EDAs) is deemed to be more appropriate. Thus,

our other future works will be carried out to employ Bivariate

Marginal Distribution Algorithm (BMDA) to find dependency

between two features, and exploit this information to improve

the effectiveness of test configuration generation in SPL.

6. REFERENCES
[1] K. Lee, K. Kang, and J. Lee, "Concepts and Guidelines

of Feature Modeling for Product Line Software

Engineering," in Software Reuse: Methods, Techniques,

and Tools. vol. 2319, C. Gacek, Ed., ed: Springer Berlin

Heidelberg, 2002, pp. 62-77.

[2] M. M. Alam, A. I. Khan, and A. Zafar, "A

Comprehensive Study of Software Product Line

Frameworks," International Journal of Computer

Applications, vol. 151, pp. 11-17, 2016.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake, "Feature

Interactions," in Feature-Oriented Software Product

Lines: Concepts and Implementation, ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 213-

241.

[4] M. F. Johansen, Ø. Haugen, and F. Fleurey, "An

algorithm for generating t-wise covering arrays from

large feature models," in Proceedings of the 16th

International Software Product Line Conference-Volume

1, 2012, pp. 46-55.

[5] C. Henard, et al., "Bypassing the Combinatorial

Explosion: Using Similarity to Generate and Prioritize T-

Wise Test Configurations for Software Product Lines,"

Software Engineering, IEEE Transactions on, vol. 40,

pp. 650-670, 2014.

[6] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A.

Egyed, "A first systematic mapping study on

combinatorial interaction testing for software product

lines," in Eighth International Conference on Software

Testing, Verification and Validation Workshops

(ICSTW), 2015, pp. 1-10.

[7] S. Oster, F. Markert, and P. Ritter, "Automated

Incremental Pairwise Testing of Software Product

Lines," in Software Product Lines: Going Beyond. vol.

6287, J. Bosch and J. Lee, Eds., ed: Springer Berlin

Heidelberg, 2010, pp. 196-210.

[8] M. Mendonca, M. Branco, and D. Cowan, "SPLOT:

software product lines online tools," in Proceedings of

the 24th ACM SIGPLAN conference companion on

Object oriented programming systems languages and

applications, 2009, pp. 761-762.

[9] M. Pelikan, M. Hauschild, and F. Lobo, "Estimation of

Distribution Algorithms," in Springer Handbook of

Computational Intelligence, J. Kacprzyk and W.

Pedrycz, Eds., ed: Springer Berlin Heidelberg, 2015, pp.

899-928.

[10] S. Shakya and R. Santana, "A Review of Estimation of

Distribution Algorithms and Markov Networks," in

Markov Networks in Evolutionary Computation. vol. 14,

S. Shakya and R. Santana, Eds., ed: Springer Berlin

Heidelberg, 2012, pp. 21-37.

[11] D. Simon, "Estimation of Distribution Algorithms," in

Evolutionary Optimization Algorithms, First ed: John

Wiley & Sons, 2013, pp. 313-34 7.

[12] M. Hauschild and M. Pelikan, "An introduction and

survey of estimation of distribution algorithms," Swarm

and Evolutionary Computation, vol. 1, pp. 111-128,

2011.

[13] Y. A. Alsariera, M. A. Majid, and K. Z. Zamli, "SPLBA:

An interaction strategy for testing software product lines

using the Bat-inspired algorithm," in Software

Engineering and Computer Systems (ICSECS), 2015 4th

International Conference on, 2015, pp. 148-153.

[14] S. Wang, S. Ali, and A. Gotlieb, "Minimizing test suites

in software product lines using weight-based genetic

algorithms," in Proceedings of the 15th annual

conference on Genetic and evolutionary computation,

Amsterdam, The Netherlands, 2013, pp. 1493-1500.

[15] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed,

"Improving CASA runtime performance by exploiting

basic feature model analysis," arXiv preprint

arXiv:1311.7313, 2013.

[16] F. Ensan, E. Bagheri, and D. Gašević, "Evolutionary

Search-Based Test Generation for Software Product Line

Feature Models," in Advanced Information Systems

Engineering. vol. 7328, J. Ralyté, et al., Eds., ed:

Springer Berlin Heidelberg, 2012, pp. 613-628.

[17] R. Sagarna and J. Lozano, "Software Metrics Mining to

Predict the Performance of Estimation of Distribution

Algorithms in Test Data Generation," in Knowledge-

Driven Computing. vol. 102, C. Cotta, et al., Eds., ed:

Springer Berlin Heidelberg, 2008, pp. 235-254.

[18] R. Sagarna, A. Arcuri, and Y. Xin, "Estimation of

distribution algorithms for testing object oriented

software," in Evolutionary Computation, 2007. CEC

2007. IEEE Congress on, 2007, pp. 438-444.

[19] R. Sagarna and J. A. Lozano, "Scatter Search in software

testing, comparison and collaboration with Estimation of

Distribution Algorithms," European Journal of

Operational Research, vol. 169, pp. 392-412, 2006.

[20] J. Staunton and J. Clark, "Applications of Model Reuse

When Using Estimation of Distribution Algorithms to

Test Concurrent Software," in Search Based Software

Engineering. vol. 6956, M. Cohen and M. Ó Cinnéide,

Eds., ed: Springer Berlin Heidelberg, 2011, pp. 97-111.

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 3, February 2017

12

[21] C. Jin and S.-W. Jin, "Software reliability prediction

model based on support vector regression with improved

estimation of distribution algorithms," Applied Soft

Computing, vol. 15, pp. 113-120, 2014.

[22] H. Mühlenbein and D. Schlierkamp-Voosen, "Predictive

Models for the Breeder Genetic Algorithm I. Continuous

Parameter Optimization," Evolutionary Computation,

vol. 1, pp. 25-49, 1993.

[23] R.-Z. Qi, Z.-J. Wang, and S.-Y. Li, "A Parallel Genetic

Algorithm Based on Spark for Pairwise Test Suite

Generation," Journal of Computer Science and

Technology, vol. 31, pp. 417-427, 2016.

IJCATM : www.ijcaonline.org

