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ABSTRACT 

Software Product Line (SPL) is a software engineering 

paradigm that is inspired by the concept of reusability of 

common features, formulated for different software products. 

Complete testing of all software products in SPL is known to 

be unfeasible. This is due to the very large number of possible 

products that can be produced or configured using a 

combination of features in the SPL. Pairwise Testing is a type 

of Combinatorial Testing, influenced by the perception that 

two factors (or features in the context of SPL testing) 

stimulate most faults. The effectiveness of SPL testing can be 

measured using the pairwise coverage of test configuration. 

However, to generate minimal test configuration that 

maximizes the pairwise coverage is not trivial, especially 

when dealing with a huge number of features and when 

constraints have to be satisfied, which is the case in most SPL 

scenarios. Therefore, it is the motivation of this work to 

investigate the feasibility of an Estimation of Distribution 

Algorithm (EDA), specifically the Univariate Marginal 

Distribution Algorithm (UMDA), in generating minimal test 

configuration for pairwise testing of SPL. The experimental 

results show that in certain problem instances, UMDA is able 

to compete with existing greedy and search-based algorithms.   

General Terms 

Algorithms, Software Product Lines Testing. 

Keywords 

product line testing, pairwise testing, combinatorial testing, 
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1. INTRODUCTION 
Software Product Line (SPL) is a software engineering 

paradigm that facilitates the development of software products 

that share common functionalities. The main goal of 

developing a system as a software product line is to create a 

software structure that is customizable to various needs, by 

maximizing software artefacts reusability [1]. Though 

belonging to a similar domain of usage, it is common for users 

to have distinctive requirements. It is uneconomic to develop 

software based on distinct requirements separately as some of 

the functionalities are similar. However, it is difficult to 

employ single product development paradigm to build single 

software that fulfill the needs of diverse users of a similar 

domain.  

In SPL, a unit of system function is represented as a feature. 

Features are explicitly defined as common or variable features 

and utilized throughout the SPL development process. One 

way to model the commonalities and variabilities in an SPL is 

using a Feature Model (FM) based on feature modeling 

technique [1],[2].  

One of the critical activities in SPL is feature configuration; in 

which two or more features are combined and utilized 

together in a single software product. This could possibly 

result in unspecified and unintended system behavior and 

might lead to incorrect execution [3]. Hence, it is crucial to 

test all possible feature configurations in order to reduce the 

potential misbehavior of interacting features. But, to test all 

possible feature configurations is unfeasible. The number of 

feature configurations increases dramatically as the size of 

FM increased. Therefore, exhaustively testing all feature 

configurations especially in large-scale FM is not practical 

[4],[5]. 

A number of researchers had proposed a couple of prominent 

strategies to reduce the combinatorial explosion of feature 

configuration testing [6]. Based on our literature, most of the 

current approaches are based on greedy algorithms with only 

a few works leveraged the potential of search-based 

techniques, which have been widely used in the single 

software development testing. Additionally, it is common that 

software engineers develop an SPL with some concrete or 

predetermined software products as a subset of its final 

products [7]. Employment of conventional meta-heuristics 

techniques to generate minimized test configuration often 

requires these predefined valid software products as seeds or 

initial population. Probabilities are implicitly employed in the 

selection and re-production operators to produce offspring. In 

this sense, by explicitly building a probabilistic model of 

features distribution out of this seeds, it allows us to estimate 

the distribution of highly fit features in subsequent candidate 

solutions. This has remained uninvestigated. Therefore, this 

paper reports a first attempt to employ an Estimation of 

Distribution Algorithm (EDA) in the context of SPL testing. 

Based on the conducted empirical studies, we observed that 

our proposed solution is able to compete with other 

approaches in certain problem instances, hence suggested that 

an EDA is a viable approach towards better SPL testing.  

This paper is organized as follows. Section II discusses the 

concept of feature modeling, feature configuration testing, 

SPL pairwise testing, Estimation of Distribution Algorithms 

and related works. In Section III, we present the proposed 

solution for SPL pairwise testing based on Univariate 

Marginal Distribution Algorithm (UMDA), illustration of the 

strategy, and the solution strategy. Section IV reports and 

discusses the empirical study. Finally, the Section V 

concludes this paper and highlights our future works.  
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2. BACKGROUND AND RELATED 

WORKS 

2.1 Feature Modeling 
Feature Modeling is a variability modeling technique that is 

commonly employed to produce Feature Model (FM) [1]. FM 

is a notation that represents features and its dependencies. The 

tree representation of FM is known as Feature Diagram. It 

presents a feature as a node, and relationships between 

features as edges. Basically, different types of edges can be 

assigned between features, which represent a relationship of 

type mandatory, optional, or, or alternative. Apart from that, 

FM might encompass some constraints as a rule or condition 

that limits the linking between features. Feature modeling is a 

popular way to model SPL variability and it is by far the most 

reported in industry. Figure 1 depicts a feature model for a 

simple ECommerce SPL [8]. 

 

Fig 1: A Feature Model of an Ecommerce SPL 

FM is created as the formalism to describe features, 

relationships and its constraints. The presence of constraint is 

unavoidable as it determines the usability and practicality of 

an SPL. FM can be translated into Propositional Logic. 

Formal methods can be used to analyze its structure. Boolean 

logic (AND, NOT, OR) can be used to represent relationships 

and constraints. A clause can be constructed to represent 

Conjunction/Disjunction of one or more feature. By 

transforming the FM into Propositional Logic, Boolean 

Satisfiability (SAT) solving techniques can be used to check 

the compliance of a given clause with respect to a particular 

FM. 

2.2 Feature Configuration Testing 
Products are configured and produced by combining several 

features. These artefacts are called feature configurations. In 

view of testing, the test case(s) can be defined for each 

feature. Thus, to test a feature configuration, Test 

Configuration (TC), which consists of many test cases, can be 

generated in the same way the feature configuration is 

generated. 

Complete testing of all possible feature configurations is not 

feasible. For n number of features, it requires 2n number of 

test configurations to cover all possible combinations. (why 2, 

because it is either selected or excluded). Consider an 

example given in Figure 1. A total of 1023 possible test 

configurations can be generated, conceiving that a test 

configuration requires at least one feature. Given the 

representation in Figure 2, we can construct a complete list of 

test configuration as shown partially in Table 1. 

1ECommerce, 2Catalogue, 3Payment,  

4Security, 5Search, 6Bank_Transfer,  

7Credit_Card, 8High, 9Standard,  

10Public_Report 

Fig 2: Number assignment of each feature 

Table 1. Partial list of all possible test configurations 

Test 

Configuration 

Feature 

1 2 3 4 5 6 7 8 9 10 

TC1 √ √ √ √ √ √ √ √ √ √ 
TC2 √ √ √ √ √ √ √ √ √ - 

... 

TC500 √ - - - - - √ √ - - 

… 

TC1023 - - - - - - - - - √ 
Only partial are shown due to space constraint 

2.3 SPL Pairwise Testing 
The motivation of pairwise testing is to cover all possible pair 

of features, thus testing can be focused on the interaction of 

both features. To exhaustively cover all pairs of n number of 

features (from n choose r, where r=2), it can be calculated 

using the following combinatorial formula: 

C(n,r) =              (1) 

For each pair, each variable can take value of selected or 

unselected, thus the total number of pairs is: 

C(n,r) * 22                    (2) 

Pairwise testing is a type of combinatorial testing, where we 

choose 2 elements to be considered or included in our test 

pool. It can be generalized to another type of combinatorial 

testing called as t-wise testing, where t indicates the number 

of elements to choose. 

As with other context of pairwise testing, SPL pairwise testing 

is governed by constraints. Considering two features (1 and 2) 

from Ecommerce SPL, four pairs of tuple will have to be 

generated, i.e.(1,2), (1,-2), (-1,2) and (-1,-2), where negative 

sign indicates that the feature is not selected in the feature 

configuration. Due to constraints (cross-tree-constraints and 

relationship of features in FM), some invalid pairs will be 

eliminated, e.g. feature -1 is invalid because root feature must 

always be selected. The same goes with mandatory features 

(2, 3 and 4). 

If we construct one test configuration, tci, for each pair of 

features, pf i, (as an example, pair of feature 1 and -5), defined 

as follows; 

pfa = (1, -5) 

tca = {1, ?, ?, ?, -5, ?, ?, ?, ?, ?} 

we can set any arbitrary value for other variables (marked as 

?). However, these variables could possibly be matched with 

other pairs of features that we should cover. Thus, if we can 

systematically set the values of each variable in tci, we could 

maximize the number valid pairs in each tc so that it can 

minimize the number of required TC. 

2.4 Estimation of Distribution Algorithms 
Estimation of Distribution Algorithms (EDAs) is a class of 

Evolutionary Algorithms (EAs) that explore the space of 
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potential solutions following the principle of survival of the 

fittest of individual and populations similar to Genetic 

Algorithm (GA) [9],[10]. However, in EDAs, crossover and 

mutation operators are removed and replaced by the 

estimation of a probability distribution. 

The Probability Distribution is a model of (1) the distribution 

of genes across all individuals, and (2) the dependence 

relations or independence relations of genes between 

individuals. The Probability Distribution is calculated from all 

or truncated individuals and stored as Probability Vector 

(PV). The PV will be used to sample or generate new 

individuals in subsequent generations. In short, EDA-based 

algorithms utilize statistics and probability to create the next 

generation of individuals. 

Generally, there are three categories of EDA according to the 

complexity of the statistical analysis they employ, (1) 

Univariate EDA, (2) Bivariate EDA, and (3) Multivariate 

EDA. Each category, respectively, assumes solution variables 

to have no dependency, pairwise dependencies, or multiple 

dependencies between variables [10]. 

The Univariate Marginal Distribution Algorithm (UMDA) 

belongs to the first category of EDA, and it is one of the most 

basic Univariate EDA. UMDA begins with a set of candidate 

solution, eliminate those less fit solutions, and then, calculate 

probability of each candidate solutions’ elements. The result 

will be used to populate new candidate solutions for next 

generation [11]. One of the main advantages of Univariate 

EDA is it perform much simpler computation and require 

smaller memory footprint as compared to bivariate and 

multivariate EDAs [12]. 

2.5 Related Works 
In this section, the paper discusses some of the notable works 

that are related to combinatorial testing of SPL, and 

application of EDAs in search-based software engineering. 

Various approaches have been published towards a viable 

feature configuration testing of SPL systems. The multitudes 

of studies were mainly built around the combinatorial 

interaction testing approach, followed by its integration with 

other optimization approach such as search-based approach.  

Recently, Alsariera et al. [13] proposed SPLs test reduction 

using Bat-inspired algorithm. Their motivation was to 

minimize the tests suite by formulating the test suite selection 

as a swarm of bats hunting for prey. Henard et al. [5] also 

employed a search-based algorithm, (1+1) Evolution Strategy 

(ES), to generate and prioritise covering array, guided by a 

(dis)similarity measure. Henard et al. mentioned that current t-

wise approaches for SPLs are restricted to a small number of 

FMs and low strength of t-wise coverage. Both are 

constrained by scalability issues that results from intractable 

computation for very large FMs or high t values. Therefore, 

they formulated the feature configuration generation problem 

as a search-based where the search space is defined as all the 

valid feature configurations extracted from the FM. Thus, 

meta-heuristic techniques can be used to systematically 

explore this space. In view of this, dissimilarity between 

features are used as a fitness function towards searching for 

populations of feature configurations in this space. 

Wang et al. [14] use a weighted Genetic Algorithm to 

minimize SPL test suites, and at the same time maintain fault 

detecting power. Haslinger et al. [15] applied a Simulated 

Annealing algorithm to generate t-wise covering array and 

demonstrated a tool to improve the performance of SPL 

testing. Haslinger et al. report a speed up of over 60% on 133 

publicly available feature models, while preserving the 

coverage of the generated tests. 

Ensan et al. [16] highlighted that comprehensive testing of all 

potential products results in exponential test suites in test 

space. They proposed to use a Genetic Algorithm with SAT 

solver to search for SPL feature interactions. They managed to 

automatically generate and find appropriate and minimal test 

suites for a given SPL while maintaining practical resource 

utilization and achieving acceptable fault detection capability. 

However, the limitation of their approach is it does not 

manage to scale for FM with over 300 features. 

Johansen et al. published their solution [4] and a tool named 

ICPL, which capable of processing large feature models, 

better execution time and most importantly produced small 

covering array. They used the fact that a (t-1)-wise is always a 

subset of the t-wise, and employed this principle to recursively 

build up a higher strength covering array from a smaller one. 

It is deemed necessary to mention works related to EDA, as 

our solution is partly based on EDA. EDAs have been adopted 

to solve optimization problems in software engineering. We 

noticed that EDAs have been utilized in optimizing test data 

generation and test suites generation [17],[18],[19] and fault 

detection [20]. EDA has also been employed to improve 

software reliability prediction [21]. 

3. UMDA FOR SPL PAIRWISE TESING 
This paper reports the first attempt to employ UMDA to 

generate a minimal set of SPL test configuration that satisfies 

pairwise coverage of features. We define our fitness function 

as the number of pairs of features covered by each test 

configuration. Hence, the more pairs are covered, the better 

the fitness. The algorithm of the original UMDA is shown in 

Figure 3. 

 

 Fig 3: Algorithm for UMDA [11] 

The intuition behind this work is, during the search for fitter 

test configurations, the more frequent a particular feature 

present in the current fittest test configuration, the more 

frequent it should be included in the subsequent list of test 

configuration. For example, if feature 5 appears more frequent 

in our 10 best test configurations, we should create more test 

configurations with feature 5 instead of -5 for next iteration. 

The definition of best test configurations refers to those that 

cover a higher number of pairs from our list of all valid pairs. 

3.1 Illustrating Test Configuration 

Generation using UMDA 
To demonstrate the strategy, the following illustrations are 

presented for a single iteration of test configuration generation 
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based on the Probability Vector (PV) calculated from the first 

randomly generated candidate test configurations. Assuming 

we have the following set of valid pairs of features: 

Pair of features, pf = { (1,2), (1,3), (1,-3), (1,4), (1,-4), 

(1,5), (1,-5), (2,3), (2, 3), (2,4), (2,-4), (2,5), (2, 

5), (2,6), (3,4), (3,-4), (3,5), (3,-5), (3,6), (4,7) } 

First, we start with randomly generated five valid set of test 

configurations as our first population of candidate solutions: 

Population 1: 

   TC1 {  1,  2,  3, -4, -5,  6, -7 } 

   TC2  {  1,  2, -3,  4,  5, -6,  7 } 

   TC3 {  1,  2,  3,  4,  5, -6, -7 } 

   TC4 {  1,  2, -3, -4, -5, -6, -7 } 

   TC5  {  1,  2,  3, -4, -5,  6,  7 } 

Next, for each test configuration, we calculate its fitness 

value. We count how many pairs from pf are matched with the 

respective pair of features in each test configuration, which 

results in the following fitness values: 

Population 1: 

   TC1 {  1,  2,  3, -4, -5,  6, -7 }   fitness=11 

   TC2  {  1,  2, -3,  4,  5, -6,  7 }   fitness=8 

   TC3 {  1,  2,  3,  4,  5, -6, -7 }   fitness=9 

   TC4 {  1,  2, -3, -4, -5, -6, -7 }   fitness=7 

   TC5  {  1,  2,  3, -4, -5,  6,  7 }   fitness=11 

Truncation selection operator from GA is borrowed and 

applied here. It is a parent selection mechanism one can use to 

select potential candidate solutions for reproduction [22]. For 

this illustration, we truncate the population by choosing three 

most fit individuals (test configurations), i.e. 

Truncated Population 1: 

   TC1 {  1,  2,  3, -4, -5,  6, -7 }   fitness=11 

   TC3 {  1,  2,  3,  4,  5, -6, -7 }   fitness=9 

   TC5  {  1,  2,  3, -4, -5,  6,  7 }   fitness=11 

Next, we calculate the PV by finding the percentage of each 

positive numbered feature out of all values by its position 

across all selected test configurations. For example, for 

position 7, the value from TC1, TC3 and TC5 are -7, -7 and 7, 

respectively. Hence, the probability for positive number of 

feature 7 is 1/3, i.e. ≈0.33. The PV for first population is 

calculated as follows: 

PV = {1.0, 1.0, 1.0, 0.33, 0.33, 0.67, 0.33} 

Subsequently , the second population of five candidate 

solutions is generated using the estimated distribution 

calculated in PV. Populate each position with the respective 

value using probability PV(i) where i refers to the position of 

probability value in PV. For example, for position 6, we 

should have value 6 appear ≈67% times in our five test 

configurations. A possible distribution of features in position 

6 is -6, 6, 6, -6 and 6. A possible set of test configurations is 

generated as follows: 

Population 2:  

   TC1 {  1,  2,  3, -4,  5, -6, -7 } 

   TC2  {  1,  2,  3, -4,  5,  6,  7 } 

   TC3 {  1,  2,  3, -4, -5,  6, -7 } 

   TC4 {  1,  2,  3,  4, -5, -6, -7 } 

   TC5 {  1,  2,  3,  4, -5,  6,  7 } 

Evaluate our second population by calculating the fitness 

value of each test configurations: 

 

Population 2:  

   TC1 {  1,  2,  3, -4,  5, -6, -7 }   fitness=9 

   TC2  {  1,  2,  3, -4,  5,  6,  7 }   fitness=11 

   TC3 {  1,  2,  3, -4, -5,  6, -7 }   fitness=11 

   TC4 {  1,  2,  3,  4, -5, -6, -7 }   fitness=9 

   TC5 {  1,  2,  3,  4, -5,  6,  7 }   fitness=12 

In general, it is shown that the second population consists of 

better (fitter) test configurations as compared to the first 

population. Additionally, in the second population, one test 

configuration (TC5) has fitness value 12, greater than any 

previous test configuration. It means that, we managed to find 

a test configuration that covers more pairs than others.  

This strategy can be repeated until we find no more 

improvement. Then, we select the best test configuration and 

store it in our hall-of-fame, remove pairs that are already 

covered and start again with new random candidate solutions. 

This process continues until all pairs have been covered, or 

when generation limit is achieved. In the case of generation 

limit is achieved, we consider that we only managed to cover 

partial pairwise test configuration. 

3.2 The SPL-Pairwise-UDMA Strategy 
Few adjustments have been incorporated to UMDA in our 

proposed strategy. Firstly, we changed the initial population 

generation approach. Instead of generating random test 

configuration naively, we employ Boolean Satisfiability 

(SAT) solver to generate random test configurations in a 

controlled manner. This controlled generation is crucial to 

ensure that only valid test configurations are populated.  

Secondly, as we iterate on a number of generations, the fitness 

of test configurations in newer generations may be getting 

stagnant or no improvement. When this happened, we put 

aside the fittest test configuration discovered so far in a space 

called as hall-of-fame, and we replace the current generation 

with new generation using SAT solver. Then we recalculate 

the PV based on the new generation, without considering the 

historical distribution. This is repeated until all valid pairs are 

covered, or when iteration limit is achieved.  

Thirdly, for every new candidate solutions generated using the 

PV, we omit all candidate solutions that are invalid. This is 

done by checking the clause satisfiability using SAT solver. 

This is significant to ensure that the constraints of the FM are 

satisfied, and eventually, we only have valid test 

configurations. The whole strategy for test configuration 

generation using UMDA is formulated as an algorithm 

presented in Figure 4. 
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Fig 4: Algorithm of the proposed strategy 

4. EMPIRICAL STUDY 
The algorithm has been implemented using Java, and we have 

performed experiments to evaluate its effectiveness. 

4.1 Objectives 
An empirical study has been carried out in order to gauge the 

effectiveness of applying a univariate estimation distribution 

algorithm in generating test configuration fulfilling pairwise 

coverage. Two measures of effectiveness have been evaluated, 

i.e.: 

i. Minimum number of test configurations, eff_min(TC) 

ii. Maximum pairwise coverage, eff_max(PC) 

4.2 Experiment Operations 
The experiments have been performed on 9 datasets of 

various number of features and constraints, obtained from 

SPLOT [8]. The parameters configured for the experiment are 

200 population size with truncation size 5, stagnancy count is 

3, maximum iterations is 5000 and timeout is 1800 seconds. 

Stagnancy count is the number of consecutive iterations 

having the fittest value unchanged. This is used to signal that 

the population is stagnant. Comparisons were made against 

ICPL [4] and (1+1) ES-based tool [5], for measuring the 

eff_min(TC) and eff_max(PC) respectively. 

4.3 Results and Discussions 
The first experiment was conducted to measure the 

effectiveness of the proposed strategy in minimizing the 

number of generated test configurations. Results have been 

recorded and presented in Table 2. Pairwise coverage was set 

to 100% coverage. Cells in the third and fourth columns that 

are greyed indicate smaller number of test configuration, 

hence better solutions. Our UDMA-based solution managed to 

generate a smaller number of test configurations on majority 

datasets (small size SPL, having feature count less than 100). 

However, we cannot compete with ICPL for the largest 

dataset (eShop), with a significant difference. 

 

Table 2. Number of test configurations 

 

Number 

of 

Features 

Number of Test 

Config eff_min(TC) 

Feature Models 

UMDA-

SPL 
ICPL 

Ecommerce 10 6 7 

Cellphone 11 7 8 

GPL 20 15 17 

SPL-SimulES 32 10 10 

Arcade Game PL 61 16 18 

J2EE-Web-Arch 77 20 18 

Billing 88 13 14 

Coche ecologico 94 91 93 

eShop 287 39 24 

 

The second experiment measures the effectiveness in 

maximizing the number of pairwise coverage. The result is 

presented in Table 3. The execution of (1+1) ES-based tool 

was driven by the number of required test configuration 

(product configuration), thereby, we execute that tool based 

on the number of test configuration returned by our UMDA-

based solution, and observed its pairwise coverage. Our 

UDMA-based solution was always better in maximizing the 

number of pairwise coverage (always 100%), compared to the 

(1+1) ES-based tool. However, the effectiveness gain is too 

small. Therefore, it is not really fair to compare both in terms 

of pairwise coverage. Additionally, the (1+1) ES-based tool is 

claimed to perform prioritization, apart from test 

configuration generation. Hence, further investigation may 

have to be performed to compare both in terms of its 

prioritization effectiveness, and probably efficiency 

(including, but not limited to execution time and number of 

fitness function calculations). 

Table 3. Number of pairwise coverage 

 

Number of Pairwise Coverage 

eff_max(PC) 

Feature Models 

UMDA-

SPL 

(100%) 

(1+1) - ES 

Ecommerce 106 101 95.28% 

Cellphone 151 149 98.68% 

GPL 499 489 98.00% 

SPL-SimulES 1448 1434 99.03% 

Arcade Game PL 5209 5188 99.60% 

J2EE-Web-Arch 9837 9820 99.83% 

Billing 8725 8715 99.89% 

Coche ecologico 11075 11035 99.64% 

eShop 147534 147449 99.94% 

4.4 Threats to Validity 
This work is intended to demonstrate the feasibility and 

effectiveness of UMDA in SPL pairwise testing, and 

experiment was conducted on small and moderate-sized SPLs. 

As we aware of its generalizability concern, we put aside its 

scalability aspect at this moment, which we noticed in order to 

achieve high scalability, it requires a more sophisticated 

program structure and execution platform (such as parallel 

execution during fitness function calculation [23]). 

Evaluation of our proposed strategy was only conducted 

against two existing tools, in which one might raise concern 
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on the significance of the results obtained. We believe it is 

sufficient as the two tools are chosen due to their outstanding 

performance as reported in several literatures. 

5. CONCLUSION AND FUTURE 

WORKS 
This first attempt to employ (univariate) EDA shows that the 

first variant of EDA is able to compete with a greedy 

approach for small SPLs, however, less convincing for large 

SPL. In view of this, we planned to conduct further works 

based on (i) other variant of first class EDA, such as Compact 

Genetic Algorithm (cGA), and Population-Based Incremental 

Learning (PBIL) algorithm, and, (ii) SPL having a higher 

number of features to substantiate these findings.  

The strategy presented in this paper exploits the simple 

probability distribution calculated on each variable, 

individually. However, considering a pair of features as the 

element of the fitness function, we observe that there exists 

some dependency between features in our problem space. 

Hence, a more rigor statistical analysis (bivariate or 

multivariate EDAs) is deemed to be more appropriate. Thus, 

our other future works will be carried out to employ Bivariate 

Marginal Distribution Algorithm (BMDA) to find dependency 

between two features, and exploit this information to improve 

the effectiveness of test configuration generation in SPL. 
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