
International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 5, February 2017

41

A Map Reduce Hadoop Implementation of Random Tree

Algorithm based on Correlation Feature Selection

Aman Gupta
Department of Information Technology
Samrat Ashok Technological Institute

Vidisha, (M.P.), India

Pranita Jain
Asst Prof.

Department of Information Technology
Samrat Ashok Technological Institute

Vidisha, (M.P.), India

ABSTRACT
Random Tree is a popular data classification classifier for

machine learning. Feature reduction is one of the important

research issues in big data. Most existing feature reduction

algorithms are now faced with two challenging problems. On

one hand, they have infrequently taken granular computing

into thinking. On the other hand, they still cannot deal with

massive data. Massive data processing is a difficult problem

in the age of big data. Traditional feature reduction algorithms

are generally time-consuming when facing big data. For

speedily processing, we introduce a scalable fast approximate

attribute reduction algorithm with Map Reduce. We divide the

original data into many tiny chunks, and use reduction

algorithm for each chunk. The reduction algorithm is based on

correlation feature selection and generates decision rules by

using Random Tree Classifier. Finally, feature reduction

algorithm is proposed in data and task parallel using Hadoop

Map Reduce framework with WEKA environment.

Experimental results demonstrate that the proposed classifier

can scale well and efficiently process big data.

Keywords

Hadoop, Map Reduce, Random Tree, Big Data, Correlation.

1. INTRODUCTION
Recently, with the expansion of the information technology,

the scale of data is increasing quickly. The massive data poses

a great challenge for classification algorithm. Random Tree

algorithm is a commonly used algorithm applied to data

classification. But traditional Random Tree algorithm is not fit

for the massive data. Map Reduce programming model

provides an efficient framework for processing large datasets

in an extremely parallel data mining. And it comes to being

the most popular parallel model for data processing in cloud

computing platform. The Apache Hadoop [1] is a widely used

open-source implementation of Google's distributed file

system and the Map Reduce framework, which is written by

java for scalable distributed computing or cloud computing.

However, designing the traditional machine learning

algorithms with Map Reduce programming framework is very

necessary in dealing with massive datasets. In this paper, we

propose a random Tree classifier with correlation feature

selection based on Map Reduce Hadoop framework.

1.1 Existing Random Tree
Random tree is an ensemble learning method for constructing

a tree that considered k-randomly chosen attributes at each

node. Random tree method develops a decision tree based on

random selection of data and random selection of variables. It

provides the class of dependent variable based on a tree.

A random tree is a collection of classification or regression

tree generated by a bootstrap procedure. Tree is grown from

an independent bootstrap resample until all nodes contain

observations no more than a pre specified maximal node size.

1.2 Map Reduce
Map Reduce programming prototype is used for parallel and

distributed processing of large datasets on clusters. There are

two basic procedures in Map Reduce: Map and Reduce.

Usually, the input and output are both in the form of key/value

pairs. After the input data is partitioned into splits with

appropriate size, Map procedure takes a series of key/value

pairs, and generates processed key/value pairs, which are

passed to a special reducer by certain partition function; Later,

after data sorting and shuffling, the Reduce procedure iterates

through the values that are associated with specific key and

produces zero or more outputs.

As an open source implementation of Map Reduce, Hadoop

has two major components: HDFS (Hadoop Distributed File

Systems) and Map Reduce. In the architecture of Hadoop,

Name Node is the master node of HDFS handling metadata,

and Data Node is slave node with data storage in terms of

blocks. Likewise, the master node of Hadoop Map Reduce is

called Job Tracker, which is in charge of scheduling and

managing several tasks, and the slave node is called Task

Tracker, where Map and Reduce procedures are actually

performed. A classic deployment of Hadoop is to assign

HDFS node and Map Reduce node on the same physical

computer for the consideration of localization and moving

computation to data. We apply this deployment in our

experiments.

Fig.1 Map Reduce Architecture

1.3 Hadoop
Apache Hadoop is an open-source software framework used

for distributed storage and process of terribly massive data

sets. It consists of computer clusters engineered from

commodity hardware. All the modules in Hadoop are

designed with an elementary assumption that hardware

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 5, February 2017

42

failures are a frequent happening and should be automatically

handled by the framework.

The core of Apache Hadoop consists of a storage part,

referred to as Hadoop Distributed File System (HDFS), and a

processing part known as Map Reduce. Hadoop splits files

into massive blocks and distributes them across nodes in a

cluster. It after that transfers packaged code into nodes to

process the information in parallel. This approach takes

advantage of data neighborhood nodes manipulating the

information they have access to – to allow the dataset to be

processed quicker and more proficiently than it would be in a

more predictable supercomputer architecture that relies on a

parallel file system where computation and information are

distributed via high-speed networking.

Fig.2 Hadoop Architecture

1.4 Correlation Feature Selection
The Correlation Feature Selection (CFS) measure calculates

subsets of features on the premise of the subsequent

philosophy: "Good feature subsets contain features highly

relative with the classification, not relative with each

other". The resulting equation gives the benefit of a feature

subset S consisting of k features:

𝑀𝑒𝑟𝑖𝑡 sk =
krcf

 k+k(k−1)rff

Here, 𝑟𝑐𝑓 is the average value of all feature-classification

correlations, and 𝑟𝑓𝑓 is the average worth of all feature-feature

correlations. The CFS criterion is explained as follows:

 CFS = maxsk
rcf 1+rcf 2+⋯+rcfk

 k+2(rf1f2+rfifj +⋯+rfkf 1)

The 𝑟𝑐𝑓𝑖 and 𝑟𝑓𝑖𝑓𝑗 variables are referred to as correlations, but

are not necessarily Pearson's correlation

coefficient or Spearman's ρ. Dr. Mark Hall's dissertation uses

neither of those, but uses 3 completely different measures of

relatedness, minimum description length (MDL), symmetrical

uncertainty, and support.

Let xi be the set membership indicator function for feature fi;

then the above can be rewritten as an associate optimization

problem:

CFS = max
x∈ 0,1 n

 aixin

i=1 2

 xin
i=1 + 2bij xixji≠j

The combinatorial issues on top are, in fact, mixed 0–1 linear

programming issues that can be resolved by using branch-and-

bound algorithms.

2. PROPOSED METHODOLOGY
𝐌𝐚𝐩𝐢 ∀ ∈ 𝟏…𝒅𝒂𝒕𝒂𝒔𝒖𝒃𝒔𝒆𝒕

Input: Set of training dataset D, corresponding the attribute

set M, k-randomly picked the subset of attributes m.

Output: Decision tree generated by IG

1. All labeled samples initially assigned to root node

which is available in feature selection P of dataset

based on Correlation Feature Selection

2. Negotiate the scale of the Random Tree K

parameter in computer clusters

3. Initialize dataset 𝐷 = 𝑥𝑖∀∈ 1 …𝑑𝑎𝑡𝑎𝑠𝑢𝑏𝑠𝑒𝑡 and

generate bootstrap samples by bagging algorithm

4. Build tree per bootstrap sample, randomly pick a

subset of attributes 𝑚 ∈ 𝑀;

5. While 𝑗 ≤ 𝑚 do

6. For each candidate attribute IG 𝐼𝐺𝑗 do

7. Calculate the Max (𝐼𝐺𝑗), j* = argmax 𝐼𝐺𝑗 ;

8. Splitting on Max (𝐼𝐺𝑗) attribute;

9. End

10. End / /Return a decision tree by IG

Reduce; ∀ ∈ 𝟏…𝒅𝒂𝒕𝒂𝒔𝒖𝒃𝒔𝒆𝒕

Input: Set of Map; decision tree, Set of test datasets D*,

serials of M columns vectors 𝑉𝑛 𝑉𝑛 ∈ 𝐷∗

Output: Return classify result S for decision tree

1. Compare 𝑉𝑛with the nodes of decision tree

2. Construct final Classify result 𝑆𝑛

3. Return 𝑆𝑛

3. EXPERIMENTS AND RESULTS

3.1 Experimental Environment
In this section, we only evaluate the performance of the

proposed parallel method yet not the exactness since the

parallel technique produce the same results as those of the

consecutive method. All experiments run on the Apache

Hadoop platform [1]. Hadoop version 1.2.1 and Java

1.8.0_102 are used as Map Reduce system.

In this chapter the implementation of the proposed parallel

correlation feature selection based Random Tree Classifier is

provided. Therefore first the required tools and techniques are

discussed then after the code implementation and

development of the system is provided.

3.1.1 Experimental Setup
In this section, we only evaluate the performance of the

proposed parallel methods but not the accuracy since the

parallel methods produce the same results as those of the

sequential methods. All experiments run on the Apache

Hadoop platform [1]. Hadoop version 1.2.1 and Java

1.8.0_102 are used as Map Reduce system.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Minimum_description_length
https://en.wikipedia.org/wiki/Mutual_Information#Normalized_variants
https://en.wikipedia.org/wiki/Mutual_Information#Normalized_variants
https://en.wikipedia.org/wiki/Mutual_Information#Normalized_variants
https://en.wikipedia.org/wiki/Relief_(feature_selection)
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Branch-and-bound_algorithm
https://en.wikipedia.org/wiki/Branch-and-bound_algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 5, February 2017

43

3.1.2 Hardware Configuration
• 2.0 GHz Processor required (Pentium 4 and above)

• Minimum 2 GB Random Access Memory

• 40 GB hard disk space

3.1.3 Requirement of Software
• RHEL Server 6 or Other Linux OS

• Hadoop 1.2.1

• Map Reduce

• Weka 3.8.0

• JDK 1.8.0_102

3.2 Datasets Description
DS1 to DS6, synthetic data sets have been generated by

means of the WEKA data generator with different instances

and attributes.

Skin Segmentation and Poker Hand are the real time data sets

with different instances and attributes [8].

Table 1: Shows the number of datasets with Instances,

Attributes, Classes and Size

Data

sets

Instance

s

Attributes Classes Size

(MB)

Exp

Setup

DS1 20000 10 02 1.1 Exp1

DS2 50000 10 02 2.6 Exp1

Skin

Segme

ntation

245057 4 02 3.24 Exp1

Poker

Hand

1025010 11 10 23.4 Exp1

DS3 2000 50 02 0.856 Exp2

DS4 2000 100 02 1.7 Exp2

DS5 2000 150 02 2.6 Exp2

DS6 2000 200 02 3.4 Exp2

3.3 Experimental Results
In fig.3, when the instance is less than 20000 the running time

is less than 115 sec. when the number increases to 1000000,

with the total data size about 23.4MB, running time is about

257 second, which is still acceptable.

From fig.4, we can see that when number of conditional

attributes is 50, the running time is about 152 seconds. And

when the number increases to 200, running time is about 304

seconds, which is encouraging.

From our experiments results it is seen that our proposed

classifier can work on large scale data efficiently. It is also

capable to handle high dimensional data.

Table 2: The computational time of the proposed parallel algorithm on various datasets when increasing the number of

instances size

S.No. Data Sets Instances Computational Time (in

seconds)

Experimental Setup

1 DS1 20000 115 Exp1

2 DS2 50000 198 Exp1

3 Skin Segmentation 245057 212 Exp1

4 Poker Hand 1025010 257 Exp1

Fig.3 Result with Increasing Instance Size

0

200000

400000

600000

800000

1000000

1200000

0

50

100

150

200

250

300

1 2 3 4

ru
n

n
in

g
ti

m
e

(s
)

number of instances

Computational Time

Computational Time
(in seconds)

Instances

International Journal of Computer Applications (0975 – 8887)

Volume 160 – No 5, February 2017

44

Table 3: The computational time of the proposed parallel algorithm on various datasets when increasing the number of

attributes size

S.No. Data

Sets

Attributes Computational

Time (in seconds)

Experimental

Setup

1 DS3 50 152 Exp2

2 DS4 100 183 Exp2

3 DS5 150 212 Exp2

4 DS6 200 304 Exp2

Fig.4 Result with Increasing Attribute Size

4. CONCLUSION AND FUTURE WORK
This paper has presented a parallel CFSRT Classifier is aimed

at improving the traditional random tree algorithm based on

Map Reduce Hadoop framework. Traditional stand alone

algorithm has not been suitable for processing massive data.

The classifier is based on feature significance. We proposed a

parallel CFSRT Classifier based on Map Reduce Hadoop

framework. Experimental results show that the parallel

algorithm is effective and more efficient on large scale data

over traditional algorithm.

5. REFERENCES
[1] Borthakur, D. The Hadoop Distributed File System:

Architecture and Design, 2007.

[2] Jiawei Han, Yanheng Liu, Xin Sun A Scalable Random

Forest Algorithm Based on Map Reduce, IEEE 2013.

[3] Q. He, F.Z. Zhuang, J. e. Li, Z.z. Shi. Parallel

implementation of classification algorithms based on

Map Reduce. RSKT, LNAI 6401,pp. 655-662, 2010

[4]Http://wiki.pentaho.com/display/DATAMINING/Random

Tree

[5] M. Hall 1999, Correlation-based Feature Selection for

Machine Learning

[6] Baris Senliol, gokhan gulgezen, "Fast Correlation Based

Filter with a different search strategy." Computer and

Information Sciences, 2008. ISCIS'08. 23rd International

Symposium on. IEEE, 2008.

[7] Junbo Zhang, Tianrui Li a, Da Ruan, Zizhe Gao,

Chengbing Zhao, A parallel method for computing rough

set approximations,2012.

[8] https://archive.ics.uci.edu/ml/datasets.html

0

50

100

150

200

250

0

50

100

150

200

250

300

350

1 2 3 4

ru
n

n
in

g
ti

m
e

(s
)

number of instances

Computational Time

Computational
Time (in seconds)

Attributes

IJCATM : www.ijcaonline.org

http://www.cs.waikato.ac.nz/~mhall/thesis.pdf
http://www.cs.waikato.ac.nz/~mhall/thesis.pdf

