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ABSTRACT 
Random Tree is a popular data classification classifier for 

machine learning. Feature reduction is one of the important 

research issues in big data. Most existing feature reduction 

algorithms are now faced with two challenging problems. On 

one hand, they have infrequently taken granular computing 

into thinking. On the other hand, they still cannot deal with 

massive data. Massive data processing is a difficult problem 

in the age of big data. Traditional feature reduction algorithms 

are generally time-consuming when facing big data. For 

speedily processing, we introduce a scalable fast approximate 

attribute reduction algorithm with Map Reduce. We divide the 

original data into many tiny chunks, and use reduction 

algorithm for each chunk. The reduction algorithm is based on 

correlation feature selection and generates decision rules by 

using Random Tree Classifier. Finally, feature reduction 

algorithm is proposed in data and task parallel using Hadoop 

Map Reduce framework with WEKA environment. 

Experimental results demonstrate that the proposed classifier 

can scale well and efficiently process big data. 
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1. INTRODUCTION 
Recently, with the expansion of the information technology, 

the scale of data is increasing quickly. The massive data poses 

a great challenge for classification algorithm. Random Tree 

algorithm is a commonly used algorithm applied to data 

classification. But traditional Random Tree algorithm is not fit 

for the massive data. Map Reduce programming model 

provides an efficient framework for processing large datasets 

in an extremely parallel data mining. And it comes to being 

the most popular parallel model for data processing in cloud 

computing platform. The Apache Hadoop [1] is a widely used 

open-source implementation of Google's distributed file 

system and the Map Reduce framework, which is written by 

java for scalable distributed computing or cloud computing. 

However, designing the traditional machine learning 

algorithms with Map Reduce programming framework is very 

necessary in dealing with massive datasets. In this paper, we 

propose a random Tree classifier with correlation feature 

selection based on Map Reduce Hadoop framework. 

1.1 Existing Random Tree 
Random tree is an ensemble learning method for constructing 

a tree that considered k-randomly chosen attributes at each 

node. Random tree method develops a decision tree based on 

random selection of data and random selection of variables. It 

provides the class of dependent variable based on a tree. 

A random tree is a collection of classification or regression 

tree generated by a bootstrap procedure. Tree is grown from 

an independent bootstrap resample until all nodes contain 

observations no more than a pre specified maximal node size.  

1.2 Map Reduce 
Map Reduce programming prototype is used for parallel and 

distributed processing of large datasets on clusters. There are 

two basic procedures in Map Reduce: Map and Reduce. 

Usually, the input and output are both in the form of key/value 

pairs. After the input data is partitioned into splits with 

appropriate size, Map procedure takes a series of key/value 

pairs, and generates processed key/value pairs, which are 

passed to a special reducer by certain partition function; Later, 

after data sorting and shuffling, the Reduce procedure iterates 

through the values that are associated with specific key and 

produces zero or more outputs. 

As an open source implementation of Map Reduce, Hadoop 

has two major components: HDFS (Hadoop Distributed File 

Systems) and Map Reduce. In the architecture of Hadoop, 

Name Node is the master node of HDFS handling metadata, 

and Data Node is slave node with data storage in terms of 

blocks. Likewise, the master node of Hadoop Map Reduce is 

called Job Tracker, which is in charge of scheduling and 

managing several tasks, and the slave node is called Task 

Tracker, where Map and Reduce procedures are actually 

performed. A classic deployment of Hadoop is to assign 

HDFS node and Map Reduce node on the same physical 

computer for the consideration of localization and moving 

computation to data. We apply this deployment in our 

experiments. 

 

Fig.1 Map Reduce Architecture 

1.3 Hadoop 
Apache Hadoop is an open-source software framework used 

for distributed storage and process of terribly massive data 

sets. It consists of computer clusters engineered from 

commodity hardware. All the modules in Hadoop are 

designed with an elementary assumption that hardware 
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failures are a frequent happening and should be automatically 

handled by the framework. 

The core of Apache Hadoop consists of a storage part, 

referred to as Hadoop Distributed File System (HDFS), and a 

processing part known as Map Reduce. Hadoop splits files 

into massive blocks and distributes them across nodes in a 

cluster. It after that transfers packaged code into nodes to 

process the information in parallel. This approach takes 

advantage of data neighborhood nodes manipulating the 

information they have access to – to allow the dataset to be 

processed quicker and more proficiently than it would be in a 

more predictable supercomputer architecture that relies on a 

parallel file system where computation and information are 

distributed via high-speed networking. 

     

Fig.2 Hadoop Architecture 

1.4 Correlation Feature Selection 
The Correlation Feature Selection (CFS) measure calculates 

subsets of features on the premise of the subsequent 

philosophy: "Good feature subsets contain features highly 

relative with the classification, not relative with each 

other". The resulting equation gives the benefit of a feature 

subset S consisting of k features: 

𝑀𝑒𝑟𝑖𝑡 sk =
krcf

 k+k(k−1)rff
  

Here, 𝑟𝑐𝑓  is the average value of all feature-classification 

correlations, and 𝑟𝑓𝑓  is the average worth of all feature-feature 

correlations. The CFS criterion is explained as follows:    

                 CFS = maxsk  
rcf 1+rcf 2+⋯+rcfk

 k+2(rf1f2+rfifj +⋯+rfkf 1)
   

The 𝑟𝑐𝑓𝑖 and 𝑟𝑓𝑖𝑓𝑗 variables are referred to as correlations, but 

are not necessarily Pearson's correlation 

coefficient or Spearman's ρ. Dr. Mark Hall's dissertation uses 

neither of those, but uses 3 completely different measures of 

relatedness, minimum description length (MDL), symmetrical 

uncertainty, and support. 

Let xi be the set membership indicator function for feature fi; 

then the above can be rewritten as an associate optimization 

problem: 

CFS = max
x∈ 0,1 n

 
   aixin

i=1  2 

 xin
i=1 +  2bij xixji≠j

  

The combinatorial issues on top are, in fact, mixed 0–1 linear 

programming issues that can be resolved by using branch-and-

bound algorithms. 

2. PROPOSED METHODOLOGY 
𝐌𝐚𝐩𝐢 ∀ ∈   𝟏…𝒅𝒂𝒕𝒂𝒔𝒖𝒃𝒔𝒆𝒕  

Input: Set of training dataset D, corresponding the attribute 

set M, k-randomly picked the subset of attributes m. 

Output: Decision tree generated by IG 

1. All labeled samples initially assigned to root node 

which is available in feature selection P of dataset 

based on Correlation Feature Selection 

2. Negotiate the scale of the Random Tree K 

parameter in computer clusters 

3. Initialize dataset 𝐷 = 𝑥𝑖∀∈  1 …𝑑𝑎𝑡𝑎𝑠𝑢𝑏𝑠𝑒𝑡   and 

generate bootstrap samples by bagging algorithm 

4. Build tree per bootstrap sample, randomly pick a 

subset of attributes 𝑚 ∈ 𝑀; 

5. While 𝑗 ≤ 𝑚 do 

6. For each candidate attribute IG 𝐼𝐺𝑗  do 

7. Calculate the Max (𝐼𝐺𝑗 ), j* = argmax  𝐼𝐺𝑗  ; 

8. Splitting on Max (𝐼𝐺𝑗 ) attribute; 

9. End 

10. End / /Return a decision tree by IG 

Reduce; ∀ ∈   𝟏…𝒅𝒂𝒕𝒂𝒔𝒖𝒃𝒔𝒆𝒕  

Input: Set of Map; decision tree, Set of test datasets D*, 

serials of M columns vectors 𝑉𝑛  𝑉𝑛 ∈ 𝐷∗ 

Output: Return classify result S for decision tree 

1. Compare 𝑉𝑛with the nodes of decision tree 

2. Construct final Classify result 𝑆𝑛  

3. Return 𝑆𝑛  

3. EXPERIMENTS AND RESULTS 

3.1 Experimental Environment 
In this section, we only evaluate the performance of the 

proposed parallel method yet not the exactness since the 

parallel technique produce the same results as those of the 

consecutive method. All experiments run on the Apache 

Hadoop platform [1]. Hadoop version 1.2.1 and Java 

1.8.0_102 are used as Map Reduce system. 

In this chapter the implementation of the proposed parallel 

correlation feature selection based Random Tree Classifier is 

provided. Therefore first the required tools and techniques are 

discussed then after the code implementation and 

development of the system is provided. 

3.1.1 Experimental Setup  
In this section, we only evaluate the performance of the 

proposed parallel methods but not the accuracy since the 

parallel methods produce the same results as those of the 

sequential methods. All experiments run on the Apache 

Hadoop platform [1]. Hadoop version 1.2.1 and Java 

1.8.0_102 are used as Map Reduce system. 

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Minimum_description_length
https://en.wikipedia.org/wiki/Mutual_Information#Normalized_variants
https://en.wikipedia.org/wiki/Mutual_Information#Normalized_variants
https://en.wikipedia.org/wiki/Mutual_Information#Normalized_variants
https://en.wikipedia.org/wiki/Relief_(feature_selection)
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Branch-and-bound_algorithm
https://en.wikipedia.org/wiki/Branch-and-bound_algorithm
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3.1.2 Hardware Configuration 
• 2.0 GHz Processor required (Pentium 4 and above) 

• Minimum 2 GB Random Access Memory  

• 40 GB hard disk space  

3.1.3 Requirement of Software 
• RHEL Server 6 or Other Linux OS 

• Hadoop 1.2.1 

• Map Reduce 

• Weka 3.8.0 

• JDK 1.8.0_102 

3.2 Datasets Description 
DS1 to DS6, synthetic data sets have been generated by 

means of the WEKA data generator with different instances 

and attributes. 

Skin Segmentation and Poker Hand are the real time data sets 

with different instances and attributes [8]. 

 

 

 

 

 

 

 

Table 1: Shows the number of datasets with Instances, 

Attributes, Classes and Size 

Data 

sets 

Instance

s 

Attributes Classes Size 

(MB) 

Exp 

Setup 

DS1 20000 10 02 1.1 Exp1 

DS2 50000 10 02 2.6 Exp1 

Skin 

Segme

ntation 

245057 4 02 3.24 Exp1 

Poker 

Hand 

1025010 11 10 23.4 Exp1 

DS3 2000 50 02 0.856 Exp2 

DS4 2000 100 02 1.7 Exp2 

DS5 2000 150 02 2.6 Exp2 

DS6 2000 200 02 3.4 Exp2 

3.3 Experimental Results 
In fig.3, when the instance is less than 20000 the running time 

is less than 115 sec. when the number increases to 1000000, 

with the total data size about 23.4MB, running time is about 

257 second, which is still acceptable. 

From fig.4, we can see that when number of conditional 

attributes is 50, the running time is about 152 seconds. And 

when the number increases to 200, running time is about 304 

seconds, which is encouraging. 

From our experiments results it is seen that our proposed 

classifier can work on large scale data efficiently. It is also 

capable to handle high dimensional data. 

Table 2: The computational time of the proposed parallel algorithm on various datasets when increasing   the number of 

instances size 

S.No. Data Sets Instances Computational Time (in 

seconds) 

Experimental Setup 

1 DS1 20000 115 Exp1 

2 DS2 50000 198 Exp1 

3 Skin Segmentation 245057 212 Exp1 

4 Poker Hand 1025010 257 Exp1 

 

 

Fig.3 Result with Increasing Instance Size 
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Table 3: The computational time of the proposed parallel algorithm on various datasets when increasing   the number of 

attributes size 

S.No. Data 

Sets 

Attributes Computational 

Time (in seconds) 

Experimental 

Setup 

1 DS3 50 152 Exp2 

2 DS4 100 183 Exp2 

3 DS5 150 212 Exp2 

4 DS6 200 304 Exp2 

 

 
Fig.4 Result with Increasing Attribute Size 

4. CONCLUSION AND FUTURE WORK 
This paper has presented a parallel CFSRT Classifier is aimed 

at improving the traditional random tree algorithm based on 

Map Reduce Hadoop framework. Traditional stand alone 

algorithm has not been suitable for processing massive data. 

The classifier is based on feature significance. We proposed a 

parallel CFSRT Classifier based on Map Reduce Hadoop 

framework. Experimental results show that the parallel 

algorithm is effective and more efficient on large scale data 

over traditional algorithm. 
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