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ABSTRACT 

This research presents a fast, reliable, and new method for 

solving the load (power) flow problem of electrical power 

systems. The proposed method is a second order load flow 

technique based on the "Taylor series expansion" of a 

multivariable function. This approach takes the first three 

terms of the Taylor series. The method has advantages over 

Newton's method in terms of computation time for solution 

(no. of iterations), and reliability of convergence. By inserting 

a minimization technique in this proposed method, the 

algorithm exhibits a control of the convergence. By means of 

this control, the method converges for cases when 

conventional Newton's method and some other popular 

methods diverge. Also this paper presents a comparison 

between the proposed method and Newton-Raphson method 

according to the major criteria, namely reliability of 

convergence and speed of solution. Two test systems (five 

busbars typical test system and forty busbars practical system 

based on Iraqi National Grid) are used to examine the 

performance of each method.   
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1. INTRODUCTION 
The load flow studies are the backbone in the planning of a 

power system. They are the means by which the future 

operation of the system is known ahead of time. A load flow 

study involves the determination of voltage, current, power, 

and power factor or reactive power at various points in an 

electrical network under existing or contemplated conditions 

of normal operation, subject to the regulating capability of 

generators, condensers, and tap changing under load 

transformers as well as specified net interchange between 

individual operating systems. This information is essential for 

the continuous evaluation of the current performance of a 

power system and for analyzing the effectiveness of 

alternative plans for system expansion to meet increased load 

demand. They are being increasingly used to solve very large 

systems, to solve multiple cases for such purposes as outage 

security assessment, and within more complicated calculation 

as optimization and stability studies [2]. 

The conventional (N-R) method has their relative advantages 

and disadvantages. A load flow problem consists of solving a 

set of nonlinear equations. The conventional (N-R) technique 

uses the first two terms of the Taylor series. This approach 

transforms the nonlinear load flow equations to a linear form 

before a solution is attempted. The proposed method 

formulates the load flow problem by using the first three 

terms of the Taylor series. In other words, second order terms, 

which are not insignificant, can be included in the algorithm 

and can be used during digital computation. The significant 

second order terms are found to be minor variations of the 

terms of the Jacobian matrix. It is shown in this paper that the 

coefficients of the second order terms are not required to be 

separately stored. In the proposed technique, the state vector 

is first calculated by an iteration of the conventional Newton-

Raphson technique. Using the calculated state vector and 

elements of the Jacobian matrix, second order terms are 

estimated and subtracted from the residual vector. The 

modified residual vector obtained in this manner is then used 

to compute a new state vector. This procedure is repeated till 

the elements of the latest state vector are within permissible 

tolerance of those previously calculated. The magnitudes and 

phase angle of bus voltages are then updated. The total 

procedure is then repeated until a converged solution is 

obtained.  

The next problem sought to be solved in the proposed method 

is how to solve ill-conditioned power systems or determine 

the existence of load flow solutions. The proposed method is a 

combination of second order load flow algorithm and the 

cubic interpolation technique to determine an optimal 

multiplier for improving the load flow calculations. The 

algorithm exhibits a control of the convergence process and a 

non-divergent characteristic for any problem. 

2. TAYLOR SERIES EXPANSION 
A function can be evaluated by using the Taylor series 

expansion. The procedure is simple and well known for 

functions consisting of a single variable. Taylor series of 

multivariable functions can also be defined. For an (n) 

variable function, the series is expressed as follows: 
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And    0 < ai < 1   ; i = 1, 2, …… , n. 

Because the summation in Equation (1) consists of (m) terms, 

a residue, Rm, is introduced to take care of the summation 

from (m+1)th term to infinity. This residue is not known 

exactly because definite values cannot be assigned to (ai's). 

Neglecting the third and higher terms in Equation (1), 

Equation (2) is obtained. 
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Equation (2) can be rearranged to give Equation (3) which can 

be expanded as Equation (4) 
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3. THE PROPOSED METHOD 

3.1 Second Order Load Flow Model 
Buses, say K and m can be defined in terms of the magnitudes 

and phase angles of the voltages at these buses and the 

parameters of the element. A load flow is, therefore, problem 

of solving a set of nonlinear equations consisting of the 

magnitudes and phase angles of the system bus voltages as 

variables and the parameters of the system elements as 

constant coefficients. Let the power mismatch at a bus, K, of 

an (n) bus system be defined as the difference between the 

scheduled power injection into this bus and the sum of the 

calculated power flows in all the elements connected to this 

bus. Real power mismatch can be defined in terms of the 

above mentioned variables by Equation (5). This second order 

equation is similar to the Taylor series expansion excluding 

third and higher order terms in Equation (4). 
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Where,     Pk is the real power injected into bus K,  

  θm is the phase angle of the voltage at bus m,  

  Vm is the magnitude of the voltage at bus m, 

∆ defines small changes in the variables. 

It is interesting to note that the terms of first two series in 

Equation (5) are similar to the terms of the Jacobian matrix 

used in the Newton-Raphson method. The remaining five 

series constitute the second order terms. In a similar manner, 

reactive power mismatch can be defined as follows:- 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 161 – No 1, March 2017 

19 

 2

2

2

111 2

1
m

m

k
n

m

m

m

k
n

m

m

m

k
n

m

k

Q
V

V

QQ
Q 




















 

  

  rm

rm

k
n

mr

n

m

m

m

k
n

m

Q
V

V

Q













 







2

1

1

1

2

2

2

12

1

rm

rm

k
n

mr

n

m

rm

rm

k
n

r

n

m

VV
VV

Q
V

V

Q










 







2

1

1

1

2

11




     (6) 

Expressing Equation (5) for all system buses except the slack 

bus and Equation (6) for all load buses, a set of equations is 

obtained in the following form. 
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Real and reactive power injection into a bus K of an (n) bus 

system can be mathematically expressed by Equations (8) and 

(9) respectively. Second order coefficients can be derived 

from these equations and can be grouped into twenty 

categories. These coefficients are given in Equations (10.1) 

through (10.20). A comparison with the elements of the 

Jacobian matrix indicates that the second order terms given 

through (10.20) can be neglected as well be discussed later.  

The sub-matrices S1 through S6 include series of second 

order terms of all buses similar to those given in Equations (5) 

and (6). Suitable values are assigned to subscripts i, j, h, l, s, 

and t. Many elements of the second order coefficient matrix, 

[S], are very small and can be neglected. Also, it is not 

essential to compute the elements of matrix [S] and store it in 

computer memory. These two aspects will now be discussed. 
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The elements defined by Equations (10.11) and (10.12) are 

equal to zero. Equations (10.13) through (10.20) define the 

second order elements which include cos(θk – θm –δkm) as a 

multiplier. Since (δkm) is close to (90o) and (θk –θm) is usually 

small, cos(θk – θm – δkm) is quite small and therefore, these 

coefficients can be neglected. This assumption and the simple 

relationship of the second order coefficients with the elements 

of the Jacobians matrix make the application of second order 

load flow model straight-forward and with minimal additional 

computing effort. The double summation is Equations (5) and 

(6) have |Ykm| as multipliers. For any bus K, |Ykm| has non-

zero values only for the buses (m) connected to it; for all other 

values of m, |Ykm| is zero. Therefore, the double summation 

for a bus can be reduced to single summation which includes 

only a few terms depending on the number of busses 

connected to that particular bus. Deleting the significant terms 

from Equations (5) and (6) and converting the double 

summation to single summation, Equations (11) and (12) are 

obtained. 
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3.2 Cubic Interpolation Technique [3, 4, 5] 
It is well-Known that the load flow calculation can be 

regarded as a nonlinear programming problem [6], which 

determines the direction and magnitude of the solution so that 

a certain function F(x) may be minimized. The F(x) is the 

squares of the active and reactive mismatch power. By 

employing this formulation, the valuable property can be 

obtained that the solution never diverges. The value of the 

function F(x) becomes eventually zero if there is a solution 

from the initial estimate, and stays at a positive value if no 

solution exists. In nonlinear programming approach (Fletcher-

Powell method), (∆x) is modified by a correction factor (α) 

which can be considered as an acceleration factor. The 

computation of (α) is made such that minimize F(x). The 

function to be minimized is: 
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Where the first summation in (13), k includes load and 

generator buses, the second summation, 

k includes load buses only.     

The minimization of F(x) with respect to (α) in the direction 

of (∆x) is a one-dimensional problem. The object is to 

determine the correction factor (α) given (∆x) and the point 

(x). The problem can be stated as that of finding a value of (α) 

that will minimize: 

   xxF o  
          (14) 

And therefore the derivative of (Z) with respect to (x) is: 

   
 

x
y

yf
yf 




 2' 

 ,  

Where  

xxY o  
 

A cubic interpolation technique is used to find (x) as follows: 

1) A step "a" is chosen as: 

a = min (1, -2 (Fx – Fo ) / Z'x)        (16) 

Where (Fo) is an estimate of (F) at the problem optimum, (Fx) 

is the value of function (F) at point (x), and (Z'x) is the 

derivative of (Z) with respect to (x) evaluated at point (x). 

2) A step of size (a) is taken to arrive at point (y), Y = x +α∆x, 

and (Zy') is evaluated to determine whether a change of sign 

has occurred with respect to (Zx'). Such a change of sign, 

from negative (Zx') to positive (Zy') would indicate that the 

minimum is enclosed within these two points. If there is no 

change of sign, successive step of size (a) are taken until two 

adjacent points that enclose the minimum are found. Let these 

two adjacent points be called (w) and (y) which are located at 

distances (  ) and (  ) from the original point (x). 

3) The distance (α) from (x) to the minimum point is: 

  

rZwy

srywy

y
2''

'









     where (17) 

 2

1
2 ''ZyZwsr 

      and      (18) 

 
''3 ZyZw

ZyZw
S

wy








         (19)  
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4) The point (xo + α∆x) is accepted as the minimum point if 

the function F(xo +α∆x) = Z(x) is smaller than both (Zw) and 

(Zy). If this is not true, the interpolation is repeated using the 

point    (xo +α∆x) and either (w) or (y), chosen so that the 

minimum is enclosed. This decision is based on the sign of 

Z'(α). The cubic interpolation process is shown in Figure (1) 

 

Fig. 1. Cubic Interpolation Technique to Minimize F(x) with Respect to ( ) in theDirection of ( x ) 

The interpolation process can be simply implemented with the 

second order load flow approach. 

Equation (15) must be evaluated for several values of (α)  

When     

   f(y) = f(x)     (20) 

And 
   

x

xf

y

yf










                       (21) 

 
 

 
 

 








x

x

xf
xfx

y

yf
yf 22  (22) 

From the Equation f(x) = -J  ∆ x 

Equation (21) becomes: 

     xFxfZ 22'
2

         (23) 

The minus sign of Equation (23) shows that the direction at 

minimization (∆x) always points in a direction which reduces 

F(x). The terms f(x), which represent the mismatch power, are 

calculated from the second order algorithm. In the proposed 

method, a simple alteration of second order algorithm's 

program will allow a re-evaluation of the Jacobian at point (y) 

in order to obtain the term    
 
y

yf




, also f(y) represents the 

mismatch power at point (y). 

Then the interpolation process calculates the optimum (α) and 

the new point(x1 = x0 +α∆x) is used for the start of the next 

iteration. The additional requirement of this method is the re-

evaluation of the Jacobian matrix which is small, using 

sparsity techniques. There is no need for extra Gauss-

Elimination and back substitutions, just additional evaluation 

of the Jacobian. 

4. ITERATIVE ALGORITHM OF THE  

PROPOSED METHOD 
The basic iterative algorithm for solving the load flow 

problem by the proposed method is as follows: 

1. Set the initial voltage magnitudes of the busbars equal to 

that of the slack bus and usually   (VK = V1 = 1 p.u.). All 

voltage angles are set equal to the slack bus (θ K=θ 1 = 0), 

where bus (1) represents the slack bus. 

2. Compute the real and reactive power mismatches and 

elements of the Jacobian matrix using the specified loads 

and generations, system parameters and estimated 

magnitudes and phase angles of bus voltages. 

 





 
p
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p
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k jp
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m
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p

k

p

k eVeVYeVjQP
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1

                   (24) 
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k, m=1,2………..,n 

Where (*) complex conjugate  

And (n) no. of busses, and (p) represent the iteration 

index. 

p

k

sp

k

p

k PPP   

p

k

sp

k

p

k QQQ     (25) 

 (sp) indicates the specified value. 

3. Neglect the second order terms, now the problem is the 

same as in Newton-Raphson load flow. Using Gauss-

elimination technique, evaluate the state vector [∆θ   

∆V/V]T. 

4. For each ∆P and ∆Q of the residual vector, compute the 

second order terms (defined in Equations 11 and 12) 

using ∆θ's and ∆V's   evaluated in step 3. 

At this stage the residual vector is known and the sum of 

second order series for each residual term has been estimated. 

Transferring the second order terms to the left hand side, 

Equation (7) becomes 








































































k

k

i

ts

Lk

ji

V

V
J

J

J

J

V

VV
S

S

S

S

S

S

Q

P






4

2

3

1

6

3

5

2

4

1

                    (26) 

As a second order series is evaluated, it is subtracted from the 

corresponding residual term which procedure provides a 

modified residual vector defined by the left hand side of 

Equation (26). It is important to realize that the elements of 

the matrix [S] are not computed and therefore, no additional 

storage is used for this matrix. 

4. Using the modified residual vector and Equation (26), 

recalculate the state vector [∆θ ∆V/V]T The 

triangularized Jacobian used in step (3) is reused at this 

stage. 

5. (∆θp+1) and (∆Vp+1) are modified by a correction factor (α) 

which can be considered as an acceleration factor. The 

computation of (α) is made such that it         

6. minimize F(x), which is the sum of the squares of the active 

and reactive mismatch power.  An optimal correction is 

determined by finding an optimal (α) following the cubic 

interpolation technique. 

7. Calculate the new values of the voltage magnitudes and 

angles for all busbars except the slack as follows: 

              
11   p

k

p

k

p

k   

 And, 

 
11   p

k

p

k

p

k VVV          (27) 

An iterative process is required until the expressions 

                1p

kP  

  1p

kQ          (28) 

are satisfied for all busses except the slack, where ( ε ) is a 

small power tolerance value. When the expression (28) is 

satisfied, the problem is solved. If not the procedure is 

repeated with the next iteration, computing the elements of the 

Jacobian matrix and proceed to step (3). 

5.  ANALYSIS BASED ON NUMERICAL 

METHODS 
A 5-bus system taken from reference [7], and 40 bus system 

based on Iraqi National Grid were chosen to test the load flow 

solution methods. Tables 1 and 2 shows that the load flow 

problem was solved by Newton's method in 4 iterations to an 

accuracy of 10-3 p.u. (0.1MW/MVAr) for each individual 

mismatch power. In the proposed method, 3 iterations were 

required with the same accuracy. The values of optimum (α) 

obtained for each iteration in the proposed method were close 

to one, and in the final iteration of a convergent load flow 

case, the value of (α) would be very close to one or exactly 

equal to 1.0. Our experience has shown that optimum (α) is 

either close to 1.0 or very close to 0.0. The cubic interpolation 

formula will produce an appropriate value of (α) even in the 

case where the optimum is near, but outside the interpolating 

limits. So optimum (α) might sometimes be slightly greater 

than one. If the interpolation is performed between zero and 

one, the correction (α) value would determine for all cases 

without any extra Jacobian calculation per iteration, thus 

saving computation time. 

The principle value of the proposed method lies in the control 

of the convergence process for both ill-conditioned and data 

error cases, whereas using the conventional Newton-Raphson 

method alone during the iterations of a load flow problem 

may result in poor solution or divergence. 

A study of the maximum power mismatches for both (N-R) 

method and the proposed method indicates what the 

maximum mismatches are smaller when second order 

algorithm (proposed method) are used. This indicates that the 

solution descends into the final state at a faster rate in the 

second order load flows than in the conventional (N-R) cases. 

Also, the contributions of the second order terms were noticed 

to be negligible after the first iteration.  

The performance of the proposed method with an ill-

conditioned system was tested on the 5-busbars typical test 

system with insertion of series capacitors in four lines 

connecting the busbars for two different cases. The values of 

the capacitor are about 0.01 p.u. on the same base of the other 

admittances. The solution by conventional Newton-Raphson 

method in the case, in which the diagonal elements of the [Y] 

matrix are deteriorated by the insertion of series capacitors, 

converged, while in the other case, the solution diverged. The 

proposed method converged for all cases. 

Also, 40-busbars practical system with insertion of series 

capacitors in ten lines connecting the busbars, including the 

slack, was chosen for this test. The solution by conventional 

(N-R) method diverged, while the proposed method 

converged with the value of optimum (α) as in table 3. The 
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convergence characteristic of the 40-bus ill-conditioned 

system was shown in fig. (2). From the figure, the following 

observation is made. In the case of optimum (α) is not applied, 

the solution continues to oscillate. However, if the optimum 

(α) is used the system converged easily. 

 

Table 1. Comparison of the Proposed Method and the Conventional (N-R) Method with the Values of Optimum (α ) for 5 

Buses Typical Test System, 4 Load busbars and 1 Slack 

 

Method 

 

No. of iterations  

Optimum       / iteration  

Proposed method 

Newton-Raphson 

 

Proposed method 

4 

 

3 

1 2 3 

 

0.965 

 

1.01 

 

1.000 

*1- Power tolerance = 10-3 p.u.  for each individual mismatch power. 

              2- This system is the same as that used in reference [7]. 

              3- Polar coordinates are used for both the proposed method and N-R method. 

Table 2. Comparison of the Proposed Method and the Conventional (N-R) Method   with the Values of Optimum (α) for 40 

Busbars Practical System, 30 Load Busbars, 9 Generator Busbars, and 1 Slack Basbar [8]. 

Method No. of iterations  Optimum    / iteration  

Proposed method 

Newton-Raphson 

Proposed method 

4 

3 

1 2 3 

1.02 1.02 1.003 

**Table 3 Values of Optimum (α) "Proposed Method", Ill-Conditioned Power System 

Iteration 

Count 

Optimum (α) 

5-bus ill-conditioned system 40-bus ill-conditioned system 

1 1.034 0.784 

2 1.000 1.071 

3 0.955 1.000 

 

**1- Power tolerance = 10-3 p.u. for each individual mismatch power. 

  2- This system is based on the Iraqi National Grid system. 

 3- Polar coordinates are used for both the proposed method and N-R method. 
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Fig. 2 Convergence Characteristics of 40–Bus Ill-Conditioned System 

6.   CONCLUSIONS 
A very simple mathematical model and method for solving 

load flow problems has been developed. It would be 

concluded that the combined use of second order algorithm 

and minimization method by cubic interpolation technique has 

many attractive characteristics:  

1)  The second order load flow model has some advantages 

over the conventional (N-R) approach. It is obvious that the 

proposed technique has better convergence characteristic, the 

magnitudes and phase angles of bus voltages descend into the 

final solution at a faster rate than that observed in (N-R) 

method. Therefore, in many cases, the second order approach 

requires lesser iterations than (N-R) technique. Moreover, the 

additional computing effort is only slightly greater compared 

to a (N–R) load flow. It has also been shown that the elements 

of the second order coefficient matrix need not be stored 

separately 

2)  A more rapid convergence and a non-divergent 

characteristic for any problem. A control of the convergence 

process for both well-conditioned and ill-conditioned systems 

by using the optimum correction factor (α). 

The method can be applied efficiently to large power systems. 

The proposedand N_R methods were implemented using 

MATLAB® Version 7.4.0.287 (R2011a) on a Pentium®IV 

Microprocessor personal computer with the following 

specifications: 3.0 GHz Intel® 2 Giga bytes cache memory, 2 

Giga bytes RAM. 

7.   APPENDIX 
Nodal Admittance Matrix Elements for 40 Busbars "Practical System", Ykm=G-jB  

Per unit quantity = 100 MVA, 132 KV, all data in P.U. 

Bus to Bus G(P.U), 

conductance 

B(P.U), 

susceptance 

 Bus to Bus G(P.U.), 

conductance 

B(P.U.), 

susceptance 

1-1 73.20302 -193.05308  14-14 14.65299 -53.97187 

1-7 -43.763 109.66543  14-15 -6.65199 24.50151 

1-36 -21.26757 53.28579  15-16 32.89171 -110.77638 
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1-38 -8.17245 30.10186  15-15 -8.17245 30.10186 

2-2 15.35563 -32.0213  15-34 -3.47942 6.06339 

2-3 -1.05799 4.58466  16-16 12.98062 -47.81029 

2-20 -5.31241 11.95284  17-17 93.63839 -244.98614 

3-3 9.62425 -26.04736  17-27 -5.05963 8.81716 

3-15 -3.07535 7.70527  17-33 -6.96555 12.1384 

3-28 -5.4909 13.75742  18-18 6.60826 -12.71954 

4-4 32.25366 -95.89834  18-25 -0.90372 2.03338 

4-14 -8.001 29.47035  18-27 -4.23597 7.38181 

4-16 -4.80817 17.70843  18-31 -1.46855 3.30425 

4-19 -12.8506 32.19863  19-19 34.11817 -85.48443 

4-29 -6.59387 16.52092  20-20 11.00269 -28.61598 

5-5 16.97918 -59.86251  21-21 15.63407 -32.7162 

5-7 -8.30093 29.2611  21-32 -3.56803 6.21779 

5-24 -8.67825 30.59639  22-22 5.26614 -12.30004 

6-6 13.90746 -51.44682  22-30 -1.59093 3.57961 

6-15 -6.53796 24.08149  22-31 -1.90912 4.29553 

6-17 -7.4295 27.36532  23-23 27.24222 53.23229 

7-7 13.81057 -46.88945  23-26 -7.54998 18.91645 

7-22 -1.76607 4.4249  24-24 9.75381 -33.01641 

7-35 -3.74355 13.19844  24-25 -1.07556 2.42001 

8-8 5.66517 -19.64528  25-25 11.97929 -4.4534 

8-20 -2.48434 8.63067  26-26 9.43165 -32.55575 

8-21 -3.18083 11.0146  26-28 -1.88166 4.6393 

9-9 6.94882 -12.10935  27-27 9.29561 -16.19897 
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9-11 -5.14539 8.9666  28-28 7.37256 -18.39672 

9-30 -1.80343 3.14275  29-29 12.82056 -32.12222 

10-10 18.01201 -45.70547  30-30 3.39437 -6.72236 

10-37 -9.62425 26.04736  31-31 3.37768 -7.59978 

10-39 -5.31241 11.95284  32-32 3.56803 -6.21779 

10-40 -3.07535 7.70527  33-33 6.96555 -12.1384 

11-11 11.37208 -24.5679  34-34 3.47942 -6.06339 

11-29 -6.22669 15.60129  35-35 3.74355 -13.19844 

12-12 22.89817 -24.3483  36-36 21.26757 -53.28579 

12-20 -3.20594 8.03246  37-37 9.62425 -26.04736 

12-23 -19.69224 34.31584  38-38 21.02305 -62.30049 

13-13 14.12767 -52.03695  38-40 -12.8506 32.19863 

13-15 -4.97453 18.32287  39-39 5.31241 -11.95284 

13-17 -9.15314 33.71408  40-40 15.92595 -39.9039 
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