
International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

1

Software Puzzle Approach: A Measure to Resource-

Inflated Denial-of-Service Attack

Vishal Walunj
Assistant Professor

DYPSOEA,
Pune, Maharashtra

Vinod Pawar
Dept. of Computer Engineering,

DYPSOEA,
SPPU, Pune, Maharashtra

ABSTRACT

In Cyber security Denial-of-service (DoS) and distributed

DoS (DDoS) are two major threats, and client puzzle, which

demands a consumer to perform computationally dear

operations before being granted services from a server, is a

well-known countermeasure to them. However, a wrongdoer

will inflate its capability of DoS/DDoS attacks with quick

puzzle solving package and/or intrinsic graphics process unit

(GPU) hardware to considerably weaken the effectiveness of

consumer puzzles. This paper shows how to stop DoS/DDoS

attackers from inflating their puzzle-solving capabilities. To

this end, this paper introduces a new consumer puzzle said as

software puzzle. Unlike the existing consumer puzzle

schemes, which publish their puzzle algorithms in advance, a

puzzle algorithmic program in the gift package puzzle theme

is at random generated solely once a consumer request is

received at the server aspect and therefore the algorithm is

generated specified: 1) Associate in Nursing wrongdoer is

unable to arrange Associate in Nursing implementation to

unravel the puzzle before and 2) the wrongdoer wants

extended effort in translating a central process unit puzzle

package to its functionally equivalent GPU version such that

the interpretation can't be drained real time. Moreover, the

paper shows how to implement package puzzle within the

generic server-browser model.

General Terms
GPU, Data Puzzle, Hash-Reversal, Resource-Inflation

Keywords

Software puzzle, Code Obfuscation, GPU programming,

Denial of Service (DoS), Distributed Denial of Service

(DDoS)

1. INTRODUCTION
Denial of Service (DoS) attacks and Distributed DoS (DDoS)

attacks attempt to exhaust an internet service‟s resources like

network information measure, memory and computation

power by overwhelming the service with bogus requests [1].

For example, a malicious client sends a massive variety of

garbage requests to associate HTTPS bank server. As the

server has got to spend lots of time in finishing SSL

handshakes, it may not have adequate resources left to handle

service requests from its consumers, resulting in lost

businesses and name. DoS and DDoS attacks are not solely

theoretical, but conjointly realistic, e.g., Pushdo SSL DDoS

Attacks [1].

Denial of Service (DoS) and Distributed DDoS are effective if

attackers pay abundant fewer resources than the victim server

or are abundant a lot of powerful than traditional consumers.

In the above example, the attacker spends negligible effort in

manufacturing a request, but the server has to pay rather more

machine effort in HTTPS handshaking (e.g., for RSA

decryption). In this case, conventional cryptological tools do

not enhance the supply of the services; if truth be told, they

may degrade service quality attributable to high-priced

cryptological operations.

In this paper significant interest is in the countermeasures to

DoS/DDoS attacks on server computation power. Let γ denote

the ratio of resource consumption by a consumer and a server.

Obviously, a countermeasure to DoS and DDoS is to increase

the quantitative relation γ, i.e., increase the computational

price of the consumer or decrease that of the server. Client

puzzle [3] is a well-known approach to extend the price of

consumers because it forces the consumers to hold out serious

operations before being granted services. Generally, a client

puzzle theme consists of 3 steps: puzzle generation, puzzle

resolution by the consumer and puzzle verification by the

server. Hash-reversal is a vital consumer puzzle theme.

Technically, in the puzzle generation step, given a public

puzzle function P derived from unidirectional functions such

as SHA-1 or block cipher AES, a server randomly chooses a

puzzle challenge x, and sends x to the client. In the puzzle-

solving and verification steps, the client returns a puzzle

response (x, y), and if the server confirms x = P(y), the client

is ready to get the service from the server. In this hash-

reversal puzzle scheme, a client has to pay an explicit quantity

of your time 𝒕𝒄 in resolving the puzzle (i.e., finding the puzzle

solution y), and the server has got to spend time 𝒕𝒔 in

generating the puzzle challenge x and validating the puzzle

answer y. Since the server is able to settle on the challenge

specified 𝒕𝒄 >> 𝒕𝒔 for traditional users, i.e., γ>>1, a

wrongdoer will not begin DoS attack expeditiously by

resolution several puzzles. Alternatively, the attacker will

simply reply to the server with associate whimsical variety 𝒚

thus as to exhaust the server‟s time for verification. In this

case, although γ < 1 such that defense impact of consumer

puzzle is weakened, the server time 𝒕𝒔 is still much smaller

than the service preparation time (e.g., RSA decryption) or

service time (e.g., database process) as the came back answer

are rejected at a high likelihood. Therefore, in either case, a

client puzzle will considerably scale back the impact of DoS

attack as a result of it permits a server to pay abundant less

time in handling the bulk of malicious requests. Of course,

optimizing the puzzle verification mechanism is very vital and

doing thus can beyond any doubt improve the server‟s

performance [4].

The existing consumer puzzle schemes assume that the

malicious client solves the puzzle using CPU resource solely.

However, this assumption is not always true. Presently, the

many-core GPU (Graphic Processing Unit) part is virtually a

regular configuration in trendy desktop computers, laptop

computers, and also smartphones. Therefore, a wrongdoer will

simply utilize the “free” GPUs or integrated CPU-GPU to

inflate his machine capability [5]. This renders the existing

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

2

client puzzle schemes ineffective attributable to the

considerably reduced machine price quantitative relation γ.

For example, an wrongdoer could liquidate one puzzle-

solving task to lots of GPU cores if the consumer puzzle

perform is parallelizable (e.g., the hash reversal puzzle), or the

attacker could at the same time send to the server several

requests and raise each GPU core to solve one received puzzle

challenge severally if the puzzle function is non-parallelizable

(e.g. modular sq. root puzzle [7] and Time-lock puzzle [8]).

This parallelism strategy will dramatically scale back the total

puzzle-solving time, and hence increase the attack potency.

Green et al. [6] examined different GPU-exaggerated DoS

attacks, and showed that attackers can use GPUs to exaggerate

their ability to solve typical reversal based mostly puzzles by

an element of over 600. In order to beat GPU-exaggerated

DoS attack to client puzzles, they proposed to track the

individual consumer behavior through client‟s scientific

discipline address [9]. However, if IP chase is effective to

thwart the GPU inflation, IP filtering will be wont to defense

against DoS attacks directly while not utilizing consumer

puzzles.

As the present browsers don't expressly support consumer

puzzle schemes, Kaiser and Feng [11] developed a web-based

consumer puzzle theme that focuses on transparency and

backwards compatibility for progressive readying. The

scheme dynamically embeds client-specific challenges in

webpages, conspicuously delivers server provocations and

client responses. However, this scheme is vulnerable to DoS

attackers. Technically, associate wrongdoer will rewrite the

puzzle function P(•) with a native language like C/C++

specified the price of an wrongdoer is way smaller than that

the server expects[3]. Even worse, a GPU-inflated DoS

attacker will notice the quick package implementation on the

many-core GPU hardware and run the package in all the GPU

cores at the same time specified t is simple to defeat the web

based consumer puzzle theme.

Obviously, if a puzzle is designed supported client‟s GPU

capability, the GPU-inflation DoS does not work at all.

However, This paper does not suggest to try to thus as a result

of it's difficult for enormous readying attributable to (1) not all

the consumers have GPU-enabled devices; and (2) an

additional time period surroundings shall be put in so as to run

GPU kernel. By exploiting the architectural distinction

between CPU and GPU, this paper presents a new kind of

client puzzle, called software puzzle, to defend against GPU-

inflated DoS and DDoS attacks. Unlike the existing consumer

puzzle schemes that publish a puzzle function before, the

software puzzle theme dynamically generates the puzzle

function P(•) in the type of a software core C upon receiving a

consumer‟s request. Specifically, by extending DCG

technology which produces machine commands at runtime

[10], the proposed theme at random chooses a set of basic

functions assembles them together into the puzzle core C,

constructs a software puzzle 𝑪𝟎𝒙 with the puzzle core C and a

random challenge b. If the server aims to defeat high-level

attackers who are ready to reverse-engineer the software, it

will change 𝑪𝟎𝒙 into an enhanced software puzzle. After

receiving the software puzzle sent from the server, a client

tries to solve the software puzzle on the host CPU, and replies

to the server, as the conventional consumer puzzle theme will.

However, a malicious client could try to offload the puzzle-

solving task into its GPU. In this case, the malicious client has

to translate the CPU puzzle into its functionally equivalent

GPU version as a result of GPU and CPU have completely

different instruction sets designed for various applications.

This translation cannot be tried in advance since the software

puzzle is created dynamically and at random. To demonstrate

the applicability of software puzzle, applet is used to

implement software puzzles such that the software puzzle

implementation has a similar deserves as [11] in terms of

simple readying, but overcomes its security weaknesses.

The reminder of this paper is organized as follows. Section 2

provides summary of GPU and its distinction with CPU.

Section 3 introduces the software puzzle, the countermeasure

to GPU-inflated DoS attacks; associated Section 4 addresses

the packing mechanism of thus software puzzle so that the

puzzle may be solved at the consumer with an applicable

permission. Section 5 analyzes the security of software

puzzle. Section 6 evaluates the performance of software

puzzle. Section 7 draws conclusions and addresses the future

work. Finally, acknowledgement is given.

 Notations

For understanding, significant notations used through the

paper are listed below.

x: A provocations chosen by server.

m: A message gathered from environment.

y: A solution to the puzzle provocations x.

(𝑥 ,𝑦): A puzzle response returned from client.

P(·): Puzzle algorithm such that x = P(y, m).

C: Puzzle core which is the software implementation of P(·).

𝐶0𝑥 : Puzzle which embeds the information of x into C.

𝐶1𝑥 : Obfuscated 𝐶0𝑥 .

2. GPU INTRODUCTION
Modern GPUs have many processing cores that can be used

for general-purpose computing as well as graphics processing.

Additionally, nVidia and AMD, the major GPU vendors,

provide convenient programming libraries to use their GPUs

for intensive computation applications. Without loss of

generality, nVidia GPU will be used to present techniques in

the following. For self-contained, this Section briefly

introduces nVidia GPU [12], its application on the basic GPU-

inflated DoS attacks, and its difference from CPU which will

be exploited to defeat against the GPU-inflated DoS attack.

2.1 Overview of NVidia GPU
In nVidia architecture, a GPU has many SMs consisting of

many identical processing cores. For example, the nVidia

GeForce GTX 680 consists of 1,536 cores. A GPU processor

has fast but small shared memory. Besides, it has access to the

host‟s global memory which is large but slow. CUDA, the

major programming language [4] for nVidia GPU, extends

ANSI-standard C99 language by allowing a developer to

define C functions, or kernels. For example, the client puzzle

function P(·) can be implemented as a GPU kernel. At any

one time, a GPU device is committed to a single application

which may include various kernels. When a kernel is loaded

into GPU and invoked, it is executed by multiple identical

threads in parallel for maximum efficiency.

2.2 Difference between CPU and GPU
Unlike modern CPUs [5], which are designed to efficiently

optimize the execution of single-thread programs using

complex out-of-order execution strategies, a modern GPU

executes massively data-parallel programs in almost

predictable way. Hence, GPU does not explicitly support

branch instructions. Although both CPU software and GPU

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

3

software can be implemented using the same high-level

language such as C, their low-level instruction sets are totally

different. Particularly, some instruction operations are not

supported in GPU software. As all the GPU cores share the

same kernel, if one thread modifies the kernel, the final

software output is hard to predict on account of the

independence of threads. A CPU processor is usually much

slower than a GPU processor as a whole, but one CPU core is

much faster than one GPU core. In addition, one CPU

dominates its resources such as memory and cache, but all

GPU cores share resources including the registers and caches.

If a GPU kernel were to ask many shared resource, the

number of cores used in the application would be much

smaller than the available cores such that the potential of GPU

would not be fully utilized. In this case, GPU may be slower

than CPU. This paper will exploit the above difference

between CPU and GPU to prevent GPU from being used to

accelerate the puzzle-solving process.

Fig 1: GPU-exaggerated DoS attack against data puzzle

3. SOTWARE PUZZLE
Software puzzle is classified into 2 sorts. If a puzzle function

P, as all the existing consumer puzzle schemes [13][14], is

fixed and disclosed in advance, the puzzle is called a

knowledge or data puzzle; otherwise, it is said as a software

puzzle. Data puzzle aims to enforce the client‟s computation

delay of the inverse operate 𝑷−𝟏(x) for a random input x;

whereas software puzzle aims to discourage associate soul

from understanding/translating the implementation of random

puzzle function P(·). That is to mention, unlike a knowledge

puzzle challenge which incorporates a challenge knowledge

solely, a software puzzle challenge includes a dynamically

generated software C(·) that as well as a knowledge puzzle

operate as a part. Although a software puzzle theme will not

publish the puzzle function earlier, it also follows the

Kerckhoffs‟s Principle [15] as a result of associate soul is

aware of the algorithmic program for constructing software

puzzles, and is able to “reverse-engineer” the software puzzle

𝐶1𝑥 to understand the puzzle function P(·) many minutes later

once receiving the software puzzle.

3.1 Basic GPU-Inflated DoS Attack
In order to explain software puzzle, this research recap its

rival GPU exaggerated DoS attack earlier. When a consumer

desires to get a service, she/he sends a request to the server.

After receiving the consumer request, the server responds

with puzzle challenge x. If the consumer is real, she/he will

find the puzzle answer y directly on the host CPU, and sends

the response (x, y) to the server. However, as shown in Fig 1,

by using the similar mechanism in fast calculation with GPU

[16], a malicious user who controls the host can send the

challenge x to GPU and accomplish the GPU resource to

speed up the puzzle-solving method.

3.2 Framework of Software Puzzle
In order to breakdown the GPU-inflated DoS attack described

in Subsection 3.1, data puzzle to software puzzle as shown in

Fig 2. At the server, the software puzzle scheme has a code

block warehouse W gathering various software instruction

blocks. Inside, it contains two modules: generating the puzzle

𝐶0𝑥 by randomly assembling code blocks extracted from the

warehouse; and obfuscating the puzzle 𝐶0𝑥 for high security

puzzle 𝐶1𝑥 .

Fig 2: Diagram of software puzzle generated with secret

key and nonce sn

3.3 Code Block Warehouse Construction
The code block warehouse W has compiled instruction

blocks, e.g., in Java byte code, or C binary code. The purpose

to store compiled codes instead of source codes is to avoid

wasting server‟s time; otherwise, the server has to take time

beyond regulation to compile source codes into compiled

codes within the method of software puzzle generation. The

necessary requirements for every block are:

• So as to assemble the code blocks along (see section 3.4),

each block has well-defined input parameters and output

parameters such that the output from one block will be

used because the input of the subsequent blocks.

• The size of every code block is set by the safety

parameter κ. Given that the dimensions of software

puzzle is constant, if the block size is smaller, there are

more blocks on average specified more puzzles will be

created. Thus smaller block size implies higher security

level as a result of associate wrongdoer has to pay a lot

of effort to figure out a puzzle in question. The

shortcoming of tiny block size is that the server has to

pay longer in extracting the essential blocks and

collecting the extracted blocks into computer software

puzzle.

Preferably, the warehouse stores both Java byte code and the

corresponding C code. Because the former is applicable to

completely different OS platforms however slow, it is suitable

to deliver the computer code puzzle to the consumer within

the format of Java byte code. As a result, this Java-C hybrid

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

4

scheme ensures that the server has advantage over the

client/adversary in terms of resource consumption, as well

because the support of cross-platform deployment.

3.4 Software Puzzle Generation
In order to construct a software puzzle, the server has to

execute three modules: puzzle core generation, puzzle

challenge generation, software puzzle encrypting/obfuscating,

as shown in Fig. 2.

3.4.1 Puzzle Core Generation
From the code block warehouse, the server first chooses n

code blocks based on hash functions and a secret, e.g., the 𝒋𝒕𝒉

instruction block 𝒃𝒊𝒋, where ij = 𝑯𝟏 (y, j), and y = 𝑯𝟐 (key,

sn), with one-way functions 𝑯𝟏(·) and 𝑯𝟐(·), key is the

server‟s secret, and sn is a present or timestamp. All the

chosen blocks are assembled into a puzzle core, denoted as

C(·) = (𝒃𝒊𝟏; 𝒃𝒊𝟐;···; 𝒃𝒊𝒏).

3.4.2 Puzzle Challenge Generation
Given some auxiliary input messages such as IP addresses,

and in-line constants, the server calculates a message m from

public data such as their information processing addresses,

port numbers and cookies, and produces a challenge x =C(y,

m), similar to encrypting plaintext m with key y to produce

cipher text x. As the attacker doesn't grasp the puzzle core

C(·) (or equivalently the puzzle operate P(·)) earlier, it cannot

exploit GPU to unravel the puzzle 𝑪𝟎𝒙 in real time

mistreatment the fundamental GPU-inflated DoS attack

addressed in subdivision 3.1. However, if the puzzle is merely

made as on top of, it is possible for Associate in Nursing

assaulter to get the GPU kernel by mapping the CPU

commands in 𝑪𝟎𝒙 to the GPU directions one by one, i.e., to

automatically translate the CPU code puzzle 𝑪𝟎𝒙 into its

functionally equivalent GPU version.

3.4.3 Puzzle Protection
Intuitively, code obfuscation is able to thwart on the top of

translation threat to some extent. So there are no generic

obfuscation techniques which may stop a consumer and

skilled hacker from understanding a program in theory [17],

results in [18] show that obfuscation does increase the price of

reverse-engineering. Thus, although code obfuscation could

be not satisfactory in long code defense against hacking, it is

suitable for invigorating code puzzles that demand a

protection amount of many seconds solely.

As a popular obfuscation technology, code encryption

technology treats code as knowledge string and encrypts each

quantity and opCode. Concretely, given the code 𝑪𝟎𝒙, the

server generates an encrypted puzzle 𝑪𝟏𝒙 = ε(y, 𝑪𝟎𝒙), where

ε(·) is a cipher like AES, and y is used because the encryption

key. In practice, there are several industrial code obfuscation

tools for C/C++ code such as VMprotect which will be wont

to defend the code puzzle from hacking. In all, there are two

layer encryptions. The outer layer is used to encrypt the code

puzzle 𝑪𝟎𝒙, and the inner layer uses the puzzle software to

write the challenge as knowledge puzzle will. Therefore, after

receiving 𝑪𝟏𝒙, the client has to attempt 𝒚 . If and only if 𝒚 = y,

the original software puzzle 𝑪𝟎𝒙 is recovered and any wont to

solve the challenge.

4. SOFTWARE PUZZLE PACKING
Once a software puzzle 𝑪𝟏𝒙 is created at the server aspect and

compiled into the Java category file 𝑪𝟏𝒙.class, it will be

delivered to the consumer requests for services over an

insecure channel like web, and run at the client‟s side. Applet

is an appropriate delivery suggests that as a result of it is run

in browsers on several platforms like Windows, Mac and

UNIX operating system [19], accept not applicable to some

mobile browsers until jail breaking the OS like iOS [20].

Usually, Applet is embedded into a hypertext markup

language page that is embedded with an archive as well as the

software puzzle category 𝑪𝟏𝒙.class and a Java category

init.class for activating the puzzle package 𝑪𝟏𝒙.class.

<APPLET CODE=„„init.class‟‟

ARCHIVE = „„init.class, 𝑪𝟏𝒙.class‟‟

 WIDTH=„„200‟‟ HEIGHT=„„40‟‟>

</APPLET>

However, not all Applets can be run at the consumer‟s

browser with the default access policy such that the design for

software puzzle varies with the browser‟s configurations at the

consumer side. In the following, this paper describes an

option for packing software puzzle based on the configuration

at the consumer side.

1. Read the 𝐶1𝑥 .class

2. Repeat

3. Randomly choose a small 𝑦
4. Decrypt 𝐶1𝑥 .class with key 𝑦 into 𝐶0𝑥 .class

5. Load class𝐶0𝑥 .class

6. Invoke 𝐶0𝑥 .class to obtain 𝑚 and further 𝑥 =

𝐶0 (𝑦 ,𝑚)

7. Until 𝑥 =x

8. Output (𝑥 . 𝑦)

In above init.class structure for reloading puzzles class on

JVM. If a correct solution y is found, 𝐶0𝑥 .class shall be the

same as the original puzzle 𝐶0𝑥 .class, where z = x ⊕ y is

calculated in advanced and hard-coded into at the server side.

1. Read the 𝐶1𝑥 .class

2. Load class 𝐶1𝑥 .class

3. Repeat

4. Randomly choose a small 𝑦

5. Decrypt 𝐶1𝑥 .class with key 𝑦 into 𝐶0𝑥 .class

6. Invoke 𝐶0𝑥 .class to obtain 𝑚 and further 𝑥 =

𝐶0 (𝑦 ,𝑚)

7. Until 𝑥 =x

8. Output (𝑥 . 𝑦)

Above is init.class structure for activating puzzle class on

dedicated sandbox.

4.1 Class Reloading in Java Sandbox
The instructions in 𝐶1𝑥 .class will not be directly run at

client‟s JVM as a result of the software puzzle commands got

to be decrypted then replaced with the decrypted one on the

fly. However, a Java class will not decision the new command

generated by itself. Nonetheless, it is legal in JVM to

exchange a complete class by reloading a new/recovered

version. To this end, the server will generate another category

file init.class as in above snippet for managing the puzzle

category 𝐶1𝑥 .class. At the client aspect, init.class is used to

decode 𝐶1𝑥 .class into a temporary category 𝐶0𝑥 .class and

reload the category 𝐶0𝑥 .class for one answer trial.

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

5

5. SECURITY ANALYSIS
Software puzzle aims to avoid GPU from being used in the

puzzle-solving process based mostly on totally different

instruction sets and real-time environments between GPU and

CPU. Conversely, a soul could try to deface the software

system puzzle theme by simulating the host on GPU

(Subsection 5.1), cracking puzzle algorithm (Subsection 5.2),

re-producing GPU-version puzzle (Subsections 5.3 ∼ 5.5), or

abusing the access priority in puzzle-solving (Subsection 5.6).

5.1 Employing Host Machine on GPU
If an assaulter is in a position to run a CPU simulator over

GPU surroundings, the software puzzle will be run on GPU

directly. However, this simulator-based attack may be

impractical in fast the puzzle-solving method as a result of the

whole hardware resources must be emulated by VM software

system, problems will arise if the properties of hardware

resources significantly totally different in the host and

therefore the visitor [22]. Of course, it is not trivial to develop

a full-functional CPU simulator on GPU as a result of the

CPU surroundings together with OS, and all the foreign Java

libraries (and their imported libraries then on) should be

simulated. If only a portion of machine functions is enforced,

the GPU kernel may have to communicate with the host for

the non-simulated functions. In this case, the GPU-exaggerate

function is reduced significantly as a result of it will not run in

a very parallel approach and therefore the GPU-CPU line is

way slower than its internal memory access; A software

system running over a machine is way slower than over its

guest environment directly because there are additional

process steps to execute the software commands.

5.2 Cracking Data Puzzle Algorithm
According to Section 4, a soul obtains the puzzle answer (𝒙 ,𝒚)

to the software puzzle 𝑪𝟏𝒙, such that x =𝒙 = 𝑪𝟎𝒙(𝒚 ,𝒎), where

range x is hard-coded in the software system puzzle and 𝒎

springs on the fly. Since the software puzzle is encrypted with

the commonplace cipher, a soul has to recover the puzzle

software system by brute force. Moreover, for the inner-layer

encryption, as C(·) is an encoding perform, theoretically, an

soul will not find a legitimate answer (𝒙 , 𝒚) in a better

approach than brute force provided that y is over a tiny low

interval. Hence, the practical strategy of the assaulter is to

accelerate the brute force method by exploiting the parallel

computation capability of GPU cores.

5.3 Replaying Data Puzzle
When a software system puzzle is designed upon an

information/data puzzle, the number of software system

puzzles is needed to be terribly giant specified associate

wrongdoer is unable to re-construct the GPU-version software

system puzzles earlier and re-use them. Indeed, this

requirement will be simply satisfied. For instance, even

though a service provider merely adds one AES spherical

transformations between 2 AES transformations within the

customary ten rounds, the number of AES variants is up to

49×4+3 =278. Moreover, a software system will have several

polymorphic codes such that the quantity of software puzzles

is even larger. Unfortunately, a smart human might collect all

the code blocks within the warehouse W, and rebuild the GPU

version code block warehouse WGPU in advance. Once a new

software puzzle is delivered to the human, he will reconstruct

the GPU-version puzzle by matching the puzzle code blocks

against the software system puzzle. In this case, the adversary

is in a position to extend the attack performance. However, as

the server encrypts the puzzle software 𝑪𝟎𝒙 into 𝑪𝟏𝒙, the

adversary has to recover 𝑪𝟎𝒙 by brute force, and hence will

not successful to re-construct the GPU-version puzzle by

matching code patterns.

5.4 De-Obfuscating Software Code
In order to rewrite the GPU kernel, a wrongdoer might

confirm the instruction flow on the fly by debugging the

software system puzzle. Generally, dynamic translation can

accelerate the offensive speed, but it is not terribly useful to

the GPU-inflated DoS wrongdoer as a result of

 Dynamic translation is sometimes a human-machine

interactive method. If human interference is

required, the DoS attack is very ineffective;

 In order to hold on the dynamic translation, the

attacker desires a simulation atmosphere for

“debugging” the software system puzzle. In the

translation process, the decryption key 𝑦 has to be

tested by brute force. Because it is not possible to

come to a decision whether or not a tested key's

right supported the recovered opCode worth owing

to the instruction permutation in subdivision 3.4.3,

the attacker has to run the puzzle 𝐶0𝑥 for each key

check to form the choice.

 If the simulation environment is running on host

processor, the host cannot generate the GPU kernel

till the answer is found. Therefore, this translation

time is longer than the time used to directly solve

software puzzle by processor host.

Once the translated code has an error, the attacker fails to

recover the software system puzzle 𝐶0𝑥 to find out the correct

response specified, he can't launch DoS attack. Therefore, it is

tough for a wrongdoer to develop GPU kernel for

determination of the initial software system puzzle by

deobfuscating software system puzzle.

5.5 Exploiting Instruction Compliance
Code obfuscation can give sensible security or ad-hoc security

by increasing the attacker‟s effort. In order to supply a

theoretical security, cryptographic protection technique shall

be used. Nonetheless, the method can't use in a very simple

manner. According to Java syntax [23], all the opCode values

are at intervals the interval [00,0C9](Hexadecimal) in the Java

instructions. Additionally, for some instruction codes opCode,

their operands have additional interval restrictions. If the

adversary tries to decipher the software system with a trial key

𝑦 and finds a non-compliant instruction in terms of opCode or

opCode-operand combination, the adversary will discard that

trial worth 𝑦 right away such that the puzzle-solving method

is accelerated dramatically. To overcome this instruction

compliance weakness, the server can adopt the cipher over

finite domain [24]. Specifically, the server divides the

instruction set into subsets. In each set, all the opCodes are of

the same length, and their operands are in the same interval.

Then, the server permutes the instructions over the set solely

in the code cryptography method or code self-modifying

method. If the index of the instruction opCode is permuted, a

valid and encrypted instruction is obtained. Therefore, the

adversary fails to accelerate puzzle solving by exploiting the

instruction compliance.

5.6 Abusing Access Priority
All the consumer puzzle schemes assume that there is no

secure channel between the client and also the server till

puzzle verification completion. Otherwise, the client puzzle

theme is redundant. Thus, a wrongdoer will intercept all the

traffic between the consumer and the server machine, and start

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

6

man-in-the-middle attack, says, sending malicious software

system puzzles to the consumer browser therefore as to launch

attacks to the consumers. However, an access policy needs to

be defined therefore as to change the software system puzzle

to decision some special category generation functions.

Hence, the attacker might have additional right to produce

new categories to form troubles to the consumers. Luckily,

this “flaw” does not extremely incur any new threat to the

consumer host. As any new class created from the wrongdoer

has the same priority because the original one, i.e., the same

as normal category except category generation permission, it

cannot access the other additional resources within the host

platform. Nonetheless, this class generation permission allows

the wrongdoer to run through the memory resource of the

native host by making infinite variety of categories. But this

memory DoS attack to native host conjointly exists in the

“legal” application program that requests for an outsized

quantity of memory. Hence, the adversary is unable to incur

new threat to the host by abusing the additional priority.

6. EXPERIMENTAL EVALUATION
In the experiment, an Apache-Tomcat Server 7.0.30 is started

to response to consumer requests on Dell Precision T3600

(Intel computer hardware E5-1607,3.0GHZ, RAM 8GB)

installed with Windows 8.1 64 bit. When a consumer sends a

request to the server, a servlet will produce the code puzzle.

Microsoft Internet soul, installed with Java VM 1.7.0.67, is

run over Dell T3600. Here associate experimental server

(servlet) is designed that includes a code block warehouse for

CPU-only directions and AES spherical operations (see

section 3.3), a module for puzzle generation and a module for

instruction-compliant code encryption (see section 5.5).

Besides, we conjointly developed associate application

program for the code puzzle package delivery.

6.1 Experiment Results
SSL/TLS protocol is the most well-liked on-line transaction

protocol, associated an SSL/TLS server performs dearly-won

RSA decipherment operation for every consumer affiliation

request, thus it is at risk of DoS attack. Main objective is to

protect SSL/TLS server with code puzzle against process DoS

attacks, particularly GPU-inflated DoS attack. As a complete

SSL/TLS protocol includes several rounds, system uses RSA

decipherment step to appraise the defense effectiveness in

terms of the server‟s time value for simplicity.

Assume the time to perform one RSA decryption be 𝑡0, and

the time to get and verify one software puzzle be 𝑡𝑠 (Note that

𝑡0 > 𝑡𝑠, otherwise, software puzzle is useless). Suppose the

number of attacker‟s requests be atomic number 𝑛𝑎 , and the

number of real consumer requests be 𝑛𝑐 , the server‟s

computational time needed for replying all the requests is 𝜏1

=(𝑛𝑎 + 𝑛𝑐)× 𝑡0 if there is no code puzzle; otherwise, 𝜏2 =(𝑛𝑎

+𝑛𝑐)× 𝑡𝑠 + 𝑛𝑐×𝑡0 given that the adversary doesn't come back

valid solutions to the puzzles. Thus, software puzzle defense

is effective if

𝜏1≥ 𝜏2, i.e., 𝑛𝑎 ≥
𝑡𝑠

𝑡0−𝑡𝑠
𝑛𝑐 . (1)

That is, when the range of malicious requests atomic number

𝑛𝑎 is bigger than
𝑡𝑠

𝑡0−𝑡𝑠
𝑛𝑐 , the genuine consumers pay less

time in looking forward to the services. Hence, a good

strategy is to initiate the code puzzle defense if the quantity of

requests is on the far side a threshold, otherwise, no defense is

required as a result of quality of service is satisfactory for all

consumers. To demonstrate the effectiveness of software

puzzle, let‟s see the cost of the participants.

6.1.1 Server Cost
If the server-client system adopts software puzzle, the CPU

time spent in the server is

1. time 𝑡1 for getting ready the initial puzzle C0x;

2. time 𝑡2 for changing C0x into code puzzle C1x;

3. time 𝑡3for puzzle package generation;

4. time 𝑡4 for validating the consumer answer.

Thus the server time 𝑡𝑠 =𝑡1+𝑡12+𝑡3+𝑡4 ≈𝑡1+𝑡2+𝑡3, where the

approximation holds as a result of the puzzle verification time

𝑡4 is terribly little. In this experiments, 𝑡1 = 1.7μs, 𝑡2 = 1.5μs

and 𝑡3 = 1.2μs on average, or 𝑡𝑠 ≈ 𝑡1+𝑡2+𝑡3 = 4.4μs in total.

On the other hand, it will take the server 𝑡0 =1476μs for

activity one RSA2048 decipherment with OpenSSL package

1.0.1f. Therefore 𝑡𝑠≤𝑡0. It means that the code puzzle may be

a sensible defense. More exactly, according to Eq.(1), if 𝑛𝑎 ≥
𝑡𝑠𝑛𝑐

𝑡0−𝑡𝑠
=

4.4𝑛𝑐

1476−4.4
= 0.003nc, the software puzzle defense is

effective. For example, suppose an SSL server receives 𝑛𝑐 =

600 and atomic number 𝑛𝑎 =20,000 requests per second,

since 𝜏2 =(20000+600)×4.4+600×1476=976,240μs < 1s, all

the genuine shoppers (i.e., 600 clients) can be served if code

puzzle is employed, otherwise, only
1000

𝑡0
×

𝑛𝑐

𝑛𝑐+𝑛𝑎
≈ 19 real

consumers on average (or 3.3% of total real clients) will be

served per second. Fig. 5 illustrates that the code puzzle will

increase the service quality significantly in terms of the

proportion of served customers. In the countermeasure, the

server has to transfer the software puzzle package (i.e.,

webpage including the Applet) to the consumer. The package

is merely a 12,000 bits on average, hence, the server is able to

serve 12 × 109/120000 = 105 users presumptuous the network

bandwidth is 12Gbps. Indeed, the server capacity will be

raised if the puzzle core is built from random and light weight

function. Thus, the bandwidth DoS attack threat is little. In

other words, the present theme will increase the defense

capability against time-DoS attack, without sacrificing the

defense capability against space-DoS attack. In order to verify

the response (𝑥 , 𝑦), the server has to store the corresponding

(x, y) into the storage S, which is concerning 128+16=144

bits, or 18 bytes. In order to get rid of long-time open request

so on stop memory exhaustion, each result is unbroken for a

few times solely, e.g., 1 minute. Thus, given that there are

15,000 requests per second, the storage for the server is

merely 18×15,000×60=1.62×107 bytes, or about 16M bytes,

which is terribly little for a server.

6.1.2 Client Cost
In order to be served by the server, a client has to solve the

code puzzle by trial and error. For each trial, the client has to

run the code puzzle. In the experiments, the client takes a pair

of seconds to strive solely 2000 keys for finding the solution y

as a result of a fresh loaded category has got to run the

loadClass(), getMethod() and invoke() which are terribly slow

in the current JVM. To enable larger search area, the new

class is reconstructed with a batch of trial solutions so as to

liquidate the re-loading time, e.g., when the new class

includes puzzle code for 36 trials, the client is able to take a

look at 11,918 keys within a pair of seconds, while the

communication value is simply raised half-hour with jar

package. To increase the space additional for prime security,

JNI programming will be utilized.

6.1.3 Attacker Cost
The assailant has 2 decisions to solve the code puzzle. One is

to solve the puzzle as a traditional client will. Obviously, the

attacker has no advantage over the traditional consumer

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

7

during this case. In other words, the software puzzle achieves

its goal. A second choice is that the attacker‟s host simulates

the code puzzle and converts the code puzzle into the GPU

version. In this case, GPU can quickly solve the puzzle in

parallel, but the conversion method takes nearly the same time

because the first alternative. This gives the assailant no

incentive to perform the conversion.

6.2 Revere-Engineering Results
Given an encrypted byte code, the output of the well-known

disassembler jad 1.5.8g is almost orthogonal to the initial byte

code (except the multibyte instruction like loadCalss) though

each output directions are valid. Reverse-Engineering confirm

that its task is to dis-assemble the protected byte codes, in

particular to those byte codes that are created knavishly.

Naturally, it is even hard to translate one Java byte code to a

GPU kernel.

7. CONCLUSION AND FEATURE

WORK
In this paper, software puzzle theme is planned for defeating

GPU-inflated DoS attack. It adopts software protection

technologies to guarantee challenge knowledge confidentiality

associate degreed code security for an acceptable fundamental

measure, e.g., 1-2 seconds. Hence, it has different security

demand from the standard cipher that demands semi

permanent confidentiality solely, and code protection which

focuses on semi-permanent strength against the reverse

engineering solely. Since the software puzzle might be

designed upon a knowledge puzzle, it can be integrated with

any existing server-side knowledge puzzle theme, and easily

deployed because the current consumer puzzle schemes do.

Although this paper focuses on GPU-inflation attack, its idea

will be extended to thwart DoS attackers that exploit different

inflation resources like Cloud Computing. For example,

suppose the server inserts some anti-debugging codes for

detecting Cloud platform into software system puzzle, when

the puzzle is running, the software puzzle can reject to carry

on the puzzle-solving process on Cloud atmosphere specified

the Cloud-inflated DoS attack fails. In the present software

system puzzle, the server has to spend time in constructing the

puzzle. In other words, the present puzzle is generated at the

server facet. An open drawback is however to construct the

client-side software system puzzle thus on save the server

time for higher defense performance. Another work is how to

value the impact of code de-obfuscation, which is connected

to the technology advance of code obfuscation.

8. ACKNOWLEDGMENTS
We are thankful to faculty of Computer Engineering

Department, DYPSOEA, SPPU for their support. The product

of this research paper would not be possible without all of

them.

9. REFERENCES
[1] J. Larimer. (Oct. 28, 2014). Pushdo SSL DDoS Attacks.

[Online]. Available:

http://www.iss.net/threats/pushdoSSLDDoS.html

[2] C. Douligeris and A. Mitrokotsa, “DDoS attacks and

defense mechanisms: Classification and state-of-the-art,”

Comput. Netw., vol. 44, no. 5, pp. 643–666, 2004.

[3] A. Juels and J. Brainard, “Client puzzles: A

cryptographic countermeasure against connection

depletion attacks,” in Proc. Netw. Distrib. Syst. Secur.

Symp., 1999, pp. 151–165.

[4] T. J. McNevin, J.-M. Park, and R. Marchany, “pTCP: A

client puzzle protocol for defending against resource

exhaustion denial of service attacks,” Virginia Tech

Univ., Dept. Elect. Comput. Eng., Blacksburg, VA,

USA, Tech. Rep. TR-ECE-04-10, Oct. 2004..

[5] R. Shankesi, O. Fatemieh, and C. A. Gunter, “Resource

inflation threats to denial of service countermeasures,”

Dept. Comput. Sci., UIUC, Champaign, IL, USA, Tech.

Rep., Oct. 2010. [Online]. Available:

http://hdl.handle.net/2142/17372

[6] J. Green, J. Juen, O. Fatemieh, R. Shankesi, D. Jin, and

C. A. Gunter, “Reconstructing Hash Reversal based

Proof of Work Schemes,” in Proc. 4th USENIX

Workshop Large-Scale Exploits Emergent Threats,

2011.Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[7] Y. I. Jerschow and M. Mauve, “Non-parallelizable and

non-interactive client puzzles from modular square

roots,” in Proc. Int. Conf. Availability, Rel. Secur., Aug.

2011, pp. 135–142.

[8] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock

puzzles and timed-release crypto,” Dept. Comput. Sci.,

Massachusetts Inst. Technol., Cambridge, MA, USA,

Tech. Rep. T/LCS/TR-684, Feb. 1996. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1

.110.5709

[9] W. C. Feng and E. Kaiser, “The case for public work,” in

Proc. IEEE Global Internet Symp., May 2007, pp. 43–48.

[10] D. Keppel, S. J. Eggers, and R. R. Henry, “A case for

runtime code generation,” Dept. Comput. Sci. Eng.,

Univ. Washington, Seattle, WA, USA, Tech. Rep. CSE-

91-11-04, 1991.

[11] E. Kaiser and W.-C. Feng, “mod_kaPoW: Mitigating

DoS with transparent proof-of-work,” in Proc. ACM

CoNEXT Conf., 2007, p. 74.

[12] NVIDIA CUDA. (Apr. 4, 2012). NVIDIA CUDA C

Programming Guide, Version 4.2. [Online]. Available:

http://developer.download.nvidia.com/

[13] X. Wang and M. K. Reiter, “Mitigating bandwidth-

exhaustion attacks using congestion puzzles,” in Proc.

11th ACM Conf. Comput. Commun. Secur., 2004, pp.

257–267.

[14] M. Jakobsson and A. Juels, “Proofs of work and bread

pudding protocols,” in Proc. IFIP TC6/TC11 Joint

Working Conf. Secure Inf. Netw., Commun. Multimedia

Secur., 1999, pp. 258–272.

[15] D. Kahn, The Codebreakers: The Story of Secret Writing,

2nd ed. New York, NY, USA: Scribners, 1996, p. 235.

[16] K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration

of AES encryption on CUDA GPU,” Int. J. Netw.

Comput., vol. 2, no. 1, pp. 131–145,2012.

[17] B. Barak et al., “On the (Im)possibility of obfuscating

programs,” in Advances in Cryptology (Lecture Notes in

Computer Science), vol. 2139.Berlin, Germany:

Springer-Verlag, 2001, pp. 1–18.

[18] H. Y. Tsai, Y. L. Huang, and D. Wagner, “A graph

approach to quantitative analysis of control-flow

obfuscating transformations,” IEEE Trans. Inf. Forensics

Security, vol. 4, no. 2, pp. 257–267, Jun. 2009.

http://www.iss.net/threats/pushdoSSLDDoS.html

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 10, March 2017

8

[19] S. Wang. (Sep. 18, 2011). How to Create an Applet &

C++. [Online]. Available:

http://www.ehow.com/how_12074039 create-Applet-c.

html#ixzz24Lsk0OJQ

[20] J. Bailey. (Oct. 28, 2014). How to Install Java on an

iPhone, eHow Contributor. [Online]. Available:

http://www.ehow.com/how_5659673_install-java-iphone

.html#ixzz24jIAyKiM

[21] J. Ansel et al., “Language-independent sandboxing of

just-in-time compilation and self-modifying code,” in

Proc. ACM SIGPLAN Conf. Program. Lang. Design

Implement., 2011, pp. 355–366.

[22] J. E. Smith and R. Nair, Virtual Machines: Versatile

Platforms for Systems and Processes. San Mateo, CA,

USA: Morgan Kaufmann, 2005, p.19.

[23] T. Lindholm and F. Yellin, The Java Virtual Machine

Specification, 2nd ed. Reading, MA, USA: Addison-

Wesley, 1999, ch. 9. [Online]. Available:

http://docs.oracle.com/javase/specs/jvms/se5.0/html/VM

SpecTOC.doc.html

[24] J. Black and P. Rogaway, “Ciphers with arbitrary finite

domains,” in Topics in Cryptology (Lecture Notes in

Computer Science), vol. 2271. Berlin, Germany:

Springer-Verlag, 2002, pp. 114–130.

IJCATM : www.ijcaonline.org

http://www.ehow.com/how_12074039%20create-
http://www.ehow.com/how_5659673_install-java-iphone
http://docs.oracle.com/javase/specs/

