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ABSTRACT 

This paper is a brief survey of advance technological aspects 

of Digital Image Processing which are applied to remote 

sensing images obtained from various satellite sensors. In 

remote sensing, the image processing techniques can be 

categories in to four main processing stages: Image pre-

processing, Enhancement, Transformation and Classification. 

Image pre-processing is the initial processing which deals 

with correcting radiometric distortions, atmospheric distortion 

and geometric distortions present in the raw image data. 

Enhancement techniques are applied to preprocessed data in 

order to effectively display the image for visual interpretation. 

It includes techniques to effectively distinguish surface 

features for visual interpretation. Transformation aims to 

identify particular feature of earth’s surface and classification 

is a process of grouping the pixels, that produces effective 

thematic map of particular land use and land cover.  
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1. INTRODUCTION 
Remote sensing is the process of gathering data about the 

earth’s surface without being in contact with it. This is 

process is done by sensing and recording emitted or reflected 

energy and then processing, analyzing and applying that 

information. Remote sensing process includes the illumination 

or energy source which passes through the atmosphere and 

interacts with the target;  the electromagnetic energy emitted 

or scattered from the target is collected and recorded by the 

satellite sensors is transmitted in electronic form to a 

receiving and processing station where the data is processed 

into an image. The processed image is interpreted visually or 

electronically or digitally to extract the information about the 

illuminated target. Remote sensing systems which measure 

reflected energy are called passive sensors, which can be used 

only to detect energy in the present of naturally occurring 

energy. This can take place only during the time when the sun 

is illuminating the earth. 

An active sensor provides its own energy source for 

illumination. The sensors emit radiation which is directed 

towards the target to be investigated; these sensors obtain the 

information regardless of the time of day. In order to capture 

the earth’s surface the sensors must be paced in a proper 

platform. Before it was ground-based and aircrafts platforms, 

nowadays satellite near-polar orbits platform provides a great 

contribution to remote sensing imagery. 

Motivation : The Multispectral satellite sensor provides digital 

raster images, that allow us to apply Digital Image Processing 

(DIP) techniques to develop thematic maps of 

landuse/landcover  classes which are essential in many remote 

sensing applications like forestry, agriculture, environmental 

studies, weather forecasting, ocean studies, archeological 

studies etc.  

Contribution: In this paper various advanced image 

processing techniques to convert raw satellite imagery into 

fine data obtained from different spatial, spectral and temporal 

resolutions from microwave to ultraviolet bands are discussed. 

Organization: The paper is organized as follows; Section I 

deals with various resolutions of satellite sensor. Section II 

describes Satellite sensors for distinct applications. Section II 

is a study of Image Analysis which includes advance 

algorithms for preprocessing, enhancement, transformation 

and classification. Section IV is a brief review of Remote 

Sensing Applications. Section V is list of Remote sensing 

image analysis tools and Section VI presents conclusion. 

2. REMOTE SENSING SATELLITE     

IMAGERY 
Remote sensing satellite image consists of Digital Numbers 

[DN] which represent image features such as color, 

brightness, wavelength, radiated energy frequency, or picture 

element in the image. The smallest element on an image is 

called pixel. A digital image consists of pixels which are 

arranged in rows and columns commonly known as a raster 

image. The information content and dimensions of these 

pixels depend on the resolution of the image. Figure 1 shows 

various sensor resolutions. 

2.1 Spatial Resolution 
The detail of an image depends on spatial resolution of the 

sensor. If the spatial resolution is 10 meters, it means that 

each pixel denotes an area of 10m/10m on the ground surface. 

Higher the resolution of an image, finer details is more clearly 
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Fig 1: Satellite Sensor Resolutions 

Table 1:  Comparison Of Algorithms on Variable Sensor Resolution

Sl.no. Work 
Sensor 

Resolution 
Algorithm Advantages Disadvantages 

1. santi et al.,[1], 2016 
Spatial 

Resolution 
Adhoc CLEAN 

Increased spatial resolution of 
bistatic images 

Only for coarse range reso- 
-lution 

2. Ji zhoo et al.,[3], 2016 
Spectral 

Resolution 
Conditional 

Random field 
Overcomes  spatial  variability 

problem 
Fail to use spatial location 

cues information 

3. 
Enrique no et al.[5], 

2013 
Radiometric 
Resolution 

Near  Fiel Tech- 
nique 

Suitable for close range 
applications 

More error rate 

4. H.Shyen[6], 2016 
Temporal 
Resolution 

Hidden   Markova 
Model 

Less noise distortion Less efficiency 

 

- visible and cover less ground area. Lower the resolution of 

an image, details are not clearly visible but it covers larger 

total ground area. 

Adhoc CLEAN algorithms [1] have been developed to 

improve the spatial resolution of bistatic images and MSAR 

images (Multistatic Synthetic Aperture Radar) which 

produces images with 1m spatial resolution, however it is 

applicable for processing coarse range resolution. 

2.2 Spectral Resolution 
Spectral resolution of a sensor is the ability to define fine 

wavelength intervals in an Electromagnetic spectrum. The 

details of an image also depend on responses of EMR incident 

on an object over distinct wavelength ranges, for example, the 

classification of vegetation and water is usually be separated 

in a broad wavelength range i.e, visible and near infrared 

wavelengths, to distinguish different rocks needs finer 

wavelength range within the band to separate them. So higher 

the spectral resolution, narrower the wavelengths range of a 

particular band.  

Wei et al.,[2] proposed an algorithm to fuse multiband images 

based on linear observation model and linear spectral mixture 

model which includes high spatial resolution and low spectral 

resolution images. It leads to increase in abundance and end 

member estimation parameters, but it fails to fuse spectral and 

spatial degradation images. 

Zhao et al.,[3] integrated spatial, spectral and spatial  location 

cues by using CRF model (Conditional Random Field) to 

produce high resolution remote sensing image. The proposed 

method solves spatial variability problem, yet it fails to use 

rich information available in spatial location cues.  

The problem of estimating atmospheric parameters such as 

temperature and water vapor content in hyper spectral 

imagery is addressed by Ahlberg et al.,[4] using noise models; 

the atmospheric parameters (signature) were generated using 

10- 20 spectral bands at moderate noise level but experiment 

fails to produce quantitative results. 

2.3 Radiometric Resolution 
Radiometric resolution enables us to recognize high and low 

level contrast objects in an image. Radiometric resolution 

describes the information about image brightness, contrast, 

illumination variations and other details of an image.  

The study of radiometric sensitivity for 1D SA (Synthetic 

Aperture) and 2D SA images are discussed by Nova et al.,[5] 

NF technique (Near-Field) that produces distortion 

coefficients based on DCF’s radiometric sensitivity with 

respect to close range screening applications. The 

disadvantage is that error rate is high for low resolution 

image. 

2.4 Temporal Resolution 
The time taken by a satellite to revisit the same area with 

same viewing angle is referred as absolute temporal 

resolution. 

It refers to the length of time it takes for a satellite to complete 

one entire orbit cycle. Temporal data plays a very important 

role in remote sensing applications like monitoring vegetation 

changes, flood occurrence, deforestation, urban development 

etc., Spectral resolution varies with time and is identified by 

multi temporal imagery. Temporal resolution depends on 

many factors like satellite sensor capability, latitude and 

swath overlap.  

The integration of spatial, spectral and temporal resolution [6] 

using hidden markov model, PSM/MS model and filtering 

methods are used to obtain high spatial-temporal – spectral 

resolution fused data. The main advantage is low noise 

distortion in the obtained fused image but its efficiency is low. 

The spatio-temporal fusion has been done Rao et al.,[7] using 

high-pass frequency modulation and edge primitive 
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techniques to produce high synthetic fused image of LISS III 

at 23.5m spatial resolution and five day temporal resolution 

image, that overcomes computational complexity. Table I 

shows the comparison of algorithms to improve sensor 

resolutions. 

3. SATELLITE SENSORS 
Satellites provide remote sensing imagery which are 

commonly used today. The unique characteristics of Satellites 

make them particularly useful for remote sensing of the 

Earth’s surface. 

3.1 Thermal Sensors 
To measure the surface temperature and thermal properties of 

a target object on the ground surface, thermal sensors are used 

that detects the reflected radiation from the target object. 

Bian et al., [8] thermal properties of surface objects namely 

leaves, shaded soil and sunlit soil using multi-angle infrared 

airborne thermal sensors. Arbitrarily Inclined Leaves (4SAIL) 

model and modified FR97 model improve the precision rate in 

retrieving the thermal properties of these three components. 

3.2 Airborne and Space-borne Sensors 
Airborne remote sensing are one time operations. Here, 

sensors are mounted on aircrafts that provides images with 

high spatial resolution but it covers less ground area. 

Space-borne remote sensing provides continuous monitoring 

of earth’s surface. Here, the sensors are placed on space 

shuttles or satellites. It covers larger earth’s surface with less 

spatial resolution. 

Microwave remote sensing consists of both active and passive 

sensors. Longer wavelength microwave radiation penetrates in 

variable environmental conditions. While, shorter microwave 

radiation are use in the study of soil engineering. 

Radar is an electromagnetic distance measuring device. The 

transmitter of the radar generates short microwave pulse and 

antenna focuses pulses into beam. The radar beam is 

transmitted to the earth station and hits on the object at right 

angle; the reflected energy from the object is recorded back 

within the illumination beam. As the sensor platform moves 

forward, recording and processing of backscattered signal 

builds up a two-dimensional image of the surface. Image 

appearance varies depending on the surface roughness, 

surface geometry and electrical properties of target. The radar 

imagery is used in oceanographic studies to detect and track 

ship, identify the direction of wind, monitoring natural 

disasters, to create DEM (Digital Elevation Model), land 

cover/land use classification, agriculture and forest 

monitoring. The process of radar beam interaction with 

earth’s surface objects creates two dimensional image. The 

radar imagery is used to identify the direction of wind, 

oceanographic studies to detect and track ship, to create DEM 

(Digital Elevation Model), land cover/land use classification, 

monitoring natural disasters etc. 

Dutta et al.,[9] Categorize vegetation canopy based on leaves 

area per density( LAD) in dense forest using airborne LIDAR 

remote sensing imagery and hyper spectral imagery based on 

Pit-Free Canopy Height Model(PFCHM) and crown 

segmentation model. Accurate results are obtained for single 

dataset, yet it needs to be validate for other datasets. Radar 

imaging is used to detect the moving objects behind wall and 

to map the building interiors using GPOF (Generalized pencil 

of Function) algorithm. Object Point Spread Function (OPSF) 

technique is used to remove the ghost image of moving object 

which also gives 360 degree view of imaging area using 

omnidirectional antenna and it greatly improves the range 

resolution [10]. 

The coastal tide components in nearshore water using Xband 

marine radar imagery is estimated by Chen et al.,[11] based 

on the wave height modulation. Self- adaption model is used 

to remove poor quality data and type I Chebyshev bandpass 

filter to derive the phase and amplitude of tidal wave to 

predict information on coastal tide. The proposed method 

gives better results than OTPS model (The Oregon state 

university Tidal Prediction Software). The accuracy in 

prediction is low as the coastal waves vary with external 

parameters like wind. The sea surface current velocity is 

retrieved from X-band marine radar imagery using ILS-NSP- 

PCS algorithms (Iterative Least Square- Normalized Scalar 

Product- Polar Current Shell); this approach produces 

accurate retrieval rate than traditional method [12]. 

4. IMAGE ANALYSIS 

 

Fig 2:  Remote Sensing Analysis 

In order to make good use of remote sensing data, we must be 

able to extract meaningful information from the image by 

applying proper processing techniques. Remote sensing 

images can also be represented in a computer as arrays of 

pixels, with each pixel corresponding to a digital number 

[DN], represents the brightness level of that pixel in an image. 

Figure 2 is a general architecture of remote sensing image 

analysis. 

Image analysis systems can be categorized into following: 

(i) Pre-processing 

(ii) Image Enhancement 

(iii) Image Transformation 

(iv) Image Classification and Analysis. 

4.1. Pre-processing 

Pre-processing functions involves the operations required 

prior to the main data analysis and consists of processes aimed 

at geometric correction, radiometric correction and 

atmospheric corrections to improve the ability to interpret the 

image components qualitatively and quantitatively. These 

process correct the data for sensor irregularities and removing 

(radiometric corrections) unwanted sensor distortion or 

atmospheric noise. 
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4.1.1 Geometric Corrections 
It includes correcting the geometric distortions due to sensor-

Earth geometry variations and conversion of the data to real 

world coordinates (Geo- Referencing). When image data are 

recorded by satellite sensor, it contains errors in geometry. An 

image geometry error arises mainly due to the relative 

motions of the platform, its scanners and the earth. Non-

idealities in the sensors, the curvature of the earth and 

uncontrolled variations in the position and altitude of the 

remote sensing platform can all lead to geometric errors of 

varying degrees.  

Correcting the geometric errors in Nighttime Lights Time 

series image (NLT) have been done by Zhao et al., [13]] using 

GDP growth rates, cross correlation between reference image 

and candidate image enables to find error DN value. The 

population corrected NLT is used to produce accurate results 

but it generates uncertain errors on corrected DN values in 

nighttime light images. 

Landsat MSS L1G ( Multispectral Scanners Landsat 1 

Generation) images [14] are used to analyze multi-temporal 

changes and should be free from geometric distortions. DEM 

(Digital Elevation Model) and MSS sensor parameters are 

used for ortho-rectification and geo-referencing to improve 

the accuracy of geometric corrections, proposed method is 

evaluated quantitatively and has high accuracy. 

Sola et al., [15] deal with a speedy procedure for the 

geometric correction of hyperspectral MIVIS images using 

Polynomial Model (PM) and the model of Rational Functions 

(RFM). The main aim is to get an effective geometric 

correction of MIVIS images by way of an optimal 

compromise of result precision and elaboration time and can 

be applied for large areas. The aim has been achieved by 

overlapping the MIVIS images and their themes with high-

resolution images.  The main advantage of proposed method 

is to effectively monitor the environmental damage. 

4.1.2 Radiometric Corrections 
The reflected electro-magnetic energy are observed by a 

sensor, due to sun’s azimuth and atmospheric conditions the 

observed energy does not match with the energy emitted from 

the same object. Therefore, in order to obtain the real 

irradiance or reflectance, these radiometric distortions must be 

corrected. A radiometric correction plays a major role in 

producing error free thematic map for biomass applications, to 

achieve this objective Simard et al.,[16] proposed 

holomorphic calibration technique and heteromorphic 

calibration techniques to correct radiometry for terrain 

topography and canopy variations due to reflectivity. It 

performs better than cosine generation technique but accuracy 

is low when azimuth slope is considered. 

Radiometric correction model [17] is developed based on 

FMask code and Tanre’s formulation to detect clouds and 

cloud shadow of Aerosol Robotic Network sun photometer 

data. It produces a result that is free from overlapping 

redundant pixels and achieves accuracy of 98.8 percent. The 

correction accuracy is still low for medium resolution data.  

The radiometric stability in MODIS image to retrieve aqua 

information from ocean using Nearly Simultaneous Nadir 

Overpass (NSNO) technique proposed by David et al., [18], 

achieves more stability for deep convective cloud (DCC) 

invariant earth targets but fails to stabilize radiometric errors 

for data from different sensors. 

 

4.1.3 Atmospheric Corrections 
Solar radiation is absorbed or scattered by the atmosphere 

when it is transmitting to the earth. In the same manner the 

reflected energy from the target is absorbed or scattered by the 

atmosphere before it reaches a sensor. Sensors receive the 

reflected radiation from the target and also receive scattered 

radiation from the target is called path radiance. 

The atmospheric corrections for HICO (Hyperspectral Imager 

for the Coastal Ocean) images are difficult because of 

outpouring spectral distribution of radiance from the coastal 

water (ocean).  

Lewis et al., [19] proposed cloud–shadow atmospheric 

correction method, which corrects the pixels with similar 

optical properties such as cloud pixels, shadow pixels and 

sunlit pixels. This approach solves adjacency error between 

bright and dark objects but the success rate is low as it 

depends on the selection of appropriate cloud. 

SAR (Synthetic Aperture Radar) [20] image has less 

capability in measuring ground deformation information 

because of Atmospheric Phase Delay Effects (APDE). 

Atmosphere corrected PSI model along with Advance 

Weather Research and Forecasting model (AWRF) overcomes 

baseline errors, phase noise and DEM errors in time series 

SAR image. This method is more suitable in studying 

volcanic deformation and rarely shows unexpected errors on 

temporal data. 

Brian et al.,[21] introduced Real-time automatic atmospheric 

correction method on Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS-NG). It uses ATmospheric REMoval 

algorithm which reduces time complexity but automatic 

selection of aerosol model is still an open research problem. 

The preprocessing algorithms are listed in Table II. 

4.2. Enhancement 
To make image easier for visual interpretation Enhancements 

are used. The advantage of digital imagery is that it allows us 

to manipulate the digital pixel values in an image. 

Although radiometric corrections for illumination, 

atmospheric influences, and sensor characteristics may be 

done prior to distribution of data to the user, the image may 

still not be optimized for visual interpretation.  

Image Enhancement methods are of four types 

(i) Radiometric Enhancement 

(ii) Spatial Enhancement 

(iii) Spectral Enhancement 

(iv) Geometric Enhancement. 

4.2.1  Radiometric Enhancement. 
Radiometric enhancements are techniques that improve 

contrast between certain features of earth surface by altering 

the screen colors assigned to specific ranges of pixel values. 

Lisani et al., [22] applied tone-mapping algorithms to the 

satellite images to enhance bright and shadow regions. The 

algorithm improves K- coefficient so that accuracy increases 

and reveals minor details in shadow but manual selection of 

the dark zone reduces its efficiency. 

Radiometric enhancement for regions covering atmospheric 

products such as aerosol optical depth, perceptible water, and 

total ozone for KOMPSAT-3 has been developed by Yeom et 

al.,[23] using radiative transfer model. it is observed that the 
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anisotropy factor(ANIF) showed negligible BRDF effects 

(Bidirectional Reflection Distribution Function); hence better 

enhancement is achieved but still it depends on swath overlap. 

An automatic radiometric normalization for mutitemporal 

time series data of ETM images using Iterative Slow Feature 

Analysis (ISFA) was proposed by Zhang et al.,[24] that shows 

improved normalization coefficient NR with high efficiency 

but mosaicking with all kinds of images is still an open 

challenge. 

4.2.2 Spatial Enhancement: 
The spatial resolution of a remote sensing system is 

characterized either by (i) line pairs per millimeter, for 

airborne imagery that is typically employed when dealing 

with analogue or hardcopy prints or (ii) the pixel (picture 

element), the basic unit or building block of digital imagery. 

Spatial enhancement deals largely with spatial frequency and 

modifies pixel values based on the values of its neighbor 

pixels. Focal analysis, Convolution filter, Resolution Merges, 

Non- Directional Edge Enhancement using Laplacian filter, 

Texture Filters (occurence and co-occurence), Statistical 

Filtering and Adaptive filtering are used to enhance spatial 

features traditionally. Spatial resolution enhancement in bright 

regions of microwave remote sensing using conjugate 

gradient method (CG) [25]. It takes low processing and 

produced high reconstruction accuracy compared to 

Landweber method but results in low accuracy for duality 

maps Reconstruction technique based on 2-D truncated 

singular value decomposition (TSVD) [26] method to enhance 

spatial features reduces the noise levels (RMSE and r values). 

 

 

Table 2: Comparison of Algorithms on Enhancement Methods 

 
Sl.no. Work Algorithm 

Enhancement 
Methods 

Advantages Disadvantages 

1. 
min yeom 

et al.,[23], 
2016 

Radiometric  
 Enhancement 

Radiative 
Transfer 

Model 
Negligible BRDF effect Depends on swath overlap 

2. 
Flavia lenti et al.,[26], 

2014 
Spatial 

 Enhancement TSVD Reduced noise level 
Issue in selection of trunca- 

tion parameter 

3. 
Mohamed 

aimebendani et 
al.,[28], 2014 

Spectral 
Enhancement 

Spectral 
unmixing 
algorithm 

Low spectral distortion 
fails to fuse different reso- 

lution images 

4. 
Leonardo correr 

et 
al.,[34], 2016 

Geometric 
Enhancement 

Hidden 
Markova 

Model(HMM) 
High computational 

efficiency 

Suitable only for low SNR 
images. 

 

It is robust and is compatible for hardware implementation. It 

is constrained by the selection of truncation parameter and 

kernel must be a 2D tensor. 

A deconvolution-based model [27] has been developed to 

enhance the spatial features of Soil Moisture and Ocean 

Salinity (SMOS) data. Six different decovolution based 

algorithms such as SEPS, Wiener model, Wiener-War model, 

CLS model, CLS- WaRD model and CLS-WaRD model are 

applied to original synthetic image in frequency domain. It is 

observed that Wiener-War model results in low error rate and 

better enhancement rate for sea pixels and lower enhancement 

rate for soil pixels. 

4.2.3 Spectral Enhancement:  
Spectral enhancement is the process of creating new spectral 

data from available bands. New data is created on a pixel-by-

pixel basis by applying an operation (e.g., subtraction, 

division) to corresponding pixels in the existing bands 

Spectral Ratios and Indices and Tasseled Cap are important 

functions in spectral enhancement process. 

Spectral resolution enhancement in multispectral images (MS) 

using spectral unmixing algorithm [28] reconstructs spectral 

as well as spatial features of MS images. Peak SNR (PSNR) 

and Spectral Angle Mapper (SAM) parameters describe the 

reconstruction quality of MS images. The algorithm shows 

less SAM value and hence lower spectral distortion is 

achieved. It fails to fuse different resolution images. 

. 

Kowkabi et al., [29] to accurately retrieve the end member 

class by enhancing the spectral information of satellite 

imagery. Clustering and over segmentation-based 

preprocessing (COPP) has been developed by incorporating 

spectral and spatial information that identifies spatially 

homogenous zones with the great spectral purity score. Thus it 

degrades local spectral variability and noise power improved 

computational efficiency. The proposed algorithm does not 

presume the presence of pure pixels. 

Spectral unmixing is an important research topic in the field 

of remote sensing, that aims to unmix the spectral signature of  

different classes by enhancing the spectral features in the 

observed scene. Drumetz et al.,[30] developed Extended 

Linear Mixture Model (ELMM), that allows a pixel wise 

spatially coherent local variation of the end members, leading 

to scaled versions of reference endmembers. The scaling 

parameter estimates the amount of spectral variability in 

synthetic data and can be corrected using physical model. It 

gives good enhancement results for endmember class than 

Constrained.Least Squares Unmixing (CLSU) algorithm. It is 

less accurate result for aerial images like Lidar. 

Kraft et al., [31] studied differences between Google earth 

imagery and satellite imagery to classify different classes on 

the earth surface. 

4.2.4  Geometric Enhancement:  
Geometric detail in an image is modified for better vision and 

for further processing. Geometric enhancement is 

characterized by its neighboring pixel. The new pixel value 

which is calculated from the brightness pixels of set of 

surrounding pixel leads to variations in observed geometric 

detail. Geometric enhancement in remote sensing is generally 

related to smoothing, edge detection and enhancement, line 



International Journal of Computer Applications (0975 – 8887) 

Volume 161 – No 11, March 2017 

29 

detection and enhancement. Edge and line enhancements 

leads to image sharpening. 

Extraction of road network in urban area is necessary for 

proper urban planning and is an active research topic in 

remote sensing and geoscience. It basically involves 

geometric information processing like edge enhancement, 

smoothing and filtering.  

Zang et al.,[32] developed a task-oriented enhancing 

technique for extracting road networks from satellite images, 

utilizes adaptive smoothing scheme to remove the noise or 

heavy texture. It sharpens the edges of road by means of 

anisotropic shock filter. It yields high result in terms of 

correctness, completeness and efficiency compared to RTV 

(Relative Total Variation) and RCS (Random Conditional 

Segmentation) methods. 

The ship detection in Terra-SAR [33] using ellipse fitting and 

the gradient vector flow (GVF) method where resulting values 

are fed to snake model to accurately detect the target ship. The 

Error Rate (ER) for length and width of ship are negligible 

and suitable for real time military applications. Radargrams 

are the unique instruments to investigate both terrestrial and 

space applications.  

Carrer et al.,[34] proposed a novel preprocessing method for 

denoising radar acquisition image and enhancing the 

geometric features of radar data to detect the subsurface 

layers. The pixel intensity and depth parameters were mapped 

to Hidden Markov Model (HMM) for denoising and 

enhancement of radar image, Viterbi algorithm is used for 

detecting the subsurface layers. The main advantage is in 

terms of computational complexity as VA follows divide and 

conquer procedure. It is suitable only for low SNR images. 

Rizkinia et al., [35] proposed DWT based method on to 

improve the quality of satellite images. DWT decompose the 

input image into different sub bands and threshold 

decomposition method is applied to identify the edges. The 

edges are sharpened by using morphological filters. It works 

well for sharpening and reducing the distortion of an image 

but the drawback is that it produce artifacts. A comparison of 

different enhancement algorithms is depicted in Table III. 

4.3 Transformation 
Image transformations typically involve the manipulation of 

multiple bands of data, whether from a single multispectral 

image or from two or more images of the same area acquired 

at different times (i.e. multitemporal image data). Either way, 

image transformations generate new images from two or more 

sources that highlight particular features or properties of 

interest, better than the original input images. Image 

transformation includes basic arithmetic operations like band 

Arithmetic operations are performed on two or more co-

registered images of same geographical area. They may have 

different spectral band from a single multispectral data or it 

may have individual band of different time series data set. 

Addition operation on a pair of images is performed to reduce 

the noise component. Subtraction operation on a pair of 

images is performed to find differences between those images 

i,e., to detect changes. Image multiplication is usually 

employed to extract the region of interest; it involves masking 

binary image with that of real image. Division or rationing 

operation is widely used in images of ecological, geological 

and agricultural applications. This operation is used to find the 

magnitude of differences between the spectral bands. These 

differences may be symptomatic of particular land cover type. 

Band/ Spectral Ratioing, Principal Components Analysis 

(PCA) and NDVI are image transformation functions in 

remote sensing which has been used to monitor vegetation 

conditions on continental and global scales. Multisensor 

image fusion is an extended application of image 

transformation functions. 

Palsson, et al., [36] proposed a method to fuse two 

panchromatic images, based on Principal Components 

Analysis (PCA), it is a statistical technique this can converts 

multivariate data with correlated variables into uncorrelated 

variables. 

The new variables are obtained as linear combinations of the 

existing variables. In the fusion process, PCA method 

generates uncorrelated images. The first principal component 

is replaced with the panchromatic band which has higher 

spatial resolution. Finally, the inverse PCA transformation is 

applied to obtain the image in the RGB colour image. 

Limitations of PCA image fusion method are dominant spatial 

information and weak colour information which is often a 

Problem. 

Ancuti, et al., [37] proposed a method for multi-focus image 

fusion based on discrete wavelet transform. Source images are 

decomposed by DWT method; two different window based 

fusion rules are separately applied to combine both low 

frequency and high frequency coefficients. It achieves better 

visual quality and objective evaluation indexes but is not 

implemented on multi-sensor images. 

Liu et al.,[38] discussed an approach to identify minimum 

NDVI ( less vegetation cover) in MODIS data, approach is 

based on BVI-method (Brown Vegetation Index) which is a 

refined masking of cloud and snow matrix. The mean 

difference and contaminated percentage of Green band and 

SWIR band is less hence is useful in identifying evergreen 

forests, monsoon forests, and double cropping. It is evaluated 

by considering eleven years’ time series data. 

Xu et al.,[39] introduced a PCA-based LMMSL (Linear 

Minimum Mean-Square Error) denoising model for 

multiplicative noise in SAR image. The proposed method is a 

combination of PCA, log transformation and K-means 

clustering to find the denoising patches based on statistical 

characteristics of speckle noise. The clusters of all patches are 

used to reconstruct noise free image. MSE (Mean Square 

Error) and beta value is less and hence the efficiency is better 

compared to the existing state of art method in terms of image 

detail preservation and speckle noise reduction. 

Yang et al.,[40] proposed Moving Weighted Harmonic 

Analysis (MWHA) method to reconstruct high quality 

vegetation NDVI time series data (removing residual effects 

and noise levels) of SPOT 5. MWHA method provides 

moving support domain to assign the weights for all the points 

which makes easier in determining the frequency number. A 

Four-Step Process (FSP) is used to determine the changes 

occurring in vegetation cover. It is validated with ground truth 

actual growth profile of vegetation and achieves accurate 

result. The drawback is that it is not validated for other sensor 

images. 

5. IMAGE CLASSIFICATION AND    

ANALYSIS 
Image classification is an important part of the remote 

sensing, image analysis and pattern recognition. Based on the 

idea that different feature types on the earth’s surface have a 

different spectral reflectance and remittance properties, their 

recognition is carried out through the classification process. 



International Journal of Computer Applications (0975 – 8887) 

Volume 161 – No 11, March 2017 

30 

In a broad sense, image classification is defined as the process 

of categorizing all pixels in an image or raw remotely sensed 

satellite data to obtain a given set of labels or land cover 

themes. In some instances, the classification itself may be the 

object of the analysis. For example, classification of landuse 

from remotely sensed data produces a map like image as the 

final product of the analysis. Hence the image classification 

forms an important tool for examination of the digital images.  

A principal application of remotely sensed data is to create a 

classification map of the identifiable or meaningful features or 

classes of land cover types in a scene.  

5.1 Supervised Classification 
The supervised classification is the essential tool used for 

extracting quantitative information from remotely sensed 

image data. Using this method, the analyst has available 

sufficient known pixels to generate representative parameters 

for each class of interest.  

Table 3: Comparison of Algorithms on Supervised Classification 

Sl.no. 

                                                   

Work   Algorithm Advantages Disadvantages          

1. 
Restaino 

et al.,[45], 
2016 

Gabour Filter and 
Mean Shift algo- 

rithm 

Better 
classification 

result 
for 

variable 
land cover type 

Less accuracy for variable texture surface 

2. 
Gueguen 

et al.,[44], 
2015 

POK 

High 
computational 

efficiency 

Less accuracy for panchromatic 
images 

3. poggi et al.,[51], 2014 TS-MRF 

Better performance 
than 

unsupervised 
technique 

Fail to model non -stationary 
property 

 Feng et al., [42], 2015 RDT and GRFC 

Classifies 
various 

contradicting 
objects 

- 

 
 

This step is called training. Once trained, the classifier is then 

used to attach labels to all the image pixels according to the 

trained parameters. The quality of a supervised classification 

depends on the quality of the training sites, The most 

commonly used supervised classification is maximum 

likelihood classification 

(MLC).[41] 

Feng et al., [42] studied GRFc algorithm and Fuzzy classifier 

to classify different land use and land cover classes on earth 

surface and found that GRFC produces highest accuracy than 

fuzzy classifier. 

Spatial and spectral properties of worldview 2 are analyzed by 

Arabi et al., [43]. Polynomial fit classifier is used to classify 

different land use objects on the earth surface and also miss 

classification is found in classifying finer detailed objects of 

the earth surface. 

POK based classification algorithm [44] classifies 30m 

resolution data with effective computational time, but his 

method yields low accuracy in classifying panchromatic data.  

Fusion of gabour filter and variable mean shift to segment 

land cover types was proposed by Restaino et al.,[45]. 

Accuracy is high for spectral feature classification but low 

accuracy for textural data. 

Du Peijun et al., [46] classified texture data using KNN (K- 

Nearest Neighbor) and MLC (Maximum Likely-hood 

Classifier) and found that KNN produces good result than 

MLC. 

Bruzzone et al..,[48] proposed a novel pixel-based system for 

the supervised classification of very high geometrical (spatial) 

resolution images. This system aimed at obtaining accurate 

and reliable maps both by preserving the geometrical details 

in the images and by properly considering the spatial context 

information. Experimental results confirmed the effectiveness 

of the proposed system. 

Wang et al., [49] describes the extended-MRF technique to 

develop an operational approach, which ensures high accuracy 

and compatibility in image classification from the satellite 

images of different resolutions and varying quality. The loss 

of forest and urban sprawl has been revealed by the analysis 

which is a major problem of Atlanta’s city. 

Mylonas et al., [50] used graph theory concept to classify 

urban areas. Authors found that, method yield high 

classification accuracy in classifying urban areas of 1m 

resolution data. The comparison of different supervised 

classification algorithms is listed in Table IV. 

5.2 Unsupervised Classification:  
Pixels are grouped based on the reflectance properties of 

pixels. These groupings are called clusters. The user identifies 

the number of clusters and bands to be generated. With this 

information, the image classification tool generates clusters. 

There are different image clustering algorithms such as K-

means and Expectation Maximization. The unsupervised 

classification technique is commonly used when no sample 

sites exist. 

Authors of [52] and [53] proposed segmentation and 

unsupervised classification algorithm based on clustering 

techniques to retrieve compound objects in high resolution 

multispectral data .The main advantage of this method is with 

respect to computational time.[54] 

Mei et al.,[55] developed a classification algorithm based on 

cellular automata Better accuracy is achieved for all c1 to c6 

bands compared to other classifiers such as multilayer 
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perceptron, Naive Bayes, K-NN, and RBF network but fails to 

classify texture data. 

Shen et al., [56] proposed a method to extract thematic 

information of urban vegetation such as thin grass land, forest 

and thick grass land from quickbird imagery using traditional 

segmentation algorithm and fuzzy classification method. 

Improved K-coefficient is achieved and the result is accurate 

that is validated with ground truth information [57]. 

Table 4: Comparison of Algorithms on Unsupervised Classification 

Sl.no. Work   

                 

Algorithm 
 

Advantages Disadvantages 

       

1. Xiao et al.,[52], 2016 
Back 

Propogation 
and K-means 

High 
accuracy 

classification 
Valid only for single database 

2. 
Tiancan Mei 

et al.,[55], 2015 
Cellular 

Automata 

Reduced 
noise 
level 

Failed to classify texture data 

3. Angel et al.,[51], 2013 Linear filters 
Does not 

Require prior 
segmentation 

Improper projection for non lin- 
ear information 

4. 
Zhang 

et  al.,[64], 2015 

Clustering technique 
on 3D  time 
Series data 

Identifies dynamic 
changes in land use 

and land cover, 
- 

        
 

Gillis et al., [58] observe that the Mahalanobis classifier 

outperforms even advanced classifiers for land use/land cover. 

This is an accurate and simple classifier. It shows the 

importance of considering the data set - classifier relationship 

for successful image classification. 

Solaiman et al., [59] have done comparative study of 

clustering algorithms. The study shows that DBSCAN is 

better than K-means and SOM in discovering non-convex 

cluster. SOM and K-means used to extract convex cluster. 

When the clusters are of hyper spherical or convex shape and 

well separated large dataset, K-means and SOM is preferable 

as they are faster [60]. 

Angel et al.,[61] presented a new method for remote sensing 

image segmentation based on spectral and texture 

information. Linear filters are used to enhance the spatial 

patterns. The proposed segmentation greatly reduce known or 

unknown representative feature via subspace projection. The 

main advantage of proposed method is that it automatically 

selects proper scales, which does not require segmentation at 

multiple scale levels. The disadvantage is that improper 

projection is found for nonlinear finer details. 

Sen et al.,[62] proposed an automatic method for deriving 

Digital Terrain Models (DTM) from Digital Surface Models 

(DSM). The DTM generation is formalized here as the 

minimization of a given energy which is defined by a data 

term and a regularization term. It filters non ground points 

present in the original DSM so that the final terrain surface 

best fits true ground points. The method introduced was tested 

on a vegetated and hilly area and compared with ground truth 

and shows good geometric accuracy and robustness [63] [60]. 

Zhang et al., [64] proposed a clustering technique on 3D time 

series data for land use analysis such as identification of 

forest, urban areas, and water as well as for meteorological 

applications. This approach was suitable to accomplish the 

temporal analysis of land use. The main application of 

proposed work is to identify dynamic changes in land use and 

land cover. The comparison of different unsupervised 

classification algorithms are listed in Table V. 

5.3 Object-Oriented Classification:  
The object-oriented classification method suitable for medium 

to high resolution satellite imagery provides a valid alternative 

to traditional pixel-based classification.  Object oriented 

classification involves segmenting an image into objects 

(groups of pixels). These objects have geographical features 

such as shape and length, and topological entities such as 

adjacency. These attributes make a knowledge base for the 

sample objects, which can be called upon in the classification 

process. Object-oriented classification has greater possibilities 

for detecting change in higher resolution imagery.  

Lu et al.,[65] discuss an object oriented classification method 

for Dasymetric Mapping (DM) within remote sensing and 

census geography. This method overcomes many of the 

method. It allows the data to be independent from the 

arbitrary enumeration areas and therefore the ecological error 

is reduced in terms of area unit problem. 

Yu, et al.,[66] improves the accuracy of HRI classification by 

fusing Feature Enhancement Techniques with Object- 

Oriented Classification Approach. It significantly improves 

the classification accuracy of HRI compared with other 

classical classification approaches.[67] [68]. 

Karouiet et al.,[69] proposed Reference Descriptor based 3D-

model to detect car in high resolution aerial images. The 

radiometric features such as vehicle color, windshield color, 

and intensity of a car’s shadow area are successfully detected 

but main disadvantage is that, it detects only one vehicle at a 

time. 

Leitloff et al. [70] proposed model-based vehicle detection 

algorithm for parking lot aerial images. Algorithm 

successfully identifies vehicle in a parking lot based on the 

edge responses from the sides of a vehicle. The main 

disadvantage is that Performance degradation is found due to 

different camera angles. 

Yang et al., [71] proposed unsupervised method based on 

multi-thresholding concept. The threshold is selected based on 

discriminant criterion moments in gray levels. The algorithm 
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utilizes zeroth and first order cumulative moments. 

Segmentation accuracy is validated with ground truth 

information [72].  

Table 5: Comparison of Algorithms on Object-Oriented Classification 

Sl.no. Work   Algorithm Advantages Disadvantages 
       

1. 
Karouiu et al.,[69], 

2014 
RD  based  3-D 

model 

Accurate automatic 
Detection of  vehicle 

on road 

Detects only one vehicle at a 
time 

2. 
leitloffet al.,[70], 

2013 

Model based 
Vehicle detection 

algorithm 
End to End analysis Performance degradation 

3. 
otsu et al.,[73], 

2014 
Bimodal 

thresholding 
Accurate boundary 

description 
Less efficiency 

4. 
Sziranyi 

et al.,  [76], 2015 
Gamma map filter 

Identifies changes 
in temporal data 

Less efficiency 

        

        

 

Otsuet et al., [73] developed a semi-automatic image 

segmentation tool, which combines manual segmentation with 

novel automatic image segmentation algorithm. Manual 

segmentation is based on dropping control points and fitting 

cubic splines. Automatic segmentation is based on bimodal 

thresholding. By combining these two segmentation methods, 

accurate boundary descriptions are obtained with much less 

effort but it less efficient as there is more manual 

interpretation. 

Moser et al.,[74] proposed unsupervised hierarchical image 

set clustering based on discrete and continuous image models. 

The continuous image modeling is based on a mixture of 

Gaussian densities and discrete image modeling is based on 

information-theoretic principle and the information bottleneck 

principle. Images are clustered such that the mutual 

information between the clusters and the image content is 

maximally preserved, which result in efficient image search 

and retrieval. Detecting geographical changes over a given 

area and generation of Digital Elevation Model (DEM) is the 

extended process after image classification. 

Baraldi et al., [75] proposed change detection algorithm on 

multi-temporal SAR image to monitor the changes occur over 

annual cycle, based on thresholding of the cumulative 

histogram. to reduce the speckle noise 5/5 mean filter is used. 

Proposed method shows accurate change detection result and 

is validated with ground truth information. 

Sziranyi et al., [76] proposed a method to identify changes in 

temporal data based on block averaging, Gamma MAP filter 

and image segmentation.  Changes are identified based on log 

ratio thresholding method. The main disadvantage is that the 

efficiency is low as they use manual thresholding to perform 

segmentation [77]. 

Berthier et al.,[78] proposed multilayer fusion model for 

adaptive segmentation and detecting changes in terrestrial 

areas of optical remote sensing image series. The method 

applies unsupervised or partly supervised clustering on a 

fused-image series by using cross-layer similarity measure, 

followed by multilayer Markov random field segmentation. 

The resulting label map is applied for the automatic training 

of single layers. After the segmentation of each single layer 

separately, changes are detected between single label maps. 

The significant benefit of the proposed method is numerically 

validated on remotely sensed image series with ground-truth 

data [79]. 

Jaehong et al.,[80] proposed a method to detect and 

investigate of 3-D terrain changes using Digital Elevation 

Models (DEMs). Stereoscopic push broom is applied to 

measure the ground deformation generated by a swarm of 

earthquakes. The algorithm successfully detects the horizontal 

displacements and DEM differences with about 0.1-pixel 

accuracy. 

Guoying et al.,[81] proposed a method for quick assessing 

large-scale DEM landslides from high resolution SPOT-5 

image. The main application of proposed method is that, it is 

used for damage assessments in terms of depth and volume of 

larg-scale landslides.  

The semantic segmentation and contextual properties of 

different classes [82] automatically performs segmentation 

and classification of urban land cover type of the city of 

Rostock Germany, QuickBird-image and LiDAR data. K-

coefficient is more compared to CTF, TF, MRF, and SVM. 

The classification accuracy and efficiency is high. However it 

cannot utilize multiple HLC maps or multiple historical 

remotely sensed images at the same time. The comparison of 

different object-oriented classification algorithms are listed in 

table VI. 

6.  APPLICATIONS 
The main applications of remote sensing includes Agriculture, 

Forestry, Geology, Hydrology, Sea ice, land cover Mapping, 

Oceans and Coastal [83]. 

6.1 Agriculture 
To examine the health of crops, airborne images are used. It 

also includes monitoring farming practices [84]. 

6.2 Forestry 
Forestry applications of remote sensing include environmental 

monitoring, commercial forestry and survey mapping To meet 

the objectives set by national forest and environmental 

departments, remote sensing is used. It includes updating 

forest cover, measuring biophysical characteristics.  

Commercial forestry applications such as monitoring 

vegetation density and measuring biomass parameters. It also 

includes monitoring forests health, quantity and diversity [85]. 

6.3 Geology 
Remote sensing is a basic tool for mapping geological 

features such as Structural mapping, lithological mapping and 
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rock mapping. It is also used to extract the information about 

land surface and it composition. 

6.4 Hydrology 
The active sensing capabilities of Radar imaging helps in 

hydrological studies. It includes mapping drainage basin, 

flood mapping and modeling of watershed and irrigation. It 

also provides us to estimate soil moisture content, snow 

thickness and equivalency of snow-water [86]. 

6.5 Sea Ice 
Remote sensing data helps to track huge navigable cracks in 

the sea. It can be used to estimate the concentrate if ice, ice 

type, age, motion, ice-berge detection and tracking these 

parameters help in meteorological and global change research. 

6.6 Land Cover and Land Use 
Remote sensing techniques allows mapping of land use and 

land cover of earth’s surface. A prior knowledge of land use 

and land cover helps in managing natural resources, 

protecting wildlife, monitoring agriculture and urban activities 

[87]. 

6.7 Mapping 
Radar data is used for mapping which is a basic information 

for all remote sensing applications. It mainly includes Digital 

Elevation Model (DEM’s) which gives the slope information 

of earth’s surface and topographic mapping or thematic 

mapping. 

6.8 Oceans and Coastal Mapping 
The dynamic changes in the ocean and coastal region can be 

monitored and mapped using remote sensing techniques that 

mainly includes storm forecasting and ocean pattern 

recognition [88]. 

7. REMOTE SENSING IMAGE 

ANALYSIS TOOLS 

7.1 GRASS 
Geographic Resources Analysis Support System (GRASS) is 

used to perform 

(i) Image Classification (ii) Radiometric Corrections (iii) 

Principle Component Analysis (iv) Edge Detection (v) 3D 

analysis (vi) Geo-statistical analysis (v) Filtering options. 

Another important feature of GRASS is the LiDAR 

processing and analysis. It provides to filter LiDAR points 

and to generate DEMs [89]. 

7.2  PolSARPro 
This software mainly handles SAR data (TerraSARX, ALOS-

PALSAR, ENVISAT-ASAR and RADARSAT-2). 

PolSARPro is used to perform (i) Conversion (ii) Importing 

(iii) Decompositions (iv) Filtering (v) InSAR processing and 

calibration. Another important feature of this software is the 

graph processing framework and provides automate workflow 

[90]. 

7.3 ArcGIS 
ArcGIS is a Geographic Information System (GIS) for 

working with maps and geographic information. 

ArcGIS is used to perform (i) Mapping (ii) Analyzing mapped 

information (iii) Compiling geographic data (iv)Managing 

geographic information in a database (v) compiling 

geographic data [91]. 

 

7.4 QGIS: Quantum GIS 
QGIS is open source GIS software available for free. 

QGIS is used to perform 

(i) Analyze spatial data (ii) Visualize Spatial data (iii) 

Interpret and understand spatial data (iv) Map algebra (v) 

Hydrologic modeling (vi) Surface interpolation and slope 

analysis. Plugins are the important features of QGIS [92][93]. 

7.5 ERDAS IMAGINE 
ERDAS IMAGINE is a raster-based software package. It is 

designed mainly to extract information from imagery. ERDAS 

IMAGINE is used to perform (i) Image Ortho-rectification (ii) 

Re-projection (iii) classification and interpretation (iv) 

Mosaicking. The important feature is, it provides user to to 

analyze image data and present it in formats ranging from 

printed maps to 3D models [94]. 
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