
International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

34

A Detail Survey on Various Aspects of SQLIA

Sudhakar Choudhary
Student

SISTech-E
Bhopal, MP, India

Arvind Kumar Jain
Assistant Professor

SISTech-E
Bhopal, MP, India

Anil Kumar
M.Tech

IIIT, Allahabad
UP, India

ABSTRACT

While using internet for proposing online services is

increasing every day, security threats in the web also

increased dramatically. One of the most serious and

dangerous web application vulnerabilities is SQL injection.

SQL injection attack took place by inserting a portion of

malicious SQL query through a non-validated input from the

user into the legitimate query statement. Consequently

database management system will execute these commands

and it leads to SQL injection. A successful SQL injection

attack interfere Confidentiality, Integrity and availability of

information in the database. Based on the statistical researches

this type of attack had a high impact on business. Finding the

proper solution to stop or mitigate the SQL injection is

necessary. To address this problem security researchers

introduce different techniques to develop secure codes,

prevent SQL injection attacks and detect them. In this paper

the authors present a comprehensive review of different types

of SQL injection and various aspects related to SQL injection

attacks. Such a structural classification would further help

other researchers to choose the right technique for the further

studies.

Keywords

Web Application Vulnerability, SQL Injection Types, SQL

Injection.

1. INTRODUCTION
Information is the most important business asset today and

achieving an appropriate level of information security can be

viewed as essential requirement. SQL Injection Attacks

(SQLIAs) are one of the topmost threats for web application

security and SQL injections are one of the most serious

vulnerability types. They are easy to detect and exploit; that is

why SQLIAs are frequently employed by malicious users for

different reasons, e.g. financial fraud, theft confidential data,

deface website, sabotage, espionage, cyber terrorism, or

simply for fun. Structured Query Language injection is a code

injection technique that used to attack database driven web

application. In this attack the attacker inserts a portion of SQL

statement via not sanitized user input parameters into the

original SQL query and passes them to database server. Based

on Open Web Application Security Project (OWASP) studies,

SQL injection has the first position in the top 10 list of web

application vulnerabilities [2]. The targets of these attacks are

not only limited to the web application but they also can hits

desktop applications which their databases are powered by

SQL. The amount of financial losses in result of SQL

Injection was enormous, therefore finding a solution to stop

SQL Injection attacks is necessary. Attackers may insert the

malicious query via a web form or directly by appending the

malicious query to the end of the URL in the address bar of

browser.

In a more unusual way of attack, attacker might try to inject

the malicious variable through HTTP headers. For instance

when the web application have a module that record the

statistic related to the users activities such as users IP address,

browser type and language. Basically these data will fetch

from the HTTP header which comes from the user browser

and it will be stored inside the database for further analysis or

drawing charts. Changing the HTTP headers is very simple by

using specific programs which are designed for this goal or

headers add-ons in browsers.

There must be some rules that one should be incorporated in

every website to make it secure from SQL injections. Many

Web applications can be exploited because the user input is

being processed in an unsafe manner. All the data provided by

a user must be treated as untrustworthy. One of the key

requirements for a Web application‟s security is the proper

user input handling, which is not always an easy task. To

propose the classification the inputs based on probability and

use of character as a vulnerability that helps to identify in

SQL detection process. Proper neutralization of such special

characters used in an SQL command to avoid the SQL

injection.

2. CONSEQUENCES AND ATTACK

INTENTIONS
With SQL injection, cyber criminals can take complete

remote control of the database, with the consequences that

they can become able to manipulate the database to do

anything they want to, including:

1. Shut down or Delete a database.

2. Upload or Download files.

3. Through reverse lookup, gather IP addresses and attack

those computers with an injection attack.

4. Corrupting, deleting or changing files and interact with

the OS, reading and writing files.

5. Online shoplifting e.g. changing the price of a product or

service, so that the cost is negligible or free.

6. Insert a bogus name and credit card in to a system to

scam it at a later date.

When a threat agent utilizes a crafted malicious SQL input to

launch an attack, the attack intention is the goal that the threat

agent tries to achieve once the attack has been successfully

executed. Some of intensions are:

Identifying inject-able parameters, Performing database,

finger-printing, Bypassing Authentication, Determining

database schema, Adding or modifying data, Extracting data

and Executing remote commands, Evading detection and

Performing denial of services.

3. INPUT VALIDATION BASED

VULNERABILITY
The most prominent class of input validation errors are SQL

injections. SQL injections are the classes of vulnerabilities in

which an attacker causes the web application server to

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

35

produce HTML documents and database queries, respectively,

that the application programmer did not intend. In that sense,

SQL injections are integrity violations in which low-integrity

data is used in a high-integrity channel; that is, the browser or

the database executes code from an un-trusted user, but does

so with the permissions of the application server.

Figure 2.1: How malicious inputs is injected

Figure 2.1 shows how a SQL injection attack occurs. In that

figure, it can be seen that malicious code is injected in input

textbox. In place of User-id attacker places „OR 1=1--‟ and

Password field left blank.

To highlight how ubiquitous web applications have become

and how prevalent their problems are, Figure-2.2 shows, for

each year from 2008 to 2016, the percentage of newly

reported security vulnerabilities in eight vulnerability classes:

Dos, Code Execution, XSS, SQL injection, buffer overflows,

Gain Information, Number of Exploits and directory

traversals. These were the eight most reported vulnerabilities

during these years. All of these except buffer overflows are

specific to web applications. Note that SQL injections are

consistently at or near the top: 9-10% of the reported

vulnerabilities during these years. Some web security analysts

speculate that because web applications are highly accessible

and databases often hold valuable information, the percentage

of SQL injection attacks being executed is significantly higher

than the percentage of reported vulnerabilities would suggest.

Figure 2.2: Most Inflenced Vulnerabilities

A report says [4], in 2008, SQL Injection was on its peak with

14-16%. In 2008, SQL injection replaced cross-site scripting

as the predominant Web application vulnerability. In fact, the

overall increase of 2008 Web application vulnerabilities can

be attributed to a huge spike in SQL injection vulnerabilities,

which was up a staggering 134 percent from 2007.

Figure 2.3: Number Of SQL Injection Attacks

Figure 2.3 shows the number of attacks of SQL injection from

January 2000 to May 2016, and one can see the increment of

number of attacks in 2008.

4. TYPES OF SQL INJECTION
In this section, the authors discussed about the various types

of SQL Injection Attacks. Among various types, some are

frequently used by the attackers. Hence, in this section, the

authors present an in-depth look at some of the most common

SQL Injection Attacks. The authors explain each of these

major attacks with simple examples. SQL injection attacks are

classified under seven main categories.

4.1 Tautology
SQL injection codes are injected into one or more conditional

statements so that they always evaluate to true. The most

common usages are to bypass authentication pages and extract

data. In this type of injection, an attacker exploits an inject-

table field that is used in a query‟s WHERE clause.

Transforming the conditional condition into a tautology

causes all of the rows in the database table targeted by the

query to be returned. Typically, the attack is successful when

the code either displays all of the returned records or performs

some action if at least one record is returned.

SELECT * FROM Employee WHERE EmpName= „or1=1--‟

AND EmpPwd= „‟

In the above example, the code injected in the condition

OR1=1 transforms the entire WHERE clause into a tautology.

The database uses the conditional as the basis for evaluating

each row and deciding which ones to return to the application.

Because the conditional is a tautology, the query evaluates to

true for each row in the table and returns all of them. After

injecting code into a particular field, legitimate code that

follows are nullified through usage of end of line comments.

4.2 Logically Incorrect Query
This attack lets attacker gather important information about

the type and structure of the back-end database of a Web

application. The attack is considered as an information

gathering step for other attacks. The vulnerability leveraged

by this attack is that the default error page returned by

application servers is often overly descriptive. In fact, an error

messages is generated can often reveal vulnerable parameters

to an attacker. Additional error information, originally

intended to help programmers to debug their applications.

When performing this attack, an attacker tries to inject

statements that cause a syntax, type conversion, or logical

error into the database. Syntax errors can be used to identify

inject-able parameters. Type errors can be used to deduce the

data types of certain columns or to extract data. Logical errors

often reveal the names of the tables and columns that caused

0
1000
2000
3000

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

o

f
vu

ln
e

ra
b

le
 a

tt
ac

ks

Most Influenced Vulnerabilities
between January 2008 to May

2016

DoS

Code
Execution

2 7 41 49 148

604

967

706

1101

963

520

294

242
155

304 213 30
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

36

the error.

http://www.wShop.com/Items/Items.aspx?ItemId=123 UNION

SELECT TOP 1 COLUMN_NAME FROM

INFORMATION_SCHEMA.COLUMNS WHERE

TABLE_NAME='admin'--

The injected query extracts the 1st column name of

adminlogin table from the INFORMATION_SCHEMA

database. The query then converts the table name into an

integer but this is not a legal type conversion, the database

throws an error. For Microsoft SQL Server, the error would

be:

Microsoft OLEDB Provider for ODBC Drivers error

„80040e07‟ [Microsoft][ODBC SQL Server Driver][SQL

Server]Syntax error converting the nvarchar value “AdminId'

to a column of data type int./index.asp, line 5.

There are two useful pieces of information in this message.

First, the attacker can see that the database is an SQL Server

database, as the error message explicitly states this fact.

Second, the error message reveals the value of the string that

caused the type conversion to occur. In this case, this value is

also the name of the first column name of admin table in the

database: AdminId. A similar strategy can be used to

systematically extract the name and type of each column in

the database.

4.3 Union Query
In union-query attacks, an attacker exploits a vulnerable

parameter to change the data set returned for a given query.

With this technique, an attacker can trick the application into

returning data from a table different from the one that was

intended by the developer. Because the attackers completely

control the second injected query, they can use that query to

retrieve information from a specified table. The result of this

attack is that the database returns a dataset that is the union of

the results of the original first query and the results of the

injected second query.

SELECT * FROM Employee WHERE EmpName= „‟ UNION

SELECT password from Customer where CustName= „abc‟--

AND CustPwd= „‟

Assuming that there is no login equal to „‟, the original first

query returns the null set, whereas the second query returns

data from the Customer table. In this case, the database would

return column password for name „abc‟. The database takes

the results of these two queries, unions them, and returns them

to the application. In many applications, the effect of this

operation is that the value for CustPwd is displayed along

with the user information.

4.4 Piggy-backed Query
In this attack type, an attacker tries to inject additional queries

into the original query. This query is different from others

because, in this case, attackers are not trying to modify the

original intended query; instead, they are trying to include

new and distinct queries that piggy-backed to the original

query. As a result, the database receives multiple SQL

queries. The first is the intended query which is executed as

normal; the subsequent ones are the injected queries, which

are executed in addition to the first. This type of attack can be

extremely harmful. If successful, attackers can insert virtually

any type of SQL command, including stored procedures.

Vulnerability to this type of attack is often dependent on

having a database configuration that allows multiple

statements to be contained in a single string.

SELECT * FROM Employee WHERE EmpName= „doe‟ AND

EmpPwd= „‟; drop table Employee -- ‟

After completing the first query, the database would recognize

the query delimiter “;” and execute the injected second query.

The result of executing the second query would be to drop

table users.

4.5 System Stored Procedure
SQLIAs of this type try to execute stored procedures present

in the database. Today, most database vendors develop

databases with a standard set of stored procedures that extend

the functionality of the database and allow for interaction with

the operating system. Therefore, once an attacker determines

which backend database is in use, SQLIAs can be crafted to

execute stored procedures provided by that specific database,

including procedures that interact with the operating system.

CREATE PROCEDURE DBO.isAuthenticated

@EmpName varchar2, @EmpPwd varchar2, @EmpPin int

AS

EXEC ("SELECT * FROM Employee WHERE

EName = „" +@ EmpName + "‟ and

EPwd = „" +@ EmpPwd + "‟ and

EPin = „" +@ EmpPin "‟”);

GO

This example demonstrates how a parameterized stored

procedure can be exploited via an SQLIA. In the example, it

is assume that the query string constructed in this example has

been replaced by a call to the stored procedure defined above.

The stored procedure returns a true/false value to indicate

whether the user is authenticated or not. To launch an SQLIA,

the attacker simply injects „; SHUTDOWN; -- into either the

login or pass fields. This injection causes the stored procedure

to generate the following query:

SELECT * FROM Employee WHERE EName = „doe‟ AND

EPwd = „‟; SHUTDOWN; --

At this point, this attack works like a piggy-back attack. The

first query is executed normally, and then the second,

malicious query is executed, which results in a database shut

down. This example shows that stored procedures can be

vulnerable to the same range of attacks as traditional

application code.

4.6 Inference
In this attack, the query is modified to recast it in the form of

an action that is executed based on the answer to a true/false

question about data values in the database. In this type of

injection, attackers are generally trying to attack a site that has

been secured enough so that, when an injection has

succeeded, there is no useful feedback via database error

messages. Since database error messages are unavailable to

provide the attacker with feedback, attackers must use a

different method of obtaining a response from the database. In

this situation, the attacker injects commands into the site and

then observes how the function of the website changes. By

carefully noting when the site behaves the same and when its

behavior changes, the attacker can deduce not only whether

certain parameters are vulnerable, but also additional

information about the values in the database. There are two

well known attack techniques that are based on inference.

They allow an attacker to extract data from a database and

detect vulnerable parameters.

(1) Blind Injection: In this technique, the information must be

inferred from the behavior of the page by asking the server

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

37

true/false questions. If the injected statement evaluates to true,

the site continues to function normally. If the statement

evaluates to false, although there is no descriptive error

message, the page differs significantly from the normally-

functioning page.

(2) Timing Attacks: A timing attack allows an attacker to gain

information from a database by observing timing delays in the

response of the database. This attack is very similar to blind

injection, but uses a different method of inference. To perform

a timing attack, attackers structure their injected query in the

form of an if-then statement, whose branch predicate

corresponds to an unknown about the contents of the database.

Along one of the branches, the attacker uses a SQL construct

that takes a known amount of time to execute, (e.g. the

WAITFOR keyword, which causes the database to delay its

response by a specified time). By measuring the increase or

decrease in response time of the database, the attacker can

infer which branch was taken in his injection and therefore the

answer to the injected question.

Example: Using the code, the authors illustrate two ways in

which Inference based attacks can be used. The first of these

is identifying inject-able parameters using blind injection.

Consider two possible injections into the login field. The first

being

[legalUser‟ and 1=0 - -] and the second,

[legalUser‟ and 1=1 - -].

These injections result in the following two queries:

SELECT * FROM Employee WHERE EmpName= „abc‟ and

1=0 --‟ AND EmpPwd = „‟

SELECT * FROM Employee WHERE EmpName =„abc‟ and

1=1 --‟ AND EmpPwd =‟‟

In the first scenario, it is a secure application, and the input for

login is validated correctly. In this case, both injections would

return login error messages, and the attacker would know that

the login parameter is not vulnerable. In the second scenario,

the query is an insecure application and the login parameter is

vulnerable to injection. The attacker submits the first injection

and, because it always evaluates to false, the application

returns a login error message. At this point however, the

attacker does not know if this is because the application

validated the input correctly and blocked the attack attempt or

because the attack itself caused the login error. The attacker

then submits the second query, which always evaluates to

true. If in this case there is no login error message, then the

attacker knows that the attack went through and that the login

parameter is vulnerable to injection.

The second way inference based attacks can be used is to

perform data extraction. Here example illustrates how to use

timing based inference attack to extract a table name from the

database. In this attack, the following is injected into the login

parameter:

[„abc‟ and ASCII (SUBSTRING ((select top 1 name from

sysobjects), 1, 1)) > X WAITFOR 5 –„].

This produces the following query:

SELECT * FROM Employee WHERE EmpName = „abc‟ and

ASCII (SUBSTRING ((select top 1 name from sysobjects), 1,

1)) > X WAITFOR 5 --‟ AND EmpPwd = „‟

In this attack the SUBSTRING function is used to extract the

first character of the first table‟s name. Using a binary search

strategy, the attacker can then ask a series of questions about

this character. In this case, the attacker is asking if the ASCII

value of the character is greater-than or less-than or equal-to

the value of X. If the value is greater, the attacker knows this

by observing an additional 5 second delay in the response of

the database. The attacker can then use a binary search by

varying the value of X to identify the value of the first

character.

4.7 Alternate Encodings
This attack type is used in conjunction with other attacks. In

other words, alternate encodings do not provide any unique

way to attack an application. These evasion techniques are

often necessary because a common defensive coding practice

is to scan for certain known “bad characters,” such as single

quotes and comment. To evade this defense, attackers have

employed alternate methods of encoding their attack strings

(e.g., using hexadecimal, ASCII, and Unicode character

encoding). Different layers in an application have different

ways of handling alternate encodings. The application may

scan for certain types of escape characters that represent

alternate encodings in its language domain. Another layer

(e.g., the database) may use different escape characters or

even completely different ways of encoding.

For example, a database could use the expression char (120)

to represent an alternately-encoded character “x”, but char

(120) has no special meaning in the application language‟s

context. An effective code-based defense against alternate

encodings is difficult to implement in practice because it

requires developers to consider of all of the possible

encodings that could affect a given query string as it passes

through the different application layers. Therefore, attackers

have been very successful in using alternate encodings to

conceal their attack strings.

Example: Because every type of attack could be represented

using an alternate encoding, here the authors simply provide

an example of how esoteric an alternatively-encoded attack

could appear. In this attack, the following text is injected into

the login field:

abc‟; exec (0x73687574646f776e)--.

The resulting query generated by the application is:

SELECT * FROM Employee WHERE EmpName= „abc‟; exec

(char (0x73687574646f776e)) -- AND EmpPwd= „‟

This example makes use of the char () function and of ASCII

hexadecimal encoding. The char () function takes as a

parameter an integer or hexadecimal encoding of a character

and returns an instance of that character. The stream of

numbers in the second part of the injection is the ASCII

hexadecimal encoding of the string “SHUTDOWN”.

Therefore, when the query is interpreted by the database, it

would result in the execution, by the database, of the

SHUTDOWN command.

5. EVATION TECHNIQUES
Evasion techniques are techniques that employed in an attack

to avoid detection by signature-based detection system. In the

context of SQL injection detection, a signature is the pattern

of known attack strings. SQL injection attack occurs when

input string changes the intended syntactical structure of SQL

statement. Signature-based detection systems build a database

of attack signatures, and then examine input strings against

the signature database at runtime in detection of attacks.

Evasion techniques obscure input strings, making look

different but yielding the same results when executed by a

database server.

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

38

5.1 Sophisticated Matches
One of the most famous signatures used by such mechanisms

is some sort of variant of OR 1=1 attack. Sophisticated

matches evasion technique uses alternative expression of “OR

1=1”.

OR ‟Unusual”=‟Unusual”,

OR ‟Simple”= ‟Sim”+‟ple”,

“OR 2 > 1”

All have the same effect as “OR 1=1”.

5.2 Hex Encodings
This technique uses hexadecimal encoding to represent a

string. For example, the string SELECT can be represented by

the hexadecimal number 0x73656c656374, which most likely

will not be detected by a signature protection mechanism. See

the example given below which shows the content of

c:\boot.ini

SELECT LOAD_FILE (0x633A5C626F6F742E696E69)

5.3 Char Encodings
This technique uses build-in CHAR function to represent a

character, which make it very difficult for detection system to

build a signature that match it.

“SELECT” can be represented as

char (73) + char (65) + “LECT”

5.4 In-Line Comment
This technique complicates input strings by inserting in-line

comments between SQL keywords. One can escape detection

from signatures that expect white space between SQL

keywords.

/**/UNION/**/SELECT/**/

5.5 Remove White Space
This technique complicates input strings by dropping white

space between SQL keyword and string or number literals.

OR ‟Simple”=‟Simple” works exactly the same way as

OR‟Simple” = ‟Simple”,

But has no spaces in it, make it capable of evading any spaces

based signature.

5.6 Break Words
In MySQL, the in-line comments would not work as space.

The in-line comments can be used in MySQL to break words

in the middle,

UN/**/ION/**/ SE/**/LECT/**/ is evaluated as

UNION SELECT.

6. COUNTERMEASURES
There are a number of ways a programmer/system

administrator can prevent or counter attacks made on their

systems. Although these techniques remain the best way to

prevent SQL injection vulnerabilities, but their application is

problematic in practice. These techniques are prone to human

error and are not as rigorously and completely applied as

automated techniques. While most developers do make an

effort to code safely, it is extremely difficult to apply

defensive coding practices rigorously and correctly to all

sources of input. In fact, many of the SQL injection

vulnerabilities discovered in real applications are due to

human errors: developers forgot to add checks or did not

perform adequate input validation.

6.1 Parameterized Query
Parameterized query is parameterized database access API

provided by development platform such as PrepareStatement

in Java or SQLParameter in .NET. Instead of composing SQL

by concatenating string, each parameter in a SQL query is

declared using place holder and input is provided separately.

6.2 Least Privilege
The account that an application uses to access the database

should have only the minimum permissions necessary to

access the objects that it needs to use. Use a different database

account for a task that requires a different level of privilege.

6.3 Customized Error Message
Threat agents may gain access to knowledge through overly

informative error messages, yet completely removing error

messages makes debugging a difficult task. Customized error

messages hinder the reconnaissance progress of threat agents,

particularly in deducing specific details such as inject-able

parameters, etc.

6.4 System Stored Procedure Reduction
Once a threat agent gains knowledge of which back-end

server is used, he/she has knowledge of an entire set of system

stored procedures that are available. By limiting the system

stored procedures one can execute on a server, especially the

processes that are not used, one can reduce or even eliminate

vulnerabilities that may arise from these stored procedures.

6.5 SQL Keyword Escaping
Escape specific SQL keyword or delimiter in the input string

like semicolon, double dash, single quote etc.

6.6 Input Variable Length Checking
By checking for input variable length, malicious code strings

beyond certain length limits will not be applicable. Even if the

length limitation is long enough to fit a few additional queries,

the inability to input an infinitely long string disables the

threat agent from employing evasion techniques such as

encoding, and consequently, allows signature based detection

mechanisms to intercept simple attacks.

7. CONCLUSION AND FUTURE WORK
Though many approaches and frameworks have been

identified and implemented in many interactive Web

applications, security still remains a major issue. It would be

difficult to give a clear verdict which scheme or approach is

the best as each one has some proven benefits for specific

types of settings or systems. SQL Injection prevails as one of

the top-5 vulnerabilities and threat to online businesses

targeting the backend databases. In this paper, the authors

have reviewed the most popular existing SQL Injections

related issues.

As a future work, the authors would like to develop a

countermeasure that can efficiently tackle the innovative SQL

Injection attacks and fix as much vulnerability as possible.

Hackers are in reality very innovative and as the time is

passing by, new attacks are being launched that may need new

ways of thinking about the solutions currently have at our

hands. A strong countermeasure can remove or at least block

all the available vulnerabilities in a system and thus it could

protect it against various types of attacks that take advantage

of the vulnerabilities.

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

39

8. REFERENCES
[1] Wikipedia, “information security”

http://en.wikipedia.org/wiki/Information_security

[2] (OWASP), “O.W.A.S.P. Top 10 Vulnerabilities.”;

Available

from:https://www.owasp.org/index.php/Top_10 2013

[3] Wikipedia, “web application”,

http://en.wikipedia.org/wiki/Web_application

[4] https://www.cvedetails.com/vulnerabilities-by-types.php

[5] Wikipedia, “SQL injection”

http://en.wikipedia.org/wiki/SQL_injection

[6] secerno.com,” SQL Injection Attack: A Security

Threat”,http://www.secerno.com/?pg=SQL-Injection#2

[7] IBM, IBM Internet Security SystemsX-Force 2008 Trend

& Risk Report, Jan

2009,http://www935.ibm.com/services/us/iss/xforce/tren

dreports/xforce-2008-annual-report.pdf

[8] W. Halfond, J. Viegas, and A. Orso. A Classification of

SQL-Injection Attacks and Countermeasures.

Proceedings of the IEEE International Symposium on

Secure Software Engineering (ISSSE), 2006.

[9] Stephen Thomas, Laurie Williams. Using Automated Fix

Generation to Secure SQL Statements. Third

International Workshop on Software Engineering for

Secure Systems (SESS'07), pages 9-9,May 2007.

[10] G. Wassermann and Z. Su. An Analysis Framework for

Security in Web Applications. In Proceedings of the FSE

Workshop on Specification and Verification of

Component-Based Systems (SAVCBS), pages 70–78,

2004.

[11] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based

Approach to the Detection of SQL Attacks. In

Proceedings of the Conference on Detection of

Intrusions and Malware and Vulnerability Assessment

(DIMVA), pages 123–140, 2005.

[12] S. Boyd and A. Keromytis. SQLrand: Preventing SQL

injection attacks. In Proceedings of the Applied

Cryptography and Network Security (ACNS), pages

292–304, 2004.

[13] T. Pietraszek and C. Vanden Berghe. Defending against

Injection Attacks through Context-Sensitive String

Evaluation. In Proceedings of the 8th International

Symposium on Recent Advances in Intrusion Detection

(RAID), pages 124–145, 2005.

[14] Z. Su and G. Wassermann. The Essence of Command

Injection Attacks in Web Applications. Annual

Symposium on Principles of Programming Languages

(POPL), pages 372–382, 2006.

[15] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, "Using

Parse Tree Validation to Prevent SQL Injection Attacks,"

5th International Workshop on Software Engineering and

Middleware, pages 106-113, 2005

[16] W. Halfond and A. Orso. AMNESIA: Analysis and

Monitoring for NEutralizing SQLInjection Attacks. In

Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

pages 174–183, 2005.

[17] William G.J. Halfond and Alessandro Orso. Preventing

SQL Injection Attacks Using AMNESIA. Proceedings of

the 28th international conference on Software

engineering. Pages 795-798, May 2006

[18] William G. J. Halfond, Alessandro Orso. Combining

Static Analysis & Runtime Monitoring to Counter SQL-

Injection Attacks. SIGSOFT Software Engineering Notes

Volume 30 Issue 4. July 2005.

IJCATM : www.ijcaonline.org

