
 International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

29

Refinding Data using Context based Memory Technique

Kajalekar S. J.
M. B. E. Society’s

College of Engineering,
Ambajogai, Maharashtra
College of Engineering,

Patil B. M.
M. B. E. Society’s

College of Engineering,
Ambajogai, Maharashtra

Chandode V. M.
M. B. E. Society’s

College of Engineering
Ambajogai, Maharashtra

ABSTRACT
Data retrieval is a major aspect of data mining. Many times

users need to access the information they have previously

come across, i.e. refinding the information. In this research,

ReFinder, which is a context based information refinding

system, is used. It uses natural recall characteristics of human

memory. By this, users can refind files and web pages

according to their previously accessed context. A query by

context model is built over a context memory snapshot. These

instances are organized in a clustered and associated manner

and evolve in life cycles just like the human brain. An eight

weeks study was observed and time, place and activity were

found to be useful recall clues. Experimental results show that

the technique of associative clustering leads to best precision

and recall. On average, 16.5 seconds are needed to complete a

refinding request against 86.32 seconds with other existing

methods. Future challenges like automatic annotation and

context degradation are also discussed.

Keywords
Information refinding, context memory, association based

clustering, decay

1. INTRODUCTION

1.1 Motivation
Computer and internet are becoming the basic needs for

human beings these days. It includes reading, writing and

collecting different kinds of information from these sources.

However, people tend to revisit the information that has been

come across intentionally or occasionally.

What makes refinding a tedious job is explosion in the amount

of personally accessed information. And sometimes it can

become as challenging as finding the information itself, even

though these two are different things. Information finding is

an uncertain process because users do not know enough

information, while refinding is a more directed process as

users have already seen the information before [1].

Maintaining access logs is a general way to support refinding

[2]. As logs grow with time, users prefer searching logs for

information which was accessed a long time ago. But there is

a major problem with logs, that because of human‟s dim

memory of the past [3], sometimes its difficult and time

consuming to refind by simply entering keywords of

previously accessed context.

Context can serve as a powerful cue for information recall

rather than detailed information content [4]. For example, it

may be hard to recall a person‟s name whom we met a year

ago, but time, place and surroundings leaves a deep impact,

which can serve as useful cue to remember that person.

Episodic memory enables humans to be consciously aware of

earlier experiences under context [5]. It stores episodes or

events together with their temporal-spatial relations.

Association and context are crucial in episodic memory. The

memory trace which is the central representation of to be

remembered event is a multidimensional collection of

elements, features and attributes.

2. LITERATURE SURVEY
Refinding is mainly useful in two aspects. Firstly, the web

search and secondly, personal information management

communities.

2.1 Web Search
There are multiple methods to organize web information for

reaccess and reuse. Typical of them involve bookmarks,

search engines etc.

MacKay et al. proposed „landmark‟ system [6]. It is an

extension to the traditional bookmarks. It is a user-directed

technique that helps users in returning to specific content

within a previously visited Web page. „Contextual Web

history tool‟ improves the visual appearance of the history. It

combines thumbnails of Web sites and snippets of contents.

By this, assisting users to easily browse or search the history

by time. Google‟s „Web history‟ stores users‟ search requests

and clicked pages. It then classifies them into different topics

such as images, news, and so on. Users can then navigate or

search accessed Web pages by keywords from page titles and

contents. The „SearchBar‟ [7] tool allows users to organize

their search keywords and clicked pages under different

topics. Users can make notes on the topics for easy

navigation. Teevan built „Re:Search‟ system supporting

simultaneous finding and refinding on the Web. When a

user‟s query is similar to a previous query, it obtains the

current results from an existing search engine, and fetches

relevant viewed results from its cache. The newly available

results are then merged with the previously viewed results to

create a list that supports intuitive refinding and contains new

information.

2.2 Personal Information Management
Dittrich and Salles [8] presented an „iMeMex‟ data model to

represent unstructured, semi structured, and structured

personal data inside a single model. Based on that, a system

was implemented offering some contextual information

(graph connections, time and lineage) on query results.

Dumais et al. developed a system called „Stuff I‟ve Seen‟ to

facilitate personal information reuse. It builds index for what a

person has seen, and uses some cues (e.g., file-type, access

date, and author) for filtering and sorting results. Cai et al.

developed a SEMEX system that enables users to browse

personal information by semantic associations created from

data items on one‟s desktop. Chau et al. developed a system

which supports multilevel associative retrieval of desktop

information. Salles et al. presented association trails to define

associations among items in a data space. Chen et al. built a

desktop search system that exploits semantic associations

among files, mining from contents such as similar-to

relationship and users‟ such operations as jump-to, copy-from,

same-task, and so on. Soules and Ganger developed a file

 International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

30

search tool combining content-based search with temporal

relationships between files gathered from user‟s file

operations. Hailpern et al. presented a contextual history-

based search tool. It enables users to search relying on

temporal relationships (before, during, and after) between data

items.

3. CONTEXT MEMORY
Context memory is the backbone of ReFinder system, and it is

built as follows:

3.1 Framework of Context Memory
Human brain stores information which is repeatedly accessed

or too important to lose. And this is done by creating link

between multiple neurons. To mimic this feature, this

framework is divided into 2 parts, called as Short Term

Context Memory (SCM) and Long Term Context Memory

(LCM).

 Short-term Context Memory lasts for a short period

of time i.e. mere seconds. It has a limited capacity.

 Long-term Context Memory lasts as short as few

days or even decades. It is unlimited in capacity. It

is further divided into two memory units: permanent

and evolving. Evolving unit will eventually decay

but permanent unit will keep record of lifelong

accessing experiences.

 retrival

 lost

 Ø

Figure 1. Framework of context memory

Contextual information can be user related (like user name,

activity, agenda etc.) or external environment (like time, date,

place, surrounding people, etc.)[5]. If accessed information is

of interest to user, a linkage between access context instance

and information identifier is created. It is stored in

contextually accessed entity repository.

Information transition across the two memory units as

follows:

1. For an accessing event received by SCM, if the user

engages in “rote” rehearsal of it by storing the

information into the contextually accessed entity

repository, it will be transferred to LCM; otherwise,

it will be lost very quickly.

2. In LCM, if the access context is profound or

harmful to the user (e.g., dangerous disaster

situation), it will be stored in the permanent storage;

else in the evolving unit. Most effective accessing

events are memorized in the evolving unit due to the

infrequency of permanent cases in one‟s life.

3. Contextual information in the evolving unit will

decay gradually in life-cycles as time goes by.

4. When a context instance in LCM is recalled, it is

brought back to SCM to strengthen its freshness and

retention, thus slowing down the degradation.

3.2 Static Status of Context Memory
3.2.1 Contextual attribute and context
Access context is comprised of n contextual attributes (A1,

A2,..,An). Each contextual attribute domain forms an ordered

hierarchy of levels of abstraction. The hierarchy of context

attribute A is a lattice (H h) where H= (h1, h2,.., hs-1, All)of

s levels corresponding to the levelId (1, 2, . . . , s-1, s).

The edge linking two consecutive hierarchical levels hi and

hi+1 in H has a weight in [0, 1] to express the hierarchical

similarity between hi and hi+1. The attribute values at two

higher levels are more common and have less discrimination

than those at two lower levels, which means if level is high,

then similarity between two attributes at same level will be

low.

3.2.2 Context Instance
Context instance is represented as tuple C= (c1, c2, …., cn)

where ci is from domain of Ai. Therefore, context instance can

be defined as instantiation of its n contextual attributes.

4. CONTEXT BASED REFINDING
In this refinding technique, the context memory snapshot is

organized into a hierarchical, clustered and associated manner,

and evolves dynamically into life cycles.

4.1 Context based Refinding
A context-based refinding query can be denoted as a function

RF(Q;CM) = C1; C2; . . . ; Cm , where Q is the query

request formulated in the form of a context instance, CM is

the query target that is the context memory snapshot, and the

intermediate query result of Q upon CM is a ranked list of

context instances in CM, C1, C, . . . , Cm , whose ranking

is determined by a ranking function. There 3 ranking methods

taken into consideration, named as simple similarity, negative

dissimilarity and weighted similarity.

Short Term
Context Memory
Unit

Evolving
Unit

Permanent
Unit

Contextually Accessed
Entity Repository

Long Term Context Memory
Unit

Ø

 International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 12, March 2017

31

Figure 2. Architecture of Refinder

4.1.1 Context based refinding processing
Following is an approach making use of clusters and

association rules among context instances.

1. Firstly identification of an attribute value r for a

new cluster CC (Ai, r) is done. From set of

unclustered context instances in CM, the one whose

attribute value is at higher hierarchical level should

be found. Then it is taken as representative value r

of the cluster.

2. For each unclustered context instance C in CM,

firstly its attribute value is compared to r. If it is at

the same level or descendent of r (provided that

their similarity is greater than or equal to threshold)

then C is put into CC(Ai, r)

3. Repeat steps 1 and 2 until all instances in memory

are clustered.

4. For each contextual attribute and every value in its

hierarchy, an association chain Chain(Ai, v) is built.

It consists of all context instances within same

attribute value of Ai.

5. Association chains should be extended to include all

descendents based on contextual hierarchy and

obtain

EChain(Ai, v) so that every context instance belongs

to EChain(Ai, v) when (ci =v) or (Ci a v).

Given a query Q, check matching of each chained

context instance, starting from extended chain with

shortest length against other values requested in Q.

If there are association chains for context instances

within each cluster, irrelevant chains can be wiped

out.

The pseudo code of cluster association based refinding is as

follows:

Algorithm 1. Cluster-δ-Association-based Refinding [9]

Input: A context memory snapshot CM and query Q

Output: A ranked list of context instances L that match Q

1: Let CLUSTER-SET = {CL(A1), CL(A2),..CL(An) be a set

of cluster sets, where CL(Ai) = {CC(Ai, r1), CC(Ai,

r2),…CC(Ai, rs)} for every (1 ≤i ≤ n);

2: L =Ø;

3: Ai = SelectAtt(CLUSTER-SET, Q);

4: for each CC(Ai; rj) Є CL(Ai) do

5: if (rj = qi) ˅ (qi a rj ^ sim(Ai, qi, rj) ≥ δ)˅ (rj a qi) then

6: Ak= GetAssociationAtt(CC(Ai, rj));

7: EChainy(Ak; qk) = GetEChain(CC(Ai, rj); qk);

8: for each C Є EChain(Ak; qk) do

9: if (C = Q) ˅ (C Q) then

10: Add C to L;

11: L = Rank (L,Q);

12: return L;

32

5. IMPLEMENTATION OF REFINDER

SYSTEM

ReFinder is made up of four major components as shown in

fig.2 which include information access, information refind,

context memory management and a database of contextually

accessed file paths and URLs [9].

 Information access. This component facilitates users

to annotate their accessed interesting files/Web

pages with the access context.

 Information refind. This component accepts users‟

context-based refinding requests, and returns the

result files/Web pages.

 Context memory management. To process contex t

based information refinding requests, the core

context memory management component needs to

do a bundle of work related to the organization,

maintenance, degradation, reinforcement, and

matching (i.e., querying) of the personal context

memory.

 Database of contextually accessed file paths and

URLs. Each context instance in the context memory

links to the accessed files or Web pages, whose file

paths and URLs as well as the titles are kept in the

database of contextually accessed file paths and

URLs.

For making use of ReFinder, users have to create an account

and log in. Then they can annotate the files or sites of his

interest in the ReFinder system, along with access context.

ReFinder contains five contextual attributes, which are time,

date, activity, place, use (and extension for local files). Time

and date are automatically entered by the system. Users have

to manually enter other attributes. To refind previously

accessed local files or web pages, users request their queries

by indicating corresponding access context through UI. For

example, users can type time, place, activity, etc.

Users‟ inputs may not always be precise because of

degradation of human memory as time passes. In ReFinder

system, time and date are provided by the system, but other

information is user specified. ReFinder identifies closely

matching context units from context memory and returns

linked files or pages stored in personal linkage repository.

Demanded target sets should be in the result set and their size

should be minimum.

6. EVALUATION
Two performance measurements are adopted throughout the

experiments: refinding response time and refinding quality.

1. Refinding response time: Refinding response time is the

amount of time required by the system to produce results.

Fig. 3 shows response time for 100 refinding requests in

milliseconds. When users give more accurate

information (i.e. accurate context), the machine will take

less time to respond. Also. When user gives more

number of context dimensions, it means that system can

fetch the result using that.

Figure 3. Average response time on synthetic data for

n=1000

As shown in figure 3, when response time is taken into

consideration, it is more when less number of context

dimensions are selected. When user provides only one

context dimension, system needs 6 milliseconds of

response time. The time goes on decreasing with

increasing number of context dimensions. When 2

context dimensions are provided, response time is 4.5

milliseconds. When user provides 4 context dimensions,

response time reduces to 3.2 milliseconds.

2. Refinding Quality: It is based on refinding precision,

recall and F-measure, where num_of_true_results_being

_matched is the number of context instances which

satisfy refinding request. No_of_matched_results is the

result instances returned by system.

Precision= (num_of_true_results_being_matched)

 (No_of_matched_results) (1)

Recall= (num_of_true_results_being_matched)

 (No_of_true_results) (2)

 F-measure= 2. (Precision. Recall)

 (Precision+recall) (3)

Figure 4. Refinding quality with and without Refinder

In the experiment, 100 refinding activities with ReFinder and

100 without ReFinder were examined. The average precision,

6

4.5

3.5 3.2

0

1

2

3

4

5

6

7

1 2 3 4

In
 M

il
is

ec
o

n
d

s

No. of context dimensions

Consistency

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall F-measure

With
Refinder

Without
Refinder

33

recall and f-measure values with and without ReFinder are as

shown in table 1 and fig. 4. Precision without ReFinder is 0.

6051 and that with ReFinder is 0.7472. When it comes to

recall, ReFinder gives an excellent value of 0.97 as compared

to 0.9070 of that without ReFinder.

When Refinding files without ReFinder, the denominator is

the number of browsed folders through file explorer and in

case of web pages, the number of checked folders using

bookmarks.

Table 1. Precision, recall and F-measure values with and

Without ReFinder

 Precision Recall F-measure

With

ReFinder

0.747265

0.979592

0.847794

Without

ReFinder

0.605102

0.907041

0.725923

As shown in fig. 5, users needed 16.5 seconds to refind data

using ReFinder and 86.32 seconds without using ReFinder.

This included using bookmarks for web data and direct

searching for data on system.

Figure 5. Mean time with and without Refinder

7. FUTURE WORK AND CONCLUSION
ReFinder refinds information based on a query-by-context

model over a context memory snapshot. It links to the

accessed information contents. Context instances in the

memory snapshot are organized in a clustered and associated

way, and dynamically evolve by degradation and

reinforcement in life cycles.

Users access enormous web pages and files from their system.

Compared to this, the number of data to be re-found is very

less. Therefore it is uneconomical to store all the files in

context memory. Humans tend to forget information stored

long time ago. Using this phenomenon, degrading very old

access context shrinks the search space. For this purpose,

context degradation is done.

Results using ReFinder are better in both response time and

quality point of view as compared to traditional methods for

both web data and personal information management. Mean

time for ReFinder was 16.5 seconds, whilst that for other

methods (bookmarks and direct search) was found to be 86.52

seconds.

Values of precision, recall and F-measure are also better for

ReFinder as shown in table 1.

Even though ReFinder‟s results are encouraging, there is

scope for improvements in future work. Two of the issues are

discussed below:

 Automatic Annotation: In ReFinder, users need to

annotate the attributes manually but for many users

this is a bit annoying to stop their work and annotate

the information. To relieve users from this

distraction, system can annotate the attributes

according to users‟ history. The main challenge is to

let the system identify which of the access context

will be recalled later, according to users‟ interest.

Analysis of user‟s access behavior, access history,

accessed information, and user‟s activity could

support decision making.

 Context degradation: In ReFinder, for degradation

hierarchical approach is followed. But in reality,

user‟s memorized contextual information may not

decay strictly along such a hierarchy. There can be

different degradation process for different

information. Thus, the decay strategies for context

memory should consider the specific characteristics

of diverse contextual information.

8. REFERENCES
[1] R. Capra, M. Pinney, and M.A. Perez-Quinones,

“Refinding Is Not Finding Again,” technical report, Aug.

2005.

[2] S.K. Tyler and J. Teevan, “Large Scale Query Log

Analysis of ReFinding,” Proc. Third ACM Int‟l Conf.

Web Search and Data Mining (WSDM), 2010.

[3] J. Teevan, “The Re:Search Engine: Simultaneous

Support for Finding and Re-Finding,” Proc. 20th Ann.

ACMSymp.User Interface Software and Technology

[4] M. Lamming and M. Flynn, “„Forget-Me-Not‟-Intimate

Computing in Support of Human Memory,” Proc.

FRIEND21 Int‟l Symp. Next Generation Human

Interface, 1994.

[5] E. Tulving, “What is Episodic Memory?” Current

Directions in Psychological Science, vol. 2, no. 3, pp. 67-

70, 1993.

[6] B. MacKay, M. Kellar, and C. Watters, “An Evaluation

of Landmarks for Re-Finding Information on the Web,”

Proc. Extended Abstracts on Human Factors in

Computing Systems (CHI ‟05 EA), 2005.

[7] D. Morris, M.R. Morris, and G. Venolia, “Searchbar: A

Search- Centric Web History for Task Resumption and

Information Re-Finding,” Proc. SIGCHI Conf. Human

Factors in Computing Systems (CHI), 2008.

[8] J.P. Dittrich and M.A. Salles, “iDM: A Unified and

Versatile Data Model for Personal Dataspace

Management,” Proc. 32nd Int‟l Conf Very Large Data

Bases (VLDB), 2006.

[9] Deng et all, “ReFinder: A Context-Based Information

Refinding System”, IEEE Transactions on Knowledge

and Data Engineering, vol. 25, no.9, September 2013

16.5

86.32

0

20

40

60

80

100

Mean Time

With Refinder

Without Refinder

in
seconds

IJCATM : www.ijcaonline.org

