
International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 5, March 2017

9

Approaches for Enhancing Reliability of Software

Product

Yojna Arora
Department of Computer
Science & Engineering,

Amity School of Engineering &
Technology Amity University,

Haryana, India

ABSTRACT

In modern world, we are highly dependent upon computer for

most of our works. As we know, all computers are controlled

by software. So, to operate a computer in a proper manner,

software reliability is very necessary. Software Reliability is

the probability of failure-free software operation for a

specified period of time in a specified environment. The high

complexity of software is the major contributing factor of

Software Reliability problems. Various approaches can be

used to improve the reliability of software, however, it is hard

to balance development time and budget with software

reliability. For good reliability, two approaches have to be

used, namely, reactive and proactive approach. This paper

provides an overview of Software reliability, hardware

reliability, reactive and proactive approaches.

Keywords

Software, Reliability, Hardware, Product

1. INTRODUCTION
Computers and computer systems have become a significant

part of our modern society. It is virtually impossible to

conduct many day-to-day activities without the aid of

computer systems controlled by software. As more reliance is

placed on these software systems it is essential that they

operate in a reliable manner. Failure to do so can result in

high monetary, property or human loss. NASA Software

Assurance Standard, NASA-STD-8739.8, defines software

reliability as a discipline of software assurance that:

i. Defines the requirements for software controlled

system fault/failure detection, isolation, and

recovery.

ii. Reviews the software development processes and

products for software error prevention and/or

reduced functionality states.

iii. Defines the process for measuring and analyzing

defects and defines/derives the reliability and

maintainability factors.

2. RELIABILITY
Reliability means the extent to which a particular test or

experiment give same result when it is repeated again and

again. In the field of Commuter Science, reliability can be

classified as Hardware and Software :

2.1 Hardware Reliability
Hardware Reliability has a curve known as “bath tub” curve.

The bath tub is given below in fig 1.1.As shown in fig, there

are three phases in the life of any hardware component Burn

in, useful life and wear out phase. In burn-in phase, failure

rate is often quite high initially and it goes decreasing

gradually with time. It may be due to initially testing in the

premises of the organization. During useful life period, failure

rate is approx constant. Failure rate increases in wear out

phase due to aging of the components. The best period is

useful life period. The shape of this curve is like a “bath tub”

and that is why it is known bathtub curve.

Fig1.1 Bath Tub Curve Of Hardware Reliability

2.2 Software Reliability
We do not have wear out phase in software .The expected

curve for software is given below fig 1.2 .Software may be

retired only if it becomes obsolete. Some of the contributing

factors are given below:

i. Change in environment

ii. Change in technology

iii. Major change in requirements

iv. Increases in complexity

v. Extremely difficult to maintain

vi. Deterioration in structure of the code

vii. Slow execution of speed

viii. Poor graphical user interfaces

Fig1.2 Curve of Software Reliability (Failure Rate versus

Time)

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 5, March 2017

10

Software Reliability is the probability of failure-free software

operation for a specified period of time in a specified

environment. It differs from hardware reliability in that it

reflects the design perfection, rather than manufacturing

perfection. The high complexity of software is the major

problem in software reliability. Software reliability is not a

function of time, although researchers have come up with

models relating the two. Measurement in software is still in its

infancy. No good quantitative methods have been developed

to represent software reliability without excessive limitations.

Various approaches can be used to improve the reliability of

software, however, it is hard to balance development time and

budget with software reliability.

Software reliability is an important attribute of software

quality, together with functionality, usability, performance,

serviceability, capability, maintainability, and documentation.

Software reliability is hard to achieve, because the software

may be highly complex. While any system with a high degree

of complexity, including software, will be hard to reach a

certain level of reliability, system developers tend to push

complexity into the software layer, with the rapid growth of

system size and ease of doing so by upgrading the software.

 A partial list of distinct characteristics of software compared

to hardware is listed below:

i. Failure cause: Software defects are mainly design

defects.

ii. Wear-out: Software does not have energy related

wear-out phase. Errors can occur without warning.

iii. Repairable system concept: Periodic restarts can

help fix software problems.

iv. Time dependency and life cycle: Software

reliability is not a function of operational time.

v. Environmental factors: Do not affect Software

reliability, except it might affect program inputs.

vi. Reliability prediction: Software reliability can‟t be

predicted from any physical basis, since it depends

entirely on human factors in design.

vii. Redundancy: Cannot improve software reliability if

the same software components are used.

viii. Interfaces: Software interfaces are purely

conceptual other than visual.

ix. Failure rate motivators: Usually not predictable

from analysis of separate statements.

3. APPROACHES FOR SOFTWARE

REIABILITY
Software industry is now in the recession period. But it is

growing all over the world slowly. The main objectives of the

software industry are towards the optimization of the software

reliability. The combination of the reactive approach with the

proactive approach makes the software quite more reliable.

These two approaches are the great achievement in making

the software reliable.

3.1 Reactive Approach
In software industry reactive approach uses the checkpoint use

to mask the error and avoids the failure. There can be

considerable gain in the software reliability by using only the

reactive approach. The Performance Testing activity is often

considered as a reactive way of performance management. In

most of the cases, the system performance is never thought of

during the early phases of Software Development Life Cycle

phases (SDLC). Performance is often thought of only as a last

activity after the System Testing phase.

And most of the time , the performance bottlenecks evolves

around the system architecture or the system design which is a

very high cost activity to think about & in certain cases , the

system is put into trash because of the huge deviations in the

performance constraints.

Basically waiting for the performance problems to appear &

then dealing with it at the end is always not a better approach.

Mostly Performance Testing is considered as a reactive

approach as there is not much importance is given to the

system during early life cycle phases. It is more a „fix-it-later‟

approach which is not that effective.

3.2 Proactive Approach
The proactive approach uses the dynamic medication of the

program for avoiding the future failure. The Proactive

approach anticipates the performance problems well in

advance & adopts techniques for mitigating them. The

importance of the performance is thought about from the

Initial phase of Software Development Life Cycle (SDLC) &

various performance engineering activities are identified for

the system.

The disadvantages of „fix-it-later‟ approach are well

understood & engineering practices are adopted to analyze the

system design in performance angle. The integration of

performance engineering activities with the SDLC phases is

provided in the below table 1.1

4. CONCLUSION
The normal concept of combing the reactive and proactive

approaches can produce the more dividends for enhancing the

software reliability. There are many way to enhance the

reliability of the software product. The reactive approach is to

deal the breakpoint in the software. And it has been advocated

the combination of check pointing and rollback with on-line

software version change as a practical technology for making

software more reliable. These techniques gives considerable

gain in reliability this gain increases as the probability of a

failure being transient increases and as the decrease in failure

rate obtained by removing a fault increases. The general

concept of combining reactive and proactive approaches can

produce rich dividends for enhancing software dependability.

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 5, March 2017

11

5. REFERENCES
[1] Robert Graves,“Cost time reliability optimization in

product development,” July, 2005.

[2] Walter J. Gutjahr, “Reliability optimization of Redundant

Software with Correlated Failure,”

[3] Jeffrey Thomas Oplinger, “Enhancing Software Reliability

with Speculative Threads,” Aug, 2004.

[4] MusaJ.D, A. Lannino, K. Okumoto, “Software

Reliability Measurement, Prediction & Application”,

McGraw Hill Book company NY, PP 183-185, 1987.

[5] Jeff Tian, “Better Reliability assessment And Prediction

through Data Clustering”,

[6] D. R. Prince Williams, “Study of the Warranty Cost

Model for Software Reliability with an Imperfect

Debugging Phenomenon,” Turk J Elec Engines,

Volume.15, Number 3, 2007,

[7] Natasha Sharygina, James C. Browne, and Robert P.

Kurshan, “A Formal Object-Oriented Analysis for

Software Reliability: Design for Verification,”

[8] Booch G., “Object-Oriented Analysis and Design with

Applications, “Benjamin/Cummings, Redwood City, CA

(1994).

[9] Zeng Wen-hua1, Yiannis Papadopoulos, David Parker,

“ReliabilityOptimization of Series-Parallel Systems

Using Asynchronous Heterogeneous Hierarchical

Parallel Genetic Algorithm,” volume 1, Number 4, 2007.

[10] Jayant Rajgopal, Mainak Mazumdar, “Modular

Operational Test Plans for Inferences on Software

Reliability Based on a Markov Model”.

[11] Tanvir Khan, “Optimization for Software Release and

Crash”, B.S., Louisiana State University – Baton Rouge,

May, 2007

[12] Harish Agrawal, “Reliability Based Design Optimization:

Formulation And Methodologies”, Dec 2004.

[13] N. Kuschel and R. Rackwitz, “A new approach for

structural optimization of series systems”. Applications

of Statistics and Probability, 2(8): 987{994 (2000).

[14] Jianwen Xiang, Kokichi Futatsugi, “Fault Tree Analysis

of Software Reliability Allocation” School of

Information Science, Japan Advanced Institute of

Science and Technology 1-1 Asahidai, Tatsunokuchi,

Ishikawa, 923-1292 Japan.

[15] M.E. Segal and O. Frieder, “On-the-fly program

modification: system for dynamic updating” IEEE

software March,1993.

[16] I. Lee ,“DYMOS: A Dynamic Modification System”

PhD thesis ,University of Wisconsin,1983.

[17] D. Gupta and P. Jalote, “Online software version change

using state transfer between processes” Software-practice

and experience,Sept 1993.

[18] O. Frieder and M.E. Segal, “On dynamically updating a

computer program: from concept to prototype” J. System

software, Sept 1991.

[19] R.S. Fabry ,“How to design systems in which module can

be changed on the fly” In Proc. 2nd Int. Conf Software

Engg,1976.

IJCATM : www.ijcaonline.org

