
International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 6, March 2017

10

Streamlining of DFA based Pattern Matchers

Ashish Kumar Pandey
Assistant Professor,

 AIMT, Lucknow
Department of

Computer Science

Amit Sinha
Technical Lead

Analyze Infotech Pvt. Ltd

ABSTRACT
This paper presents an efficient algorithm for finding matches

to a given regular expression in given text using optimization

of DFA. To match a regular expression of length n, a serial

machine requires 0(2^n) memory and takes 0(1) time per text

character. The proposed approach requires only 0(n^2) space

and still process a text character in 0(1) time (one clock

cycle).The improvement is due to the optimization of DFA

that means without converting it into the NFA, directly

convert into the DFA. Finite Automaton (DFA) used to

perform the matching. Furthermore, the paper presents a

simple, fast algorithm that quickly constructs the DFA for the

given regular expression.

Keywords
DFA, NFA

1. INTRODUCTION
A regular expression, often called a pattern, is an expression

used to specify a set of strings required for a particular

purpose. Regular expressions are widely supported in

programming languages, text processing programs (particular

lexers), advanced text editors, and some other programs. A

regular expression processor translates a regular expression

into a nondeterministic finite automaton (NFA), which is then

made deterministic and run on the target text string to

recognize substrings that match the regular expression. The

pattern sequence itself is an expression that is a statement in a

language designed specifically to represent prescribed targets

in the most concise and flexible way to direct the automation

of text processing of general text files, specific textual forms,

or of random input strings.This paper presents an efficient

algorithm for finding matches to a given regular expression in

given text using optimization of DFA.

2. BACKGROUND
followpos(i) : is the set of positions which can follow the

position i in the strings generated by the augmented

regular expression.

followpos is just defined for leaves,it is not defined for inner

nodes.

Computing Followpos:

A position of a regular expression can follow another position

in two ways:

Rule 1: if n is a cat-nodec1c2

For every position in lastpos(c1) all positions in firstpos(c2)

are in followpos(i).

Figure 1: Cat -Node

Rule 2:if n is a star-node

If i is a position in lastpos(n) then all positions in firstpos(n)

are in followpos(i).

Figure 2: Star-Node

Evaluation of firstpos, lastpos, nullable

To evaluate followpos, three more functions are to be

definedfor the nodes (not just for leaves) of the syntax tree.

nullable(n) true if the empty string is a member of strings

generated by the sub-expression rooted by n false otherwise

firstpos(n)the set of the positions of the first symbols of

strings generated by the sub-expression rooted at n.

lastpos(n) the set of the positions of the last symbols of

strings generated by the sub-expression rooted at n.

 n

C1

followpos(i)={firstpos(n)}

iϵlastpos(n) firstpos(n)

Star Node

Cat-

node

followpos(i)={firstpos(C2)}

iϵlastpos(C1) firstpos(C2)

n

C2
C

1

https://en.wikipedia.org/wiki/Set_(computer_science)

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 6, March 2017

11

Table:1Evaluation of firstpos, lastpos, nullable

Node n

Nullable(n)

Firstpos(n)

Lastpos(n)

A leaf labeled

ε

True
Ø

Ø

A leaf with

position i

False
{i}

{i}

An or-node
n=c1|c2

Nullable(c1)
or

nullable(c2)

Firstpos(c1) U

firstpos(c2)

Lastpos(c1)

U

lastpos(c2)

A cat-
noden=c1c2

Nullable(c1)
and

nullable(c2)

If
(nullable(c1))

Firstpos(c1)U
firstpos(c2)

Else
firstpos(c1)

If(nullable(c

2))

Lastpos(c2)

U

lastpos(c1)
Elselastpos(

c2)

A star-
noden=c1*

True
Firstpos(c1)

Lastpos(c1)

Need Of Pattern Matching

Pattern matching is the process of checking a perceived

sequence of string for the presence of the constituents of

somepattern. In contrast to pattern recognition, the match

usually has to be exact. The patterns generally have the form

sequencesof pattern matching include outputting the locations

of a pattern within a string sequence, to output some

component of thematched pattern, and to substitute the

matching pattern with some other string sequence (i.e., search

and replace). Patternmatching concept is used in many

applications Following figure shows the different

applications.

In pattern matching I focused on the regular expression

amongst others application.Pattern matching will help to find

right and appropriate result. Hence I proposed Streamlining of

DFA Based Pattern Matchers algorithm to match the Pattern.

Figure 3: Applications of Pattern Matching

3. PROPOSED ALGORITHM
Algorithm to make RE to DFA:

1. Create syntax tree with augmented rerular
expression.

2. Assign number to each terminal from left to right.If
there is any epsilon as a terminal,do not assign any
number.

3. Calculate the functions: followpos, firstpos, lastpos,
nullable.

4. Put S(start node)= firstpos (root of augmented
syntax tree) of DFA as an unmarked state.

5. Mark S and make it start state.

6. Now we give the input to the start state which is
already marked.

7. Input is provided according to numbers which are
in given states.

8. If terminals are defined in more than one position
then find the followpos of those terminals on
different positions and do the union.

9. Now we find out the next state which is move(S,a)
= S’(next state which can also be final state).

10. If the next state is new state then go to step[7].

11. If the next state is repeated state and no new state is
found then stop process.

12. To make DFA according to move fuction.

13. The accepting states of DFA are all states
containing the position of #.

Example: Augmented Regular Expression

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 6, March 2017

12

 (a | b) * a #

red – firstpos, blue – lastpos

Figure 4: Syntax tree with augmented regular expression

Figure 5: Assign number to each terminal from left to

right

Calculate the functions: followpos, firstpos, lastpos,
nullable

Calculate firstpos(i) and lastpos(i) for leaf i:

For i=1,

firstpos(1): {1}

lastpos (1): {1}

For i=2,

firstpos(2): {2}

lastpos (2): {2}

For i=3,

firstpos(3): {3}

lastpos (3): {3}

For i=4,

firstpos(4): {4}

lastpos (4): {4}

Calculate firstpos(i) and lastpos(i) for or, cat and star
node:

For or node(|):

firstpos(|): {1,2}

lastpos(|): {1,2}

For star node(*):

firstpos(*): {1,2}

lastpos(*): {1,2}

For cat node(.):

For leaf a:

firstpos(.): {1,2,3}

lastpos(.): {3}

For leaf #:

firstpos(.): {1,2,3}

lastpos(.): {4}

Figure 6: Augmented ST with computed values

followpos(1) = {1,2,3}

followpos(2) = {1,2,3}

followpos(3) = {4}

followpos(4) = {}

S1=firstpos(root)={1,2,3}

  mark S1

a: followpos(1)  followpos(3)={1,2,3,4}=

S2, move(S1,a)=S2

b: followpos(2)={1,2,3}=S1, move(S1,b)=S1

  mark S2

a: followpos(1)  followpos(3)={1,2,3,4}=

S2, move(S2,a)=S2

b: followpos(2)={1,2,3}=S1move(S2,b)=S1

start state: S1

accepting states: {S2}



*



 |

b

a

a

1

4

3

2



*



|

b

a

a

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 6, March 2017

13

Figure 7: Deterministic finite automata

4. CONCLUSION
In this paper, we proposed an efficient regular expression

algorithm to match the regular expression without converting

into NFA.Which results the reduced area, better performance,

less number of resources.To match a regular expression of

length n, a serial machine requires 0(2^n) memory and takes

0(1) time per text character. The proposed algorithmrequires

only 0(n^2) space and still process a text character in 0(1)

time (one clock cycle).The improvement is due to the

optimization of DFA that means without converting it into the

NFA, directly convert into the DFA. The future scope of the

work is to improve the efficiency of the finite state machine.

5. REFERENCES
[1] J. E. Hopcroft and J. D. Ullman, Introduction to automata

theory,languages, and computation,” Addison Wesley,

1979.

[2] Y. Sun, H. Liu, V. Valgenti, and M. S. Kim, “Hybrid

regular expression matching for deep packet inspection

on multi-core architecture,” in Proceedings of the 19th

International onference on Computer Communications

and Networks, ICCCN’10, Aug. 2010, pp. 1–7.

[3] P.Jayaprabha and Rm. Somasundaram ,”Content Based

Image Retrieval Methods Using Graphical Image

Retrieval Algorithm (GIRA)”., Computer Science And

Application, Vol. 1, No. 1, January, 2012.

[4]1997,http://www.igm.univmlv.fr/~lecroq/string/index.html

C. Charras and T. Lecroq: Exact String

MatchingAlgorithms. Univ. de Rouen.

[5] Srikanthan, Sharanyan ,“Implementing the dynamic time

warping algorithm in multithreaded environments for

realtime and unsupervised pattern discovery”., Computer

and Communication Technology (ICCCT), 2011

2ndInternational Conference on 394 – 398, 15-17 Sept.

2011.

[6] Stan Salvador & Philip Chan,”Fast DTW: Toward

Accurate Dynamic Time Warping in Linear Time and

Space”.KDDWorkshop on Mining Temporal and

Sequential Data, pp. 70-80, 2004.

(http://cs.fit.edu/~pkc/papers/tdm04.pdf).

[7] Chu, S., E. Keogh, D. Hart & Michael Pazzani. Iterative,

Deepening Dynamic Time Warping for Time Series. In

Proc.of the Second SIAM Intl. Conf. on Data Mining.

Arlington, Virginia, 2002.

[8] Arcangel, Cory. "On Compression". Retrieved 6 March

2013.

[9] Jaiswal, R.C. Audio-Video Engineering. Pune,

Maharashtra: Nirali Prakashan. p. 3.41. (2009).ISBN

9788190639675.

[10] "Video Coding". Center for Signal and Information

Processing Research. Georgia Institute of Technology.

Retrieved 6March 2013.

IJCATM : www.ijcaonline.org

http://cs.fit.edu/~pkc/papers/tdm04.pdf

