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ABSTRACT
Today, there is a wide variety of devices ranging from PC’s,
game consoles, up to smartphones and tablets. These computing
devices have major differences in performance and make mesh
decimation still active in the field of research. One of the latest
topics in the area has been to create simplification algorithms
considering visual similarity. However, the full potential of most
visual simplification algorithms has yet to be tapped, especially in
soft real-time interactive computer simulations such as video games
and virtual reality environments. In this paper, a new framework,
in which occlusion and visibility are exploited intensively, is
introduced in order to simplify models more accurately by
taking into account their context in actual 3D scenes. Static
background elements are simplified by considering the effect of
their surroundings, decreasing the polygon count in the surfaces
partially hidden by others. In addition, by allowing users to perform
an optimal placement of the cameras in the scene, simplification in
regions not seen from such viewpoints is dramatically increased.
Dynamic elements, such as characters, accomplish a higher level of
simplification since these elements which often consist of multiple
meshes, for example, clothes, those resulting from the design stage.
These meshes usually cover some regions of the base mesh and
are used as occluders in order to increase the amount of polygon
reduction in dynamic elements, barely losing image quality.
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1. INTRODUCTION
Many decimation algorithms for polygonal meshes have been
developed in recent years, although the first ones already appeared
more than a decade ago. Nevertheless, the problem of polygonal
simplification is now even more interesting because there are
many types of devices with very different performances. Typical
configurations include PC’s, game consoles and mobile devices like
smartphones, tablets, and smartwatches. Thus, still today, there is
room enough for improvement. New proposals that can easily be
included in applications such as video games, virtual reality and

visualization are necessary. This way, these applications will be
able to exploit fully the benefits of mesh simplification.
Virtual environments have been increasing the complexity of their
massive worlds as well as employing a wider variety of lighting and
shading techniques. Often, these interactive environments require
multiple renderings of the same objects from different viewpoints
in a single frame. Most common applications include rendering
low-resolution versions of objects into a dynamic environment map
for reflective or refractive effects; as well as shadow map rendering
for multiple shadowing lights or cascading or omnidirectional
shadow maps [11]). Low-resolution meshes and level-of-detail
(LOD) [23] computations provide convenient optimization for
collision detection.
Some important surveys on the state-of-the-art in mesh
simplification can be reviewed in [5, 9, 21, 23, 25]. The
latest simplification methods have focused on similar appearance
[20, 36, 3, 4], human perception [22, 32, 18, 2] and out-of-core
simplification [19, 33, 15, 29].
Other recent publications include new methods which retain
physical features [16] and preserve global geometry features [34].
Kho and Garland [17] suggested the interesting idea of allowing
the user to select some especially relevant regions which should be
preserved. This concept was applied to QSlim, maybe one of the
most remarkable methods of purely geometric simplification based
on the quadric error metric [10].
Following the proposal by Kho and Garland [17], some other
new interesting techniques are presented in this paper. Through
these techniques, users can assist automatic methods in improving
simplification for purely visual approaches in mesh decimation. For
example, users can locate models playing the role of occluders to
increase simplification in focused regions. In addition, they can
select the position of the cameras to adjust simplification to the
visibility of the model in an actual 3D scene. The latter can be
very useful for static background geometries which are usually seen
from a very narrow field of view.
There are some previous works that integrate occlusion culling and
view-dependent rendering such as [1, 7, 13, 12, 35].
[1] proposed a hybrid technique which combines LOD rendering
with visibility. El-Sana et al. [7] used a LOD technique that
renders occluded regions in low LOD. Their work relies on the
View-Dependence Tree as a compact multiresolution hierarchical
data structure that supports view-dependent rendering. Gobbetti
and Marton [12] integrated visibility culling and out-of-core data
management with a LOD framework. At pre-processing time, a
coarse volume hierarchy is generated by binary space partitioning
of the input triangle soup. At rendering time, this volumetric
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structure is refined and rendered in front-to-back order, exploiting
vertex programs for GPU evaluation of view-dependent voxel
representations, hardware occlusion queries for culling occluded
subtrees and asynchronous I/O for detecting and avoiding data
access latencies. Yoon et al. [35] presented a view-dependent
rendering algorithm (Quick-VDR) for interactive display of
massive models. A clustered hierarchy of progressive meshes
(CHPM) is used as a scene representation. Quick-VDR relies on
an out-of-core algorithm to compute a CHPM that performs a
hierarchical cluster decomposition and simplification. Grundhofer
et al. [13] combined LOD-based rendering with an efficient
multi-pass occlusion culling algorithm. LODs are generated
off-line as well as the slicing of the high polygon count objects. The
actual rendering is done by a three-pass algorithm which identifies
occluded objects during the first two passes. The third pass renders
the potentially visible set.
Most of the previous approaches use a multiresolution scheme
and a mechanism to detect occluded regions and adapt the LOD
according to them. However, current game engines include many
complex tasks such as spatial subdivision for indoor engines,
some sort of continuous LOD management for outdoor engines,
skeletal animation, collision detection, complex particle and
decay effects, dynamic shadows, global illumination, artificial
intelligence, full-screen post effects such as motion blur which all
can be very time-consuming. Therefore, most of these proposals
are very difficult to implement in game engines. Mainly because the
rendering stage must be adapted accordingly and this can penalize
the game engine performance. So far, surface simplification
algorithms have traditionally been designed to work in isolation
without considering how target models interact with content in
true scenes. This leads to a not full profit in the quality of
approximations. However, visual simplification methods can help
on this issue because they can use the information of the scene
in order to improve decimation in the input models. This work
proposes a new framework in which to perform mesh simplification
taking scene content into account.
The aim of this work is to perform the simplification off-line
considering the scene content. This static approach comes with
the advantage that is completely independent of the game engine
or visualization algorithm. Nevertheless, this framework is less
versatile than a dynamic one. But, as pointed out above, it is
applicable to any visualization technique.
Figure 1 illustrates an example of how visual simplification
methods can take advantage of environmental occluders. As
depicted in this figure, the simplification on the root of the tree is
very high, because this region of the model is covered by another
scene object, a red box that hides the root and the trunk (see Figure
1(c)). Notice that the tree top remains practically unaltered. In this
case, a red box was used as an environmental occluder but a fence
could have been used or even a wall in a more realistic situation.
Nevertheless, the aim here was simply to illustrate the effect that
occluders can produce on visual simplification algorithms.
This paper is organized as follows. Section 2 briefly reviews
the viewpoint-driven simplification method [3, 4]. In Section 3,
an extension of the viewpoint-driven simplification algorithm is
proposed to include occluders during the simplification stage.
Section 4 demonstrates how users can improve simplification for
static models in the scene by selecting the position of cameras.
Section 5 shows more experimental results. Finally, in Section 6,
conclusions and future work are presented.

2. VIEWPOINT-DRIVEN SIMPLIFICATION
First of all, in this section, some viewpoint measures for viewpoint
selection based on Information Theory [6] are reviewed, which are
the basis of the viewpoint-driven simplification algorithm. Then, a
brief explanation of how the method works is presented.

2.1 Viewpoint selection measures: Hv and VMI
Viewpoint entropy, based on the definition of Shannon entropy,
was introduced in [26] as a measure of the information provided
by a point of view. The relative area of the polygons projected
over a sphere of directions centered on the viewpoint is taken as
a probability distribution. Thus, given a viewpoint v, the entropy of
v (Hv) is defined by

Hv = −
Nf∑
i=0

ai

at

log
ai

at

, (1)

where Nf is the number of polygons in the scene, ai is the
projected area of polygon i over the sphere, a0 represents the
projected area of the background in open scenes, and at =∑Nf

i=0
ai is the total area of the sphere. Maximum entropy is

obtained when a certain viewpoint can see all the polygons with the
same projected area. So, in an open scene the maximum entropy is
log(Nf + 1) and in a closed scene is equal to logNf . The best
viewpoint is defined as the one that has maximum entropy, that
is, the maximum amount of captured information. In molecular
visualization, both maximum and minimum entropy views show
relevant characteristics of a molecule [27].
Viewpoint mutual information was introduced in [28, 8] as a
measure for viewpoint selection. An information channel V → O,
called a viewpoint information channel, is defined between the
random variables V and O. This channel represents, respectively,
a set of viewpoints and the set of polygons for the given object.
Viewpoints are indexed by v and polygons by o. The marginal
probability distribution for V is given by p(v) = 1

Nv
, where Nv is

the number of viewpoints. That is, the same probability is assigned
to each viewpoint, but other distributions can also be used. The
conditional probability p(o|v) = ao

at
is defined by the normalized

projected area of polygon o over the sphere of directions centered
at viewpoint v. ao is the area of polygon o projected over the sphere
and at is the total area of the sphere. Conditional probabilities
fulfill

∑
o∈O p(o|v) = 1. Note that with this notation viewpoint

entropy (1) can be rewritten as Hv = −
∑

o∈O p(o|v) log p(o|v).
Finally, the marginal probability distribution of O is given by
p(o) =

∑
v∈V p(v)p(o|v) = 1

Nv

∑
v∈V p(o|v), which represents

the average projected area of polygon o, i.e., the probability of a
polygon o to be hit (seen) by a random ray cast from the sphere of
viewpoints.
From this channel, the mutual information between V and O is
given by

I(V,O) =
∑
v∈V

p(v)
∑
o∈O

p(o|v) log p(o|v)
p(o)

=
1

Nv

∑
v∈V

I(v,O), (2)

where

I(v,O) =
∑
o∈O

p(o|v) log p(o|v)
p(o)

, (3)
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(a) Simpletree Model,
11 136 triangles

(b) Simplified without
environmental occluders,
1 000 triangles

(c) Simplified with
environmental occluders,
1 000 triangles

(d) Original with
environmental occluders
(red box)

(e) Simplified without
environmental occluders
(red box)

(f) Simplified with
environmental occluders
(red box)

Fig. 1. An example of mesh simplification performed by a visibility-based simplification method using a red cube as occluder. The model complexity was
reduced to about 8.97% of the original one.

called viewpoint mutual information (VMI), represents the degree
of dependence or correlation between viewpoint v and the set of
polygons O. VMI is a measure of the quality for viewpoint v.
Quality is considered here equivalent to representativeness. The
best viewpoint is defined as the one that has minimum VMI.
High values mean a high degree of dependence between viewpoint
v and the object, indicating a very coupled view. On the other
hand, low values correspond to the most representative or relevant
views, which show the maximum possible number of polygons in
a balanced way.
Note that I(v,O) = KL(p(O|v)|p(O)), where p(O|v) is the
conditional probability distribution between v and the object and
p(O) is the marginal probability distribution of O, which in this
case corresponds to the distribution of the average of projected
areas. It is worth observing that p(O) plays the role of the
target distribution in the Kullback-Leibler (KL) distance or relative
entropy [6] and also the role of the optimal distribution since the
objective is that p(O|v) becomes similar to p(O) to obtain the best
views. On the other hand, this role agrees with intuition, since p(O)
is the average visibility of polygon o on all viewpoints, i.e., the
mixed distribution of all views, and p(O) is representing, with a
single distribution, the knowledge about the whole scene.

2.2 Simplification metric
Viewpoint-driven simplification [3, 4] is a decimation algorithm
based on the half-edge collapse operation [14]. In this operation,
the two vertices of an edge are contracted to a single vertex,
removing the collapsed edge and its incident triangles. It can also be
considered as the vertex removal operator without re-triangulation
(see Figure 2). The error at each edge collapse operation is
measured by the variation in some viewpoint selection measure, for
instance, either viewpoint mutual information (VMI) or viewpoint

Fig. 2. The half-edge collapse operation. After the edge collapse, edge e

vertex v and triangles t10 and t5 are removed and triangles t1, t2, t3 and
t4 are modified.

entropy (Hv). In order to guarantee a unified simplification,
all viewpoints are distributed equidistantly over the sphere of
viewpoints. Viewpoint selection measures express the accessible
information about a given object from a particular viewpoint. The
goal of this method is to preserve the visual appearance of the given
model by minimizing the change in the shape of its silhouette.
Given a set of viewpoints V , the simplification error deviation for
edge collapse e is defined by

Ce =
∑
v∈V

|Iv − I ′v|, (4)

where Iv represents the value for the viewpoint selection measure
before edge collapse e and I ′v represents its value afterward. Both
Hv and VMI measures can be used in the scheme proposed in this
paper because they produce good visual simplifications. However,
the VMI metric is chosen for all the experimental results shown in
this work because VMI accomplishes a better performance than Hv

does. This is mainly due to the fact that Hv tends to balance the
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// v the viewpoint

// m the targeted mesh

// S the 3D scene

function compute histogram(v, m, S)

// Black for background

render(m, v) // unique color for each polygon of m
for m′ ∈ S where m′ 6= m

render in black(m′, v) // black for all polygons of m′

end for

// Count pixels of the same color

hv = count pixels in framebuffer()

return (hv)

end function

Fig. 3. Pseudocode of the new histogram function.

polygon size in the mesh, whereas VMI drastically increases the
simplification in the poorly visible regions [4], which is adequate
for preserving visual appearance. Other metrics used in [3] such
as the viewpoint Kullback-Leibler distance (KLv), the viewpoint
Hellinger distance (HEv) and the viewpoint Chi-Square distance
(CSv) do not achieve better results in visual appearance compared
to Hv and VMI because the former metrics (KLv , HEv and CSv)
are likely to retain interior regions. The reason is that they compare
the actual area distribution to the projected area distribution for all
polygons in the model. Consequently, the outcome is that hidden
regions are further preserved in KLv , HEv , and CSv than in
measures such as Hv and VMI that only consider the projected
area distribution [3].

3. USING MESHES AS OCCLUDERS
The algorithm of viewpoint-driven simplification [3, 4], briefly
reviewed in the previous section, originally uses a regular
distribution of surrounding viewpoints for the mesh to be
simplified. However, the default behavior of the algorithm can be
modified if another different set of viewpoints is used. In fact,
this simplification method actually captures the information about
the surface of the input mesh that is seen from a given point of
view. That is, if a surface is hidden then it will be simplified
more aggressively. Therefore, this useful feature can be exploited
in an actual scene where the targeted mesh might interact with
others nearby. The current implementation of the viewpoint-driven
simplification approach does not allow the method to be executed
in real-time since it has a highly computational cost. Nevertheless,
for static background elements, occluders can be included in the
simplification algorithm with no additional cost.
The idea is very straightforward. Before starting the simplification
of the input model, all objects close to the model in the scene
must be also rendered. This way, it is reproduced how the model
is actually seen in the scene. The input to the viewpoint-driven
simplification algorithm is now the whole geometry of the scene
which obviously also includes the input model. However, the
following fact must be considered. The current implementation of
the simplification algorithm uses histograms to obtain the projected
areas of polygons to compute the viewpoint selection measures
used in the simplification error. These areas generate the probability
distribution required for Equations 3 and 1. In order to find such
areas, each polygon is drawn in a unique color. Black is reserved
for the background. Projected areas of polygons are estimated by
counting the pixels that have the same color in the frame buffer.
Obviously, all the objects surrounding the targeted model can be

used as occluders if they are rendered in the background color.
Figure 3 shows a pseudo-code of the new histogram function
modified to consider all meshes in the 3D scene as pointed out
above.
Figure 4 shows an example of how the histogram technique is
used to include occluders in the viewpoint-driven simplification
algorithm. As seen in the figure, with the new histogram technique
the occluder, that is, the Pants model (see Figure 4(d)) is rendered
in black. This way, the viewpoint-driven simplification method
gathers no information about those hidden regions (legs) of the
Young model. Therefore, any simplification operation in these
regions has virtually no cost. The outcome is that such regions are
simplified at the highest level. The assignment of a distinct color
for each polygon starts in the red channel of the RGB color space.
This is why most of the polygons in the model are shown in red.
In principle, this idea can be applied to any visual simplification
method. For instance, the image-driven simplification method
by Lindstrom and Turk [20] can follow this approach because
it also uses a set of viewpoints. In fact, in order to consider
environmental occlusions, simply the whole scene content together
with the input mesh must be rendered. Self-occlusions are already
accounted for in the original algorithm. The algorithm introduced
by Zhang and Turk [36], which computes visibility off-line and
then combines the visual error with a geometric error, can also be
extended by including occluders in the off-line process performed
to calculate the visibility map. The same idea can also be applied
to other algorithms that use mesh saliency from a purely geometric
approach [18] and from a visual one [2]. Mesh saliency is usually
calculated off-line and used to focus on visually important regions
of the mesh, but considering how the human visual system works.
This saliency, however, does not consider occlusions produced by
other meshes in the scene. So, the mesh saliency map needs to
be combined with a visibility map of the scene that includes such
occlusions.

4. LOCATING CAMERAS SURROUNDING STATIC
OBJECTS

As pointed out in Section 2.2, the original viewpoint-driven
simplification algorithm employs by definition a regular
distribution of cameras. These cameras are used to obtain
information about the model surface. However, most static models
in actual 3D scenes are only seen from very few viewpoints, this
means that not all their polygons are visible, take, for example, the
case of walk-throughs. Therefore, it is desirable that such objects
might be mainly simplified taking their visibility into account in
the world. Better results can be achieved if simplification is carried
out considering only the set of viewpoints from where models are
shown in the scene. Users play a remarkable role here because they
can conveniently select the optimal set of camera positions.
This concept can also be applied to other visual simplification
methods that make use of camera positions such as [20, 36].
Figure 5 shows an example of camera placement performed by a
user. The user has located 6 cameras from where the Porsche 911
model is shown in an actual scene. When rendered, the Porsche
911 model stays parked on the street next to a building. Notice that
this model is a static object only visible from a very limited range
of viewpoints. Image 5(c) depicts the 6 viewpoints established by
a user, which are some possible positions from where the model
is seen. The left image 5(d) shows the model simplified from a
camera position within the field of view that defines the set of
viewpoints used to simplify the model. As can be appreciated, the
final simplified model looks almost identical to the original. The
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(a) Young model, 6364
triangles

(b) Rendering from viewpoint
#1 for (a)

(c) Young model using
the Pants model in red as
occluder

(d) Rendering from viewpoint
#1 for (c)

Fig. 4. An example of how the histogram calculation technique works in order to make a profit out of occluders during the simplification stage. The rendering
images were used to compute the projected area of polygons in the model.

(a) Porsche 911 model (b) VMI with 6 uniformly distributed cameras. RMSE=21.59,
MS-SSIM*=0.825

(c) The optimal set of 6 cameras surrounding the model selected by
a user

(d) VMI replacing the original set of cameras with (c).
RMSE=15.23, MS-SSIM*=0.882

Fig. 5. An example of optimal camera placement done by a user for the Porsche 911 model (1963 triangles). The model was simplified to 499 triangles. (b)
and (d) show the model from a view similar to one of those chosen for simplification. The right images show an opposite view. (d) shows an improvement
about 41.75% in visual appearance with respect to (b). Notice that the view corresponding to (b) is one of the views from where the model will be shown in
the scene.

right image 5(d) shows the same simplified model from an opposite
perspective. As can be seen, the wheels have disappeared because
they cannot be seen from the set of viewpoints selected by the user.
This is the desirable behavior because the visible parts of the model
are better preserved which is the final goal. Image 5(b) shows the
model simplified with 6 viewpoints uniformly distributed. Some
artifacts have appeared in the wheels because such small number
of viewpoints is not enough for the original VMI-based method.
In order to measure the visual error for the experimental results,
several image quality assessment metrics: RMSE, SSIM [30],
MS-SSIM [31] and MS-SSIM* [24] were used. RMSE stands
for the root mean square error, a per-pixel-difference image
metric. Based on the idea that the human visual system (HVS) is
highly adapted to process structural information, SSIM (Structural
SIMilarity) measures the change in luminance, contrast, and
structure in an image. The values suggested by the authors were

applied to the parameters K1 = 0.01 and K2 = 0.03. Layered
on SSIM, MS-SSIM (Multi-Scale Structural SIMilarity) calculates
multiple SSIM values at multiple image scales evaluating the
quality of the image at different viewing distances. For MS-SSIM
was used an 11 × 11 circular Gaussian sliding window and five
scales. MS-SSIM* is an extension of the original MS-SSIM that
does away with the stabilization constants and defines concrete
values for the edge cases. For MS-SSIM* was used an 8× 8 linear
window. SSIM, MS-SSIM, and MS-SSIM* range from 0 to 1 and
give 1 when the images are equal.

5. RESULTS
All models shown in this paper were simplified on a 21.5-inch
iMac computer equipped with an Intel Core 2 Duo 3.06GHz
with 4GB DDR3 RAM and an NVIDIA GeForce 9400 256MB
graphics card running OS X 10.10.5. To compute the VMI
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(a) Young
model

(b) Eyes
model

(c) Shirt
model

(d) Pants
model

(e) Sneakers
model

Fig. 6. The different meshes that compose the dressed Young model.

measures, the values suggested by the authors [3, 4] were used,
i. e., a 256x256 image resolution and 20 uniformly distributed
viewpoints which correspond directly to the vertices of a regular
dodecahedron, a Platonic solid. VMI* stands for the original VMI
modified to implement the new histogram technique that takes
into consideration the occlusion due to other objects in the scene.
This section analyzes more deeply the experimental results for the
dressed Young model shown in Figure 6. The test model consists of
several meshes, a base mesh called Young and other meshes, Shirt,
and Pants, which represent some clothes. There are some additional
meshes for the eyes and shoes, the Sneakers model.
Figure 7 shows an example of simplification for a dynamic model.
Typically, when rendering the Young model in a video game, the
model usually wears different types of clothes such as coats, shirts,
sweaters, pants, and hats. These clothes are often switched by
players at run-time. However, some parts of the body of the model
covered with clothes might be hidden most of the time. Image
7(b) shows the Young model simplified with VMI wearing all the
different meshes (Pants, Shirt, Eyes, and Sneakers) as commonly
seen in a video game scenario. Image 7(c) shows the Young model
simplified with VMI*. As can be observed in Figures 7(g) and
7(h), VMI* achieves a reduction about 72% in mesh complexity
without hardly losing quality. This is, mostly accomplished, due to
the drastic simplification in the hidden regions (trunk and legs) of
the Young model (see Figure 6(a)). The other four meshes were
also simplified with VMI in order to reduce the total number of
polygons in the whole model.
Table 1 depicts the computational time, number of points of view,
and percentage of simplification for each mesh. As can be observed
in the table, the approach presented in this paper allows for a
reduction about 79% in the polygon count without decreasing the
quality of the original model’s appearance (see Figure 7(a)).
Finally, Figure 8 depicts an example of a 3D scene where all models
tested in this paper are rendered. All these models were simplified
using VMI*. Furthermore, all of the requirements and conditions
are satisfied in this sample scene. The Simpletree model has both
the roots and partially the trunk hidden by a wall. The Porsche 911
model is located beside the wall where two of its wheels are hidden.
The Young model appears wearing all the additional meshes such
as Pants, Shirt, and Sneakers. The total polygon count for the
original version of the models is 22 737 whereas those simplified
versions actually shown in the scene have an overall number of 4
225 polygons. Note that a reduction about 81% in the polygonal
complexity of those models is accomplished without significantly
decreasing their visual appearance as this figure shows.

Fig. 8. An example of a 3D scene. In this scene, the Simpletree, Porsche
911, and dressed Young models appear simplified with VMI*.

6. CONCLUSIONS AND FUTURE WORK
Visual simplification algorithms are, by far, more suitable for
visualization applications than the geometric ones, because the
former can benefit from visibility information. Up to now, visual
simplification algorithms have been used to simplify models in
isolation without rendering them in actual scenes.
So as to simplify models more efficiently in actual scenes, the
framework proposed here exploits some unique characteristics of
visual simplification algorithms such as occlusion and viewpoint
placement. As shown in this paper, simplification of static models
seen from a very reduced range of points of view is enhanced
if users select the optimal camera positions. Moreover, by using
occluders, better results in simplification of base models are easily
achieved because regions with no major visual impact are now
simplified more aggressively. An example was shown in the case of
characters. But, of course, it can also be applied to a wide variety
of meshes of similar features.
This new approach represents an off-line processing. Rendering
the simplified versions in a graphics application comes with no
additional cost, of course, once they are obtained. This makes
it appropriate for video games since most game engines might
involve some high degree of computational overload. Furthermore,
no adaptation of the game engine is needed.
In this work, the techniques mentioned above were applied
to a particular, purely visual simplification approach, the
viewpoint-driven simplification method [3, 4]. However, such
techniques can also be applied to other visual simplification
algorithms [20, 36, 18, 2] as previously suggested in this paper.
The idea proposed by Kho and Garland [17] of permitting the
user to select some surfaces on the mesh, independently of their
simplification error, in order to retain them better because of their
interest, can also be combined with the techniques presented in
this paper for visual simplification algorithms. Another further
extension to this work would be to apply the framework to other
visual simplification algorithms and to compare the results.
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(a) Dressed Young model (b) VMI, RMSE=11.94,
MS-SSIM*=0.944

(c) VMI*, RMSE=8.57,
MS-SSIM*=0.964

(d) Original wireframe (e) VMI wireframe (f) VMI* wireframe

(g) Original with
occluders in red

(h) VMI* no Pants (i) VMI* no Shirt

Fig. 7. An example of simplification for the dressed Young model (9638 triangles) wearing the Pants, Shirt, and Sneakers models. The dressed Young model
was simplified to 2726 triangles. The Pants, Shirt, and Sneakers models were used as occluders (see (g)). Some artifacts are seen in (b) when simplifying with
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show how VMI* drastically simplifies hidden interiors.
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