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ABSTRACT 
A hybrid neuronal genetic model is proposed with the 

objective of solving the Riccati Algebraic Equation (RAE) 

that is associated to the restricted optimization structure of the 

Linear Quadratic Regulator (LQR) problem. The application 

of this hybrid model of artificial intelligence will be 

performed in a wind power generation system, in particular, 

the double fed induction generator (DFIG). For this, a 

recurrent neural network with multiple layers is used where its 

performance is realized by metrics of the norm of infinity 

associated with RAE and energy surfaces as a function of the 

positive definite symmetric matrix and the Cholesky factor. 

General Terms 
RAE, LQR, hybrid model, wind power, DFIG 

Keywords 
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1. INTRODUCTION 
The Double Fed Induction Generator (DFIG) is a relatively 

new technology and provides a strong insertion in the market 

due to its application in wind power generation. In Brazil, the 

first experience with the generation and use of wind energy 

was through a wind turbine installed in the Fernando de 

Noronha archipelago in the 90's. Over the years, several wind 

farms have been installed throughout Brazil in which are 

installed wind turbines that are distinguished in two types:  

• Generator driven directly by the Turbine shaft; 

• Generator driven by the Turbine shaft, using multiplier. 

Wind Energy can be converted into electrical energy through 

aero generators which are systems that harness wind energy 

through the propellers, converting it into mechanical energy 

which in turn is converted into electrical energy through an 

electricity generator. 

The principle of operation of the DFIG is identical to AC 

electric generators, but has more relevant features that allow 

them to run at speeds slightly above or below their natural 

synchronous speed. These generators are widely used in large 

wind turbines of varying speed, due to the speed of the wind 
being variant with the time. Figure (1) illustrates a DFIG 

installation model: 

 

 

Figure 1: DFIG model coupled to the turbines 

Induction generators, in particular those with winding rotor 

applied in wind power systems, can be found in two types of 

basic configurations: 

• The torque or slip is controlled by power electronics in 

the rotor circuit, characterized by the variation of the 

rotor resistance; 

• The other configuration consists of the connection of a 

circuit that draws power through the rotor (DFIG). 

According to (Hansen, 2003), the operating principle of the 

DFIG is based on the slip that can be determined by 𝑠 =
𝜔𝑠−𝜔𝑚

𝜔𝑠
 which represents the power flow. 

The demand for new renewable energy sources for the 

development of increasingly efficient energy generation 

systems has been made possible by new computational 

techniques to optimize these activities. In this sense, we will 

approach in this work computational techniques based on 

artificial intelligence such as: Artificial neural networks and 

genetic algorithms in order to synthesize optimal control 

systems related to the Linear Quadratic Regulator (LQR) 

problem.  

In this context, Myoen-Song Choi (1996) lists the main areas 

of application where control systems models are concentrated, 

where we will find the LQR project fundamentals such as 

industrial sector, power generation, noise attenuation, 

Machines of direct current, among others. According to 

(Pinto, 2007), the wide use of the LQR project has brought 

great results in wind power systems that use as power 

generation the dual-fed induction generators.  

This article is organized in sections according to the following 

sequence: Section 2 presents the methodology of this study. In 

Section 3, presents the intelligent control LQR linked to the 

structure of the genetic algorithm that will function to obtain 

the weights matrices 𝑄 and 𝑅. In Section 4, presents the 

structure of the recurrent neuronal network that will solve the 

RAE providing a matrix as Solution, and this matrix is 

symmetric and definite positive. In Section 5, the turbine 

generator scheme connected to the LQR controller and its 

linearized models is shown. Section 6 presents the 

computational results applied to the turbine generator model. 
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And in Section 7, the conclusions, comments and expectations 

of the intelligent LQR project are presented. 

2. METHODOLOGY 
These goals will be achieved through the use of Artificial 

Intelligence paradigms, in particular, genetic algorithms and 

neural networks. The first one is responsible for the allocation 

of eigenvalues and eigenvectors, while the second justifies the 

solution of the Riccati Algebraic Equation. The convergence 

of GA and RNA stability are guaranteed. 

3. INTELLIGENT CONTROLLER 
Here presents a hybrid neuronal genetic model to be applied 

to solve the LQR problem. According to (Wang; Wu, 1998) 

these evolutionary models come from studies using a genetic 

algorithm to select the 𝑄 and 𝑅 weighting matrices and a 

recurrent artificial neural network that solves the Riccati 

Algebraic Equation. Figure (2) illustrates a scheme for these 

procedures: 

 

Figure 2: Intelligent control scheme 

3.1 Classical approach LQR 
This approach covers the formulation and solution of the 

Linear Quadratic Regulator problem, as well as the Schur 

method, which solves RAE. In this classic analysis of LQR, 

the input vector u is sought which aims to minimize a cost 

function J with some restrictions for the dynamic model of the 

system.  

According to some authors, one of the advantages of the 

linear quadratic regulator is the guaranteed stability margin 

where the phase margin is 60° and the gain margin is infinite, 

thus having a stability quality. 

The Linear Quadratic Regulator is modeled by a quadratic 

performance index and has some constraints on its linear and 

time invariant state cost function as follows:  

𝐽 𝑡0 =
1

2
 [𝑥𝑇𝑄𝑥

𝑇

𝑡0

+ 𝑢𝑇𝑅𝑢]𝑑𝑡                 (1) 

s.a  

𝑥 = 𝐴𝑥 + 𝐵𝑢                                 2  

at where 𝑥 ∈ 𝑅𝑛 ,  𝑢 ∈  𝑅𝑚 , the pair of matrices 𝑨 and 𝑩 is 

controllable, the pair A and C is observable, Q ≥ 0, R > 0 and 

all are symmetrical. Respectively, The matrices 𝑸 ∈ 𝑅𝑛𝑥𝑛  and 

𝑹 ∈ 𝑅𝑛𝑥𝑚  are definite and semi-definite positive matrices. 

According to (Athans, 1966), some variational calculation 

methods can be used to solve the optimization problem that is 

inherent to the optimization structure of equations (1) and (2). 

Such methods will provide the control law that will minimize 

the cost function 𝐽 and, at the same time, obey the constraints 

of the vector 𝑥  related to the optimization structure that 

follows,  

                                 𝑢 = 𝐾𝑥                                         (3) 

At where 𝐾 = −𝑅−1𝐵𝑇𝑃 is the gain of the controller. The 

gain 𝐾 depends on the matrix 𝑃 which is the solution of EAR 

given by:  

𝐴𝑇 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                     (4) 

with 𝑃 symmetric and positive definite. 

3.1.1 RAE and the LQR 
According to (Laub, 1979), the Riccati Algebraic Equation 

(RAE) can be solved by reducing the Hamiltonian matrix. 

This matrix has the following structure: 

=  
𝐴 −𝐵𝑅−1𝐵𝑇

−𝑄 −𝐴𝑇
                       (5) 

Using the Schur method to obtain a quasi-triangular shape 

using orthogonal similarity transformations, we can find an 

orthogonal matrix U, which transforms the Hamiltonian 

matrix H into the real Schur form, that is: 

𝑇 = 𝑊𝑇𝐻𝑊 =  
𝑇11 𝑇12

0 𝑇22
                       (6) 

Where the blocks 𝑇11 e 𝑇22  are quasi-triangular upper 

matrices. 𝑊 is a matrix partitioned into four dimension blocks 

𝑛𝑥𝑛. If the matrix 𝑊11  are non-singular matrices, the solution 

of the Riccati Algebraic Equation is definite positive, that is:  

𝑃 = 𝑊21𝑊11
−1                                  (7) 

The matrix 𝑇11 has eigenvalues that represent the closed-loop 

spectrum of the matrix (𝑨 − 𝑩𝑹−𝟏𝑩𝑻𝑷). 

Another important consideration is that the polar region of the 

optimal closed-loop system is due to the following 

relationship  

 𝐴 − 𝐵𝑅−1𝐵𝑇𝑃 = 𝑊11𝑇11𝑊11
−1                      

3.2 Genetic Algorithm Architecture 
For the proposed GA model, it has been as weights matrices 𝑸 

e R which establishes the free parameters of the LQR project, 

since they will be used to adjust the optimal gain of the 

controller. The main objective is the search for the weighting 

matrices that form the quadratic performance index 𝐽. Given 

this context, a nonlinear programming problem will arise to 

optimize the Q and R weighting matrices in terms of 

computational evolution algorithms and data structures, 

according to the following equation: 

                               min
𝑄,𝑅

 𝑝𝑖𝑠𝑖 𝑄,𝑅 

𝑛

𝑖=1

                                (8) 

𝑠. 𝑎 

𝑠𝑖(𝑄,𝑅) ≤ 1,                             𝑖 = 1,… ,𝑛 

𝜆𝑒𝑖 ≤ 𝜆𝑐𝑖 (𝑄,𝑅) ≤ 𝜆𝑑𝑖 ,              𝑖 = 1,… ,𝑛 

At where 𝑝𝑖  are the weights related to the sensitivity 𝑠𝑖/𝜖𝑖  
normalized with respect to ith project specification where we 

should have 𝜖𝑖 > 0. In this model, the genetic representation 

of the 𝑄 and 𝑅 matrices is approached through the operations 

between the chromosomes arriving at the performance 

evaluations. According to (Silva, 2008), the chromosomal 

model that represents the weights matrices 𝑄 and 𝑅 is 

presented below: 
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𝑄𝑅𝑧 =  𝑞𝑖 ,𝑗

𝑛

𝑖 ,𝑗=1

∧  𝑟𝑖 ,𝑗

𝑚

𝑗 ,𝑖=1

                              (9) 

com  i ≤ j,   z = 1,… , nind ,  𝑞𝑖 ,𝑗  and 𝑟𝑖 ,𝑗  represent the genes of 

the matrices 𝑄𝑅𝑧  and the term 𝑛𝑖𝑛𝑑 , characterizes the number 

of individual chromosomes of a population. The random 

generation model of the search matrices is given by: 

𝑞𝑖 ,𝑗 =  

𝑃𝑄,𝛼 + 𝑃𝑄,𝛽𝑘𝑄𝑖 ,𝑗 ,    𝑖 = 𝑗                         

𝑃𝑄,𝜆𝑘𝑄𝑖 ,𝑗                     𝑖 ≠ 𝑗                 (10)

𝑖, 𝑗 = 1,… ,𝑛                                             

  

With 𝑃𝑄,𝛼  and 𝑃𝑄,𝛽 , respectively, are fixed and variable 

parameters belonging to the elements of the diagonal 𝑞𝑖 ,𝑗 . The 

model of generation of the individual for the matrix 𝑅 is 

identical to the model of generation of the individual for the 

matrix 𝑄, as it shows the equation that follows: 

𝑟𝑖 ,𝑗 =  

𝑃𝑅,𝛼 + 𝑃𝑅,𝛽𝑘𝑅𝑖 ,𝑗 ,    𝑖 = 𝑗                         

𝑃𝑅,𝜆𝑘𝑅𝑖 ,𝑗                     𝑖 ≠ 𝑗                 (11)

𝑖, 𝑗 = 1,… ,𝑛                                             

  

The selection operation is based on the values of the 

performance function.  

4. ARCHITECTURE OF RNAR 
For the synthesis of the LQR project, the new formulation can 

be considered as an unrestricted optimization problem, so that, 

given the matrices 𝐴, 𝐵, 𝑄 and 𝑅, we intend to find the 

matrices 𝑃 and 𝐿 in order to minimize an energy function and, 

given by the new formulation: 

         min
𝑃,𝐿

𝜉(𝑃𝑆𝑃 − 𝐴𝑇𝑃 − 𝑃𝐴 − 𝑄 + 𝐿𝐿𝑇 − 𝑃)          (12) 

where 𝑆 = 𝐵𝑅−1𝐵𝑇 . Considering that the activation function 

𝜉𝑖𝑗 = ℝ → ℝ, is a convex function bounded at the bottom, 

then it is shown that the sum of the Riccati Algebraic 

Equation, using Cholesky's factorization, can be rewritten as 

follows:  

  𝑝𝑖𝑘𝑠𝑘𝑙𝑝𝑙𝑗 −  𝑎𝑘𝑖𝑝𝑘𝑗 + 𝑝𝑖𝑘𝑎𝑘𝑗  − 𝑞𝑖𝑗

𝑛

𝑘=1

𝑛

𝑙=1

𝑛

𝑘=1

+  𝑙𝑖𝑘 𝑙𝑗𝑘 − 𝑝𝑖𝑗

min {𝑖 ,𝑗 }

𝑘=1

                             (13) 

The dynamic equations that symbolize the recurrent neural 

network, being, 𝑖 = 1,… ,𝑛 and 𝑗 = 1,… ,𝑛 are given by: 

𝑑𝜈𝑖𝑗

𝑑𝑡
= −η𝜈     𝜈𝑖𝑘𝑠𝑘𝑙𝑢𝑙𝑗 + 𝑢𝑖𝑘𝑠𝑘𝑙𝜈𝑙𝑗  

𝑛

𝑙=1

𝑛

𝑘=1

−  𝑎𝑖𝑘𝑢𝑘𝑗 + 𝑢𝑖𝑘𝑎𝑗𝑘  − 𝑦𝑖𝑗

𝑛

𝑘=1

            (14) 

                        
𝑑𝑧𝑖𝑗

𝑑𝑡
= −η𝑧  𝑦𝑖𝑘𝑧𝑘𝑗 ,     𝑖 ≥ 𝑗              (15)

𝑛

𝑘=𝑗

 

      𝑢𝑖𝑗 = 𝑓𝑖𝑗    𝜈𝑖𝑘𝑠𝑘𝑙𝜈𝑙𝑗 − (

𝑛

𝑘=1

𝑛

𝑙=1

𝑛

𝑘=1

𝑎𝑘𝑖𝜈𝑘𝑗 + 𝜈𝑖𝑘𝑎𝑘𝑗 )

+ 𝑞𝑖𝑗                                                          (16) 

          𝑦𝑖𝑗 = 𝑓𝑖𝑗   𝑧𝑖𝑘𝑧𝑗𝑘 − 𝜈𝑖𝑗

min {𝑖 ,𝑗 }

𝑘=1

                            (17) 

Matricially, these equations are expressed as: 

𝑑𝑉

𝑑𝑡
= −η𝜈  𝑉(𝑡)𝑆𝑈(𝑡) + 𝑈(𝑡)𝑆𝑉(𝑡) − 𝐴𝑈(𝑡) − 𝑈(𝑡)𝐴𝑇

− 𝑌(𝑡)                                                      (18) 

𝑑𝑍(𝑡)

𝑑𝑡
= −η𝑧𝑌(𝑡)𝑍(𝑡)                                (19) 

𝑈(𝑡) = 𝐹 𝑉(𝑡)𝑆𝑉(𝑡) − 𝐴𝑇𝑉(𝑡) − 𝑉(𝑡)𝐴 + 𝑄                    (20) 

𝑌 = 𝐹 𝑍(𝑡)𝑍 𝑡 𝑇 − 𝑉(𝑡)                                 (21) 

Where the matrices 𝑈 =  𝑢𝑖𝑗  ∈ ℝ𝑛𝑥𝑛 , 𝑉 =  𝜈𝑖𝑗  ∈ ℝ𝑛𝑥𝑛  e 

𝑌 =  𝑦𝑖𝑗  ∈ ℝ𝑛𝑥𝑛 , are square matrices activation states, the 

matrix 𝑍 =  𝑧𝑖𝑗  ∈ ℝ𝑛𝑥𝑛  is of the lower triangular type of the 

activation states. We have as parameters of the project the 

conditions 𝑉 0 = 𝑉(0)𝑇 , 𝑌(0) ≠ 0, η𝜈 > 0 and η𝑧 > 0. The 

matrix 𝐹 = 𝑓𝑖𝑗  is symmetric and belongs to the activation 

states, however, being 𝐹 symmetrical, then 𝑉(𝑡), 𝑈(𝑡) and 

𝑌(𝑡) will also be. The fact that these matrices are symmetrical 

enables the reduction of the number of neurons used in the 

neural network construction. 

In the proposed neural network architecture, there are four 

bidirectionally connected layers, where 𝑉(𝑡) is the output 

layer, 𝑈(𝑡) is the input layer, and 𝑌(𝑡) and 𝑍(𝑡) are two 

hidden layers that perform the interconnection between 𝑃 and 

𝑈. The matrices 𝑉(𝑡), 𝑈(𝑡) and 𝑌(𝑡) are square 

characterizing layers of order 𝑛𝑥𝑛. The matrix 𝑉(𝑡) represents 

the computational result of 𝑃 and the state matrix 𝑍(𝑡) 

represents 𝐿 which is the Cholesky factor of 𝑃. The matrix 𝑃, 

presented in equation (12) represents the solution of the RAE. 

4.1 Stability Analysis 
The stability of the recurrent neural network proposed here 

and analyzed in more detail in (Wang; Wu, 1998) is necessary 

since it is a continuous nonlinear dynamic system in time. 

This stability can be analyzed by using the direct Lyapunov 

method given by the following theorem:  

Theorem 1. If every activation function is continuous, at least 

part-differentiable, and still non-decreasing, that is:  

𝑑𝑓𝑖 ,𝑗 (𝜉)

𝑑𝜉
≥ 0        with −∞ < 𝜉 < +∞ and,  

 

𝑓𝑖 ,𝑗  𝜉 = 0  if  𝜉 = 0, for 𝑖, 𝑗 = 1,2… ,𝑛 

Then the RNAR is asymptotically stable assuming values in 

time tending towards infinity, symbolically, it has been: 

∀𝑽(0) and 𝒁(0) ∃𝒁  and 𝑽  tal que lim𝑡→∞ 𝑍(𝑡) = 𝒁  and     

lim𝑡→∞ 𝑉(𝑡) = 𝑽 . 

This stability analysis of the neural network shows that the 

activation state transition generates a gradient flow which, in 

turn, minimizes the energy function 𝑬. 

4.2 Solvability analysis 
Theorem 2. This theorem ensures a necessary and sufficient 

condition for the flow of the gradient function to converge to 

a symmetric and definite positive solution of Riccati 

Algebraic Equation, 𝑃, of any initial state (Wang; Wu, 1998). 

Theorem 2 tells us that, since every activation function is 
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continuous, at least part-differentiable, and non-decreasing 

monotonic, that is:  

𝑑𝑓𝑖 ,𝑗 (𝜉)

𝑑𝜉
≥ 0        with −∞ < 𝜉 < +∞ and,  

𝑓𝑖 ,𝑗  𝜉 = 0,  if 𝜉 = 0, for 𝑖, 𝑗 = 1,… ,𝑛 

The RNAR solution, 𝑉, is always symmetric and positive 

definite for the Riccati equation of any symmetric initial state 

𝑉(0) and any non-zero initial state 𝑍(0), this is, ∀𝑉 0 =

𝑉 0 𝑇 ,  ∀𝑍 0 ≠ 0, 𝑉 = 𝑉, If and only if, 𝑟𝑎𝑛𝑘 𝑉 𝑆 − 𝐴 =

𝑛 and all diagonal elements in 𝒁  are non-zero, this is, for all 𝑖, 
𝒛 𝑖𝑖 ≠ 0 for 𝑖 = 1,… ,𝑛. 

5. TURBINE GENERATOR MODEL 
The wind turbine converts kinetic energy from the wind into 

rotational mechanical energy. According to (Vivas, 2016), the 

ideal turbine power, considering that there is possibility of 

converting all the kinetic energy of the wind is given by: 

𝑃𝑤𝑖 =
1

2
𝜌Λ𝑣3                                          (22) 

Being, 𝑷𝒘𝒊 the theoretical power; 𝝆 the air density;                        

𝚲 the area covering the turbine; And 𝑣 the wind speed. 

A diagram of the turbine connections, with generator with 

coiled rotor and the controller connected to the converters, is 

shown in figure (3). One of the converters is connected to the 

network and the other to the rotor windings, so that they are 

interconnected through a circuit with capacitors and with a 

PWM pulse width modulation control. In the case of a 

generator set and power converters, there are several concepts 

for the interconnection of the double-fed induction generators 

to the wind turbines.  

 

Figure 3: DFIG model connected to LQR controller. 

As shown in figure (3), in this section, presents the linearized 

turbine generator model, in which linear systems theory can 

be used to analyze dynamics, stability, observability, 

frequency response and Robustness of the non-linear system, 

applying the intelligent LQR model to the DFIG system. As 

already mentioned in the previous sections, this method has 

the objective of searching GA matrices and determining the 

optimal gain of said controller, via RNAR. The following is a 

schematic of the linearized model: 

∆𝑥 = 𝐴∆𝑥 + 𝐵∆𝑢                             (23) 

∆𝑦 = 𝐶∆𝑥                                          (24) 

At where ∆𝑥 and ∆𝑢 are vectors of state and input, 

respectively, being:  

∆𝑥 =  ∆𝑖𝑑𝑟   ∆𝑖𝑞𝑟  ∆𝜔𝑟   ∆𝑖𝑑  ∆𝑖𝑞  ∆𝑉𝑑𝑐  
𝑇

; 

∆𝑢 =  ∆𝑣𝑑𝑟   ∆𝑣𝑞𝑟  ∆𝑇𝑒   ∆𝑣𝑑  ∆𝑣𝑞 
𝑇

 

The state matrix 𝐴 is formed by block matrices such as: 𝐴𝑟
3𝑥3 

e 𝐴𝑠
3𝑥3 which represent, respectively, the rotor and stator part. 

The matrix of control 𝐵, is constituted of matrices of block 

𝐵𝑟
3𝑥2 e 𝐵𝑆

3𝑥2. According to equation (16), the state matrices 

take the forms: 

𝐴𝑟 =

 
 
 
 
 −

𝑅𝑟
𝐿𝑟𝑟𝜎

𝑆0𝜔0 0

−𝑆0𝜔0 −
𝑅𝑟
𝐿𝑟𝑟𝜎

0

0 0 𝜇 
 
 
 
 

 

𝐵𝑟 =

 
 
 
 
 
 
 −

1

𝐿𝑟𝑟𝜎
0 0

0 −
1

𝐿𝑟𝑟𝜎
0

0 0 −
1

2𝐻 
 
 
 
 
 
 

 

𝐴𝑆 =

 
 
 
 
 
 −

𝑅

𝐿
𝜔0 0

−𝑊0 −
𝑅

𝐿
0

−
𝑣𝑑0

𝐶𝑉𝑐𝑐0
−

𝑣𝑞0

𝐶𝑉𝑐𝑐0

𝑣𝑑0𝑖𝑑0 + 𝑣𝑞0𝑖𝑞0

𝐶𝑉2
𝑐𝑐0  

 
 
 
 
 

 

𝐵𝑠 =

 
 
 
 
 
 

1

𝐿
𝜔0

0
1

𝐿

−
𝑖𝑑0

𝐶𝑉𝑐𝑐0
−

𝑖𝑞0

𝐶𝑉𝑐𝑐0 
 
 
 
 
 

 

Where the coefficient 𝜇 belonging to the matrix 𝐴𝑟  is 

represented by the expression: 

𝜇 = −

1
2𝜌𝐴𝑣

3𝐶𝑝 λ, β 

2𝐻𝜔𝑟
2 +

1
2𝜌𝐴𝑣

3

2𝐻𝜔𝑟
.
𝑑𝐶𝑝 λ, β 

𝑑λ
.
𝑅𝑝
𝑣

      (25) 

According (Murata; Muyeen; Tamura, 2009), the term 

𝐶𝑝 λ, β  represents the power coefficient of fixed speed 

turbines that depends on the pitch angle 𝛽 of the shovel where 

𝜆 is the specific speed. 

6. COMPUTATIONAL RESULTS 
Based on the work of (Pinto, 2007), they follow the complete 

model and parameters of the wind turbine for application to 

DFIG and to the inverter that will be substituted in equations 

(23) and (24). After this application, the matrices of the state 

equation for the aforementioned system are obtained, 

investigated in relation to an operating point. The matrices 

are: 

𝐴 =  

 
 
 
 
 
 
 
−39.4 0.39 0 | 0 0 0
−0.27 −55.7 0 | 0 0 0

0 0 −21.9 | 0 0 0
−− −− −− ∗ − − − − − −

0 0 0 | −24.5 0.63 19.8
0 0 0 | −1.27 −18.0 0.72
0 0 0 | −6.91 −0.08 −1.78 

 
 
 
 
 
 

 

The control matrix is given by:  
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𝐵 =  

 
 
 
 
 
 
 
−12.46 0 0 | 0 0

0 −12.46 0 | 0 0
0 0 −21.9 | 0 0
− − − − −− ∗ − − − −

0 0 0 | 5.71 0
0 0 0 | 0 5.71
0 0 0 | −0.71 0  

 
 
 
 
 
 

 

The construction of the output matrix 𝐶 can be seen in details 

in (Pinto, 2007), where we find: 

𝐶 =  

 
 
 
 
 
 
3.14 0 0 0 0 0

0 4.51 0 0 0 0
0 0 −10.02 0 0 0
0 0 0 −42.66 0 0
0 0 0 0 3.29 0
0 0 0 0 0 −3.06 

 
 
 
 
 

 

As the proposed 6th order plant system is a MIMO system, 

the analysis using the Bode diagram becomes impracticable. 

We propose the use of the singular value decomposition 

(SVD), so that we can evaluate the behavior of the system in 

the frequency domain. Figure (4) shows the frequency 

response of the singular values.  

 

Figure 4: Singular Values of the 6th Order Wind Plant 

It is observed in this figure the largest and smallest singular 

values in 𝑑𝐵 as a function of the 𝑟𝑎𝑑/𝑠𝑒𝑐 frequency of the 

base system and without controller and with the LQR. 

Before performing the tests, it is determined the eigenvalues 

that verify that the system is stable,  

[−39.42; −55.74; −13.37 ± 𝑗2.60;−17.68;−21.95] 

The impulse response analysis, as shown in Figure (5), is 

performed with the purpose of evaluating more accurately the 

behavior of the DFIG plant dynamic system, 

 

Figure 5: Response to the Impulse of the 6th Order System 

6.1 Selection of 𝑸 and 𝑹 matrices 
This research uses a genetic algorithm to select the matrices Q 

and R, where Q represents the state and R is the control 

matrix. Figure 6 shows the result of normalized final 

sensitivity for the selection of a group of twenty generations 

for each population of individuals: 

 

Figure 6: Total sensitivity for the final population 

Below, we show the 𝑄 and 𝑅 weighting matrices:  

𝑄𝐿𝑄𝑅 =  

 
 
 
 
 
 
2.59 0.34 1.13 0.55 0.35 1.83
0.34 4.39 1.42 0.29 1.59 4.57
1.13 1.42 3.49 5.00 0.39 0.36
0.55 0.29 5.00 11.15 0.33 0.36
0.35 1.59 0.39 0.33 12.34 0.29
1.83 4.57 0.36 0.36 0.29 14.93 

 
 
 
 
 

   (26) 

𝑅𝐿𝑄𝑅 =  

 
 
 
 
 
6.53 0.13 0.11 0.16 0.12
0.13 6.93 0.15 0.0832 0.13
0.11 0.15 7.45 0.12 0.15
0.16 0.08 0.12 9.68 0.13
0.12 0.13 0.15 0.13 10.56 

 
 
 
 

               (27) 

According to (Goldberg, 1989), for the Genetic Algorithm to 

work effectively, it is necessary to have defined a genetic 

representation of the solution and a fitness function. The GA 

uses strategies that are expressed by fitness functions, 

crossover and mutation whose goal is to reach a certain 

maximum number of generations or a certain fitness value. To 

obtain these results with GA, used the fitness function that 

scores each individual from the satisfaction of the project 

specifications. According to (Coley, 1998), the use of the 

fitness function using the elitist method is a great alternative 

of implementation, because, it keeps the best individuals in 

the course of generations. 

6.1.2 Neural Solution – (RAE) 
Figure (7) illustrates the energy of the RAE solution and the 

Cholesky factor. It has as goal to present the intervals for the 

weights of the network where the energy is minimum. 
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Figure 7: Energy of the RAE solution and the Cholesky 

factor  

To measure the RAE solution, the infinity norm is used as a 

way to evaluate its solution 

 

Figure 8: Infinite norm of EAR for variation parameters 

𝜼𝝂 and 𝜼𝒛 

Figure 8 shows the infinity norm of the network layers. The 

values of the standard tend towards a stable solution. The 

elements of the 𝑈 and 𝑌 layers are null when 𝑡 → ∞. 
Consequently, a solution of RAE reached convergence in 200 

iterations. 

 

Figure 9: Infinity norm of neural network layers 

As an example of a stable solution, however, which does not 

present RAE behavior, it is shown in figure (9) for the 

parameters 𝜂𝜈 = 1000 and 𝜂𝑧 = 8. As can be seen in figure 

(10), the infinite norms of the 𝑈 and 𝑌 layers are accompanied 

by values that have an unstable norm of infinity. 

 

Figure 10: Infinity norm associated with solutions 

The algorithm that implements the neuronal solution of the 

Riccati equation, consists of the implementation of the 

optimization structure, presented in Eq. (12), which minimizes 

the energy function. The 𝐾𝑅𝑁𝐴𝑅  gain matrix obtained from the 

LQR using the RNAR were: 

𝐾 =  

 
 
 
 
 
−0.062 −0.005 −0.034 −0.011 −0.013 −0.076
−0.005 −0.070 −0.032 0.004 −0.040 −0.134
−0.004 −0.004 −0.022 −0.029 −0.005 −0.020
−0.000 −0.007    0.047 0.180 −0.002 −0.244
   0.004    0.012    0.006 −0.001    0.180    0.012 

 
 
 
 

 

6.1.1 Solution via Schur method – (RAE) 
In the structure of equation (4), it has been the matrices 𝑄 and 

𝑅 that are constant and are contained in the RAE, which in 

turn, is solved by the Schur method. The optimal gain matrix 

𝐾𝑆𝑐ℎ𝑢𝑟 , obtained by solving the Riccati Algebraic Equation by 

the Schur method is given by: 

𝐾 =  

 
 
 
 
 
−0.062 −0.005 −0.034 −0.011 −0.013 −0.076
−0.005 −0.070 −0.032 0.004 −0.040 −0.134
−0.004 −0.004 −0.022 −0.029 −0.005 −0.020
−0.000 −0.007    0.047 0.180 −0.002 −0.244
   0.004    0.012    0.006 −0.001    0.180    0.012 

 
 
 
 

 

The eigenvalues obtained from the dynamic system with LQR 

controller are:  

 −56.62,−40.20,−22.00,−18.67,−13.98 ± 𝑗1.86  

Again, the SVD is used for analysis in the frequency domain 

of the system with LQR, where the elements of the matrix S 

of singular values obtained are: 

 56.66, 40.22, 33.52, 21.99, 19.12, 5.79  

Analyzing the two results by the Schur method and by the 

RNA, see that both are well approximated, and the artificial 

neural network are more stable, since this difference becomes 

imperceptible, because it is in the decimal precision of the 

solutions after eighth decimal place. It is observed that the 

eigenvalues of the system and the diagonals of the 𝑄 and 𝑅 

matrices directly influence the performance and convergence 

of the RNA, so that the values of the 𝑄 and 𝑅 matrices can be 
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reduced or increased uniformly, thus improving the RAE 

solution. 

Being made an analysis in the adjustments of the constants 𝜂𝜈  

and 𝜂𝑧 , see that the found results act with that speed the 

algorithm will converge or it will diverge and the as a solution 

can be optimal. The analysis of the results of the RAE 

solution via RNAR can be observed in figures (7) and (8) 

which are based on the behavior of the output layer, 

considering the input and the hidden layers. The convergence 

analysis leads to two aspects of the RAE solution, the first 

regarding the existence of a single solution, and the second 

focuses on the speed of the neural network in reaching the 

value of the solution at steady state. Figure 7 shows the results 

of the infinity norm of the layers 𝐿, 𝑈, 𝑌(𝑡) and 𝑃(𝑡), and 

figure (8) shows the results of the norm of infinity associated 

with the respective solutions. 

This analysis has as main objective to verify two types of 

results the first one is related to the best fit of the constants 𝜂𝜈  

and 𝜂𝑧  and the second begins the choice of the best initial 

condition, and a another point to consider is the number of 

iterations used to compute the solution Riccati Algebraic 

Equation. Figure (9) shows the surface of the energy function 

with adjustments of the parameters 𝜂𝜈  and 𝜂𝑧 . 

7. CONCLUSION  
After analyzing the parameters and obtaining the Q and R 

matrices presented by the proposed methodology of genetic-

neural fusion, it can be observed that the hybrid model 

presented satisfactory results on the surfaces, metrics of the 

norm of infinity and decomposition in singular values, 

according to the analysis of the performance of the wind 

power generation system, with respect to the optimal control 

problem. As future work, about the proposed recurrent neural 

network, one can analyze the algorithmic complexity of this 

RNAR, as well as, to study the complexity of the neural 

network defining the problem size, aiming to study the 

computing time needed for the resolution of the Riccati 

Algebraic Equation based on the worst-case study. Another 

alternative as a proposal to be implemented and compared 

with the neural-genetic model in future works is the use of 

SVM, the Support Vector Machine, in order to find the best 

hyperplane between the analyzed data, seeking to maximize 

the distance between the points next, and with that, find the 

optimal gain of the plant. However, from the results achieved 

in this article, we conclude that new intelligent computational 

approaches can be implemented and promising results are 

expected in the most varied real-time project application and 

system control.  
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