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ABSTRACT
Graph theory is an ancient branch of engineering. Many problems
of real-world have been solved by graph theory’s principles. In this
survey paper, I want to present the plane 3-tree’s concept with an
interesting branch of another topic of graph theory, that is, chordal
bipartite graph. Throughout the development of this survey paper,
we will present definitions of chordal graph, bipartite graph, tree,
plane 3-tree and different operations of tree architecture. Then I
will show a new way to look at the tree architecture with nearest
neighbor interchanges. Nearest Neighbor Interchanges is a mech-
anism that deals with the operation of relative nodes in a tree ar-
chitecture. Relative nodes are those nodes which come in a same
branch or in different branch of a tree which do not interrupt the
way from leaf to root with other nodes in the same branch or in
another branch are used in the nearest neighbor interchanges to
interchange or exchange.We have many applications in which we
can apply this nearest neighbor interchange mechanism. The main
application is in DNA matching, DNA synthesizing and ribosome
particles analysis. I will clearly describe these features in detail in
the specified sections of this survey paper. Next I want to show that
plane 3-tree has passed the planarity criteria, that is, plane 3-tree
is a planar graph and it has straight-line drawing. So, we can con-
struct a bipartite, chordal and chordal bipartite graph which is rel-
evant with the given plane 3-tree. The novelty of this survey paper
comprised of several definitions, graphical illustrations of different
graph operations and chordal bipartite equivalent of a plane 3-tree.

Keywords
Graph, Tree, Planarity, Nearest Neighbor Interchanges, Chordality,
Bipartite graph, Plane 3-Tree.

1. INTRODUCTION
A graph consists of a set of vertices and set of edges, each joining
two vertices. Usually an object can be represented by a vertex
and a relationship between two objects is represented by an edge.
Thus a graph may be used to represent any information that can
be modeled as objects and relationships between those objects.
Graph theory deals with study of graphs. The foundation stone of
graph theory was laid by Euler in 1736 by solving a puzzle called
Konigsberg seven-bridge problem. Konigsberg is an old city in
Eastern Prussia lies on the Pregel river. The Pregel river surrounds

an island called Kneiphof and separates into two brances as shown
in Fig. 1(a) where four land areas are created: the island A, two
river banks B and C , and the land D between two branches.
Seven bridges connect the four land areas of the city. It is said
that the people of Konigsberg used to entertain themselves by
trying to devise a route around the city which would cross each
of the seven bridges just once. Since their attempts had always
failed, many of them beleived that the task was impossible, but
there was no proof until 1736. In that year, one of the leading
mathematician of that time, Leonhard Euler published a solution
to the problem that no such walk is possible. He not only dealt
with this particular problem, but also gave a general method for
other problems of the same type. Euler constructed a mathematical
model for the problem in which each of the four lands A, B, C
and D is represented by four points and each of the seven bridges
is represented by a curve or a line segment as illustrated in Fig.
1.1(b). The problem can now be stated as follows: Beginning at
one of the points A, B, C and D, is it possible to trace the figure
without traversing the same edge twice? The matematical model
constructed for the problem is known as a graph model of the
problem. The points A, B, C and D are called vertices, the line
segments are called edges, and the whole diagram is called a graph.

A graph G is a tuple (V,E) which consists of a finite set V of
vertices and a finite set of edges; each edge is an unordered pair of
vertices. The two vertices associated with an edge e is called the
end-vertices of e. We often denote by (u, v), an edge between two
vertices u and v. We also denote the set of vertices of a graph G by
V (G) and the set of edges of G by E(G). Let e = (u, v) be an edge
of a graph G. Then the two vertices u and v are said to be adjacent
in G and the edge e is said to be incident to the vertices u and v.
The vertex u is also called a neighbor of v in G and vice versa.

Designing graphs have many practicle applications. In this paper
I am going to describe some of the necessity of graph theory’s
concept in solving many real world problems. One of this is
phylogenetic trees. Simultaneously plane 3-tree is another planar
graph applied for solving planarity related problems.

The reconstruction of evolutionary trees from data sets on overlap-
ping sets of species is a central problem in phylogenetics. Provided
that the tree reconstructed for each subset of species is rooted
and that these trees together consistently, the space of all parent
trees that ‘display’ these trees was recently shown to satisfy the
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Fig. 1. Graph Model for Konigsberg.

following strong property: there exists a path from any one parent
tree to any other parent tree by a sequence of local rearrangements
(nearest neighbour interchanges) so that each intermediate tree also
lies in this same tree space. However, the proof of this result uses
a non-constructive argument. In this paper we describe a special,
polynomial-time procedure for navigating from any given parent
tree to another while remaining in this tree space. The results are of
particular relevance to the recent study of ‘phylogenetic terraces’.

Testing the planarity of a graph and possibly drawing it without
intersections is one of the most fascinating and intriguing algo-
rithmic problems of the graph drawing and graph theory areas.
Although the problem per se can be easily stated, and a complete
characterization of planar graphs has been known since 1930, the
first linear-time solution to this problem was found only in the
1970s.

Planar graphs play an important role both in the graph theory and
in the graph drawing areas. In fact, planar graphs have several
interesting properties: for example, they are sparse and 4-colorable,
they allow a number of operations to be performed more efficiently
than for general graphs, and their inner structure can be described
more succinctly and elegantly. From the information visualization
perspective, instead, as edge crossings turn out to be the main
reason for reducing readability, planar drawings of graphs are
considered clear and comprehensible.

A central goal in systematic biology is to reconstruct and analyze
a (phyloge- netic) tree to describe the evolutionary relationships
among present-day species, based on a comparison of their genetic
data. This activity has accelerated greatly in recent years due
to the rapid advances in new genomic sequencing technology.
While biologists in the 1970s might have reconstructed a tree
for a dozen species using a single gene, today, phylogenetic
trees are routinely con- structed for hundreds or thousands of

species, often based on large numbers (hundreds or thousands)
of genes. These trees reveal how species today trace back to
a common ancestor by displaying the branching pattern and
timing of separation events. These trees, in turn, provide insights
into how particular evo- lutionary innovations arose that are
present in the group of species under study (e.g. multicellularity,
photosynthesis, wings, large brains, etc). Phylogenetic trees can
also shed light on the amount of biodiversity captured by different
subsets of species and how much of this biodiversity may be
at risk from extinc- tion in the near future (a recent example is
the analysis in of the estimated tree for all 1̃0, 000 species of birds).

Tree reconstruction methods often attempt to combine the evolu-
tionary signal across many different genes. One of the problems
with such an approach is that each gene may be present in only a
subset of the species. This may be because the gene simply does
not exist in some species or because the gene, though present,
is yet to be sequenced for those species. Moreover, the set of
species that lack a given gene typically varies from gene to gene.
Patchy taxon coverage has a direct combinatorial consequence for
tree reconstruction methods, which often seek to optimize (e.g.
minimize) some objective function based on how well the data
each tree. The result can be large collections of equally-optimal
trees (i.e. a at landscape of trees), that form a (phylogenetic)
‘terrace’.

A straight-line grid drawing of a plane graph G is a planar drawing
of G, where each vertex is drawn at a grid point of an integer grid
and each edge is drawn as a straight-line segment. The height,
width and area of such a drawing are respectively the height, width
and area of the smallest axis-aligned rectangle on the grid which
encloses the drawing. A minimum-area drawing of a plane graph G
is a straight-line grid drawing of G where the area is the minimum.
It is NP-complete to determine whether a plane graph G has a
straight-line grid drawing with a given area or not.

Separator are things to separate a connected graph. Separator can
be an edge, a vertex or a subgraph. Many separator results for
topological graphs, especially for planar embedded graphs base
on the fact that separators have a structure that cuts the surface
into two or more pieces onto which the separated subgraphs are
embedded on. The celebrated and widely applied (e.g., in many
divide-and-conquer approaches) result of Lipton and Tarjan finds
in planar graphs a small sized separator. However, their result
says nothing about the structure of the separator, it can be any set
of discrete points. Applying the idea of Miller for finding small
simple cyclic separators in planar triangulations, one can find small
separators whose vertices can be connected by a closed curve in
the plane intersecting the graph only in vertices, so-called Jordan
curves. Tree-decompositions have been historically the choice
when solving NP-hard optimization and FPT problems with a
dynamic programming approach. Although much is known about
the combinatorial structure of tree-decompositions, no result is
known to the author relating to the topology of tree-decompositions
of planar graphs. A branch-decomposition is another tool, that was
introduced by Robertson and Seymour in their proof of the Graph
Minors Theorem and the parameters of these similar structures, the
treewidth tw(G) and branchwidth bw(G) of the graph G.Recently,
branch-decompositions started to become a more popular tool than
tree-decompositions, in particular for problems whose input is a
topologically embedded graph.
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A graph having no cycles is said to be acyclic. A forest is an
acyclic graph. A tree is a connected graph without any cycles, or
a tree is a connected acyclic graph. The edges of a tree are called
branches. It follows immediately from the definition that a tree has
to be a simple graph (because self-loops and parallel edges both
form cycles). Figure 2 displays all trees with fewer than six vertices.

Fig. 2. Illustrating a tree structure.

A graph is a tree if and only if there is exactly one path between
every pair of its vertices.The various kinds of data structures re-
ferred to as trees in computer science have underlying graphs that
are trees in graph theory, although such data structures are gener-
ally rooted trees. A rooted tree may be directed, called a directed
rooted tree, either making all its edges point away from the rootin
which case it is called an arborescence, branching, or out-tree, or
making all its edges point towards the rootin which case it is called
an anti-arborescence or in-tree. A rooted tree itself has been defined
by some authors as a directed graph.

2. PRELIMINARIES
In this section I am going to elaborately discuss the graphs, its sev-
eral properties, different ytpes of graphs and application of graphs.

2.1 Graph
A graph G is a tuple consisting of a finite set V of vertices and
a finite set E of edges where each edge is an unordered pair of
vertices. The two vertices associated with an edge e is called the
end-vertices of e. We often denote by (u, v), an edge between two
vertices u and v. We also denote the set of vertices of a graph G
by V (G) and the set of edges of G by E(G). We generally draw
a graph G by representing each vertex of G by a point or a small
circle and each edge of G by a line segment or a curve between
its two end-vertices. For example, Fig. 2.1 represents a graph G
where V (G) = {v1, v2, . . . , v11} and E(G) = {e1, e2, . . . , e17}.
We often denote the number of vertices of a graph G by n and
the number of edges of G by m; that is, n = V (G) and m = E(G).
We will use these two notations n and m to denote the number of
vertices and the number of edges of a graph unless any confusion
arises. Thus n = 11 and m = 17 for the graph in Figure 3.

A loop is an edge whose end-vertices are the same. Multiple edges
are edges with the same pair of end-vertices. If a graph G does
not have any loops or multiple edges, then G is called a simple
graph; otherwise it is called a multigraph. The graph in Figure 3
is a simple graph since it has no loops or multiple edges. On the
other hand, the graph in Figure 4 contains a loop e5 and two sets
of multiple edges {e2, e3, e4} and {e6, e7}. Hence the graph is a

Fig. 3. Graph with 11 vertices and 17 edges.

multigraph. In the remainder of the book, when we say a graph,
we shall mean a simple graph unless there is any possibility of
confusion.

Fig. 4. Multigraph.

We call a graph a directed graph or a digraph if edge is associated
with a direction, as illustrated in Figure 5(a). One can consider a
directed edge as a one-way street. We thus can think an undirected
graph as a graph where each edge is directed in both direction. We
call a graph an weighted graph if an weight is assigned to each
vertex or each edge. Figure 5(b) illustrates an edge-weighted graph.

A subgraph of a graph G = (V,E) is a graph G = (V ,E) such that V
V and E E. If G contains all the edges of G that join vertices in V ,
then G is called the subgraph induced by V .

2.1.1 Adjacencies, Incidence and Degree. Let e = (u, v) be an
edge of a graph G. Then the two vertices u and v are said to be
adjacent in G and the edge e is said to be incident to the vertices
u and v. The vertex u is also called a neighbor of v in G and vice
versa. In the graph in Figure 3, the vertices v1 and v3 are adjacent;
the edge e1 is incident to the vertices v1 and v3. The neighbors of
the vertex v1 in G are v2, v3 v6, v9 and v11.

The degree of a vertex v in a graph G, denoted by deg(v) or d(v), is
the number of edges incident to v in G, with each loop at v counted
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Fig. 5. (a) A directed graph and (b) an edge-weighted graph.

twice. The degree of the vertex v1 in the graph of Figure 4 is 5.
Similarly, the degree of the vertex v5 in the graph of Figure 4 is
also 5.

Since the degree of a vertex counts its incident edges, it is obvious
that the summation of the degrees of all the vertices in a graph is
related to the total number of edges in the graph.

2.2 Different Graph Definition
In this subsection we will discuss different types of graphs which
will come in discussion in the subsequent sections of the paper.

2.2.1 Null Graph. A graph with an empty edge set is called a
null graph. A null graph with n vertices is denoted by Nn. Figure
6(a) illustrates the null graph N6 with six vertices. A null graph is
a subgraph of any graph with the same number of vertices.

Fig. 6. (a) A null graph N6 with six vertices, (b) a complete graph K6

with six vertices.

2.2.2 Complete Graph. A graph in which each pair of distinct
vertices are adjacent is called a complete graph. A complete graph
with n vertices is denoted by Kn. It is trivial to see that Kn contains
n(n 1)/2 edges. Figure 6(b) illustrates a complete graph K6 with
six vertices. Any graph is a subgraph of the complete graph with the
same number of vertices and thus the number of edges in a graph
with n vertices is at most n(n 1)/2.

2.2.3 Independent set and Bipartite Graph. Let G = (V,E) be a
graph. A subset of vertices V V is called an independent set in G
if for every pair of vertices u, v V , there is no edge in G joining the
two vertices u and v. A graph G is called a bipartite graph if the ver-
tex set V of G can be partitioned into two disjoint non-empty sets
V1 and V2, both of which are independent. The two sets V1 and

V2 are often called the partite sets of G. Each edge of a bipartite
graph G thus joins exactly one vertex of V1 to exactly one vertex
of V2. Figure 7 shows two bipartite graphs where the independent
partitions are highlighted in both the graphs. Given a graph G, one
can test whether G is a bipartite graph in a naive approach by con-
sidering each possible bipartition of the vertices of G and checking
whether the two partitions are independent or not. However since
there are 2n 2 possible bipartition of a graph with n vertices, this
approach

Fig. 7. Two bipartite graphs: the two independent partite sets are high-
lighted for each of them, one containing the black colored vertices and the
other containing the white colored vertices.

takes exponential time. Fortunately, there is a linear-time algorithm
to test whether a graph is bipartite or not. The idea is simple.
Using a breadth first search (BFS) on the graph G, color the
vertices of G with two colors such that no two adjacent vertices
receive the same color. We say colors of two vertices conflict if
the vertices are adjacent and receive the same color. If a conflict-
free coloring can be done by BFS, then G is bipartite, otherwise not.

Let G be a bipartite graph with the two independent sets V1 and
V2. We call G a complete bipartite graph if for each vertex u V1
and each vertex v V2, there is an edge (u, v) in G. Figure 7(b)
illustrates a complete bipartite graphs where the two partite sets
contains 3 and 4 vertices, respectively. This graph is denoted by
K3,4. In general, a complete bipartite graph is denoted by Km,n if
its two partite sets contains m and n vertices, respectively. One can
easily see that Km,n contains mxn edges.

2.2.4 Chordal Graph. A chord in a cycle is an edge which goes
between two vertices which are not consecutive in the cycle. A
graph G is chordal if there are no chordless cycles in G of length
greater than three. Figure 8 illustrates a chordal graph of nine
vertices. Chordal graphs always contain a vertex v such that the
neighborhood of v is a clique; such a vertex is called a simplicial
vertex.

A chordal graph is an undirected graph with the property that
every cycle of length greater than three has a chord (an edge
between nonconsecutive vertices in the cycle). Chordal graphs
have attracted interest in graph theory because several combi-
natorial optimization problems that are very difficult in general
turn out to be easy for chordal graphs and solvable by simple
greedy algorithms. Examples are the graph coloring problem
and the problem of finding the largest clique in a graph. Chordal
graphs have been studied extensively since the 1950s and their
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Fig. 8. Chordal Graph.

history shares some key events with the history of semidefinite
optimization. In particular, it was Shannons 1956 paper that led
Berge to the definition of perfect graphs, of which chordal graphs
are an important subclass, and Lovsz to one of the most famous
early applications of semidefinite optimization.

Chordal graphs in applications often result from graph elimination,
a process that converts a general undirected graph into a chordal
graph by adding edges. Graph elimination visits the vertices of the
graph in a certain order, called the elimination order. When vertex
v is visited, edges are added between the vertices that are adjacent
to v, follow v in the elimination order, and are not yet mutually
adjacent. If no edges are added during graph elimination the elimi-
nation order is called a perfect elimination order. It has been known
since the 1960s that chordal graphs are exactly the graphs for which
a perfect elimination order exists. A variety of algorithms based
on different forms of variable elimination can be described and
analyzed via graph elimination. Examples include the solution of
sparse linear equations (Gauss elimination), dynamic programming
(eliminating optimization variables by optimizing over them), and
marginalization of probability distributions (eliminating variables
by summation or integration). Variable elimination is a natural ap-
proach in many applications and this partly explains the diversity
of the disciplines in which chordal graphs have been studied.

2.2.5 Tree. A tree is an undirected graph G that satisfies any of
the following equivalent conditions:

—G is connected and has no cycles.
—G is acyclic, and a simple cycle is formed if any edge is added

to G.
—G is connected, but is not connected if any single edge is

removed from G.
—G is connected and the 3-vertex complete graph K3 is not a

minor of G.
—Any two vertices in G can be connected by a unique simple

path.
If G has finitely many vertices, say n of them, then the above
statements are also equivalent to any of the following conditions:

—G is connected and has n 1 edges.
—G has no simple cycles and has n 1 edges.
As elsewhere in graph theory, the order-zero graph (graph with no
vertices) is generally excluded from consideration: while it is
vacuously connected as a graph (any two vertices can be
connected by a path), it is not 0-connected (or even (1)-connected)
in algebraic topology, unlike non-empty trees, and violates the
”one more vertex than edges” relation.
An internal vertex (or inner vertex or branch vertex) is a vertex of
degree at least 2. Similarly, an external vertex (or outer vertex,
terminal vertex or leaf) is a vertex of degree 1.
An irreducible tree (or series-reduced tree) is a tree in which there
is no vertex of degree 2.

A rooted tree T is a tree in which one of the vertices is
distinguished from the others. The distinguished vertex is called
the root of the tree T and every edge of T is directed away from
the root. If v is a vertex in T other than the root, the parent of v is
the vertex u such that there is a directed edge from u to v. When u
is the parent of v, v is called a child of u. A vertex in T , which has
no children, is called a leaf. Any vertex which is not a leaf in T is
an internal vertex. A descendant of u is a vertex v other than u
such that there is a directed path from u to v. Let i be any vertex of
T . Then we define a subtree T (i) rooted at i as a subgraph of T
induced by vertex i and all the descendants of i. An ordered rooted
tree is a rooted tree where the children of any vertex are ordered
counter-clockwise.

2.2.6 Planar Graph. A drawing is planar if no two distinct
edges intersect except, possibly, at common endpoints. A graph is
planar if it admits a planar drawing. A planar drawing partitions
the plane into connected regions called faces. The unbounded face
is usually called external face or outer face. If all the vertices are
incident to the outer face, the planar drawing is called outerplanar
and the graph admitting it is an outerplanar graph. Given a planar
drawing, the (clockwise) circular order of the edges incident to
each vertex is fixed. Two planar drawings are equivalent if they
determine the same circular orderings of the edges incident to
each vertex (sometimes called rotation scheme). A (planar)
embedding is an equivalence class of planar drawings and is
described by the clockwise circular order of the edges incident to
each vertex. A graph together with one of its planar embedding is
sometimes referred to as a plane graph.

2.2.7 Connected Graph. An undirected graph G is connected if,
for each pair of nodes u and v, G contains a path from u to v. A
graph G with at least k + 1 vertices is k-connected if removing any
k 1 vertices leaves G connected. Equivalently, by Mengers
theorem, a graph is k-connected if there are k independent paths
between each pair of vertices. 3-connected, 2- connected, and
1-connected graphs are also called triconnected, biconnected, and
simply connected graphs, respectively. It is usual in the planarity
literature to relax the definition of biconnected graph so to include
bridges, i.e., graphs composed by a single edge between two
vertices. A separating k-set is a set of k vertices whose removal
disconnects the graph. Separating 1- and 2-sets are called
cutvertices and separation pairs, respectively. Hence, a connected
graph is biconnected if it has no cutvertices and it is triconnected
if it has no separation pairs.

2.2.8 Traingulated Plane Graph. If all the faces of a plane graph
G are triangles, then G is called a triangulated plane graph. For a
cycle C in a plane graph G, we denote by G(C) the plane subgraph
of G inside C (including C).A maximal planar graph is one to
which no edge can be added without losing planarity. Thus in any
embedding of a maximal planar graph G with n 3, the boundary
of every face of G is a triangle, and hence the embedding is often
called a triangulated plane graph. Although a general graph may
have up to n(n 1)/2 edges, it is not true for planar graphs. If G is a
planar graph with n( 3) vertices and m edges, then m 3n 6.
Moreover the equality holds if G is maximal planar.

2.3 Different Graph Operation
In this subsection we will give an illustration of different graph
operations with figures showing the steps of a particular operation.
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A (rooted) tree T is a connected acyclic graph with one
distinguished vertex, called the root r. A spanning tree of a graph
G is a tree T such that V (T) = V (G) and E(T) E(G).
Given two graphs G1(V1,E1) and G2(V2,E2), their union G1 ł G2
is the graph G(V1 ł V2,E1 ł E2). Analogously, their intersection
G1 G2 is the graph G(V1 V2,E1 E2). A graph G2 is a subgraph
of G1 if G1 ł G2 = G1.
Given a graph G(V,E) and a subset V of V , the subgraph induced
by V is the graph G(V ,E), where E is the set of edges of E that
have both endvertices in V . Given a graph G(V,E) and a subset E
of E, the subgraph induced by E is the graph G(V ,E), where V is
the set of vertices incident to E. A subdivision of an edge (u, v)
consists of the insertion of a new node w and the replacement of
(u, v) with edges (u,w) and (w, v). A graph G2 is a subdivision of
G1 if it can be obtained from G1 through a sequence of edge
subdivisions.

Fig. 9. Deleting Edges From Graph.

Fig. 10. Contracting by a Vertex in a Graph.

Fig. 11. Suppressing by a Vertex in a Graph when vertex is not a root.

Fig. 12. Suppressing by a Vertex in a Graph when vertex is a root.

Fig. 13. Subdividing by a Vertex in a Graph.
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3. ROOTED SUBTREE PRUNED AND REGRAFT
(RSPR)

According to [1], let T ∈ RB(X) and let e = (v, u) be an arc of T.
We say that T 1 ∈ RB(X) is an rSPR-neighbour of T if T 1 can be
obtained from T by the following procedure. Let tu be the subtree
of T rooted at u. Delete arc e, pruning the subtree tu. To regraft tu,
either: (i) Choose an arc f of the tree generated by deleting tu from
T and subdivide f with a vertex w, then insert the arc (w, u),
regrafting the subtree tu, or (ii) Introduce a vertexr, insert the arc
(r,rT ) where rT is the root of T, and then insert the arc (r , u),
regrafting the subtree tu . Note that r is the root of the resulting
tree. Lastly, suppress v. We have now obtained a tree T 1 that is an
rSPR-neighbour of T.

3.1 rSPR Illustrated by Figures
Pruning a graph by deleting an edge. This is the first operation of
pruning simply showing a pruned tree.

Fig. 14. Pruning by Edge Deleting in a Graph.

Pruning a graph by deleting a subtree. This is an extended method
of pruning to get a pruned tree.

Fig. 15. Pruning by Subtree Deletion in a Graph.

Regrafting procedure to obtain a regraft graph from the given
graph. This is the first method of regrafting.

Fig. 16. Process 1 of Regrafting in a Graph.

Regrafting procedure to obtain a regraft graph from the given
graph. This is the first method of regrafting.

’

Fig. 17. Process 2 of Regrafting in a Graph.

4. NEAREST NEIGHBOR INTERCHANGES

’

Fig. 18. Nearest Neighbor Interchanges.

Nearest neighbor interchange is a method of generat ing alternat
ive trees in which an internal branch in a tree is selected and then
the subtrees that are connected to that bra nch are exchanged.

7



International Journal of Computer Applications (0975 - 8887)
Volume 162 - No.3, March 2017

When used for tree searching, such as in parsimony methods ,
each tree would be assigned a score and the tree with the better
score wou ld serve as the start ing point for further analysis.
According to [1] nearest neighbor interchanges are defined as
following way:

Fig. 19. NNI

5. PLANE 3-TREE
A plane graph G with n ≥ 3 vertices is called a plane 3-tree
mentioned in [2] if the following (a) and (b) hold: (a) G is a
triangulated plane graph; (b) if n > 3, then G has a vertex x whose
deletion gives a plane 3-tree G of n 1 vertices.

Fig. 20. Examples of Plane 3-tree

Note that, vertex x may be an inner vertex or an outer vertex of G.
We denote a plane 3-tree of n vertices by Gn. Examples of plane
3-trees are shown in Figure 20; G6 is obtained from G7 by
removing the inner vertex c of degree three. Then G5 is obtained
from G6 by deleting the inner vertex b of degree three. G4 is
obtained from G5 by deleting the outer vertex g of degree three
and G3 is obtained in a similar way.
Let Gn is a plane 3-tree with vertices n > 3. Then Gn satisfies
following two conditions. (a) Gn has one inner vertex ’x’ of
degree 3 removal of which produces a plane 3-tree witn n-1
vertices, Gn−1. (b) Gn has exactly one inner vertex ’y’ which is
neighbor of 3 outer vertices of Gn.
Any plane 3-tree Gn, n > 3, there is exactly one inner vertex ’y’
which is the common neighbor of all the outer vertices of Gn. We
call vertex ’y’ the representative vertex of Gn.
Let Gn be a plane 3-tree with n > 3 vertices and C be any triangle
of Gn. Then the subgraph Gn(C) is a plane 3-tree.
Let p be the representative vertex and a, b, c be the outer vertices
of Gn. The vertex p, along with the three outer vertices a, b and c,
form three triangles {a, b, p}, {b, c, p} and {c, a, p} as illustrated
in Figure 21. We call those three triangles the nested triangles
around p.

Fig. 21. Nested triangles around p.

The representative tree of Gn is an ordered rooted tree Tn−3

satisfying the following two conditions (a) and (b). (a) if n = 3,
Tn−3 consists of a single vertex. (b) if n > 3, then the root p of
Tn−3 is the representative vertex of Gn and the subtrees rooted at
the three counter-clockwise ordered children q1, q2 and q3 of p in
Tn−3 are the representative trees of Gn(C1), Gn(C2) and Gn(C3),
respectively, where C1, C2 and C3 are the three nested triangles
around p in counter-clockwise order.

Fig. 22. representative tree Tn−3 of Gn.

Figure 22 shows the representative tree Tn−3 of Gn. Every plane
3-tree has a unique representative tree with exactly n-3 internal
vertices and 2n-5 leaves. From Figure 22 we can see that
representative tree Tn−3 of Gn has 5 internal vertices and 11
leaves when original graph n=8 vertices. For any plane 3-tree
representative tree Tn−3 of Gn can be found in O(n) time.

6. MY PROPOSITION
6.1 Chordal Bipartite Graph
Chordal bipartite graphs are a useful and natural class of graphs
with many interesting properties. We will see that these properties
give rise to a form of representation which is fairly natural and is
space optimal, but is not implicit. Chordal bipartite graphs are also
interesting in that they are one of the most important classes of
graphs which are known to have more than 2Ω(nlogn) and at most
2o(n2)members on n vertices.
A graph G is chordal bipartite if G is bipartite, and every cycle of
length at least 6 has a chord. The name comes from the idea that
these are the bipartite analogue of chordal graph. G is chordal if
every cycle which can have a chord (that is, every cycle of length

8
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at least 4) has a chord. In bipartite graphs, only cycles of length at
least 6 can have chords, so chordal bipartite graphs are bipartite
graphs such that every cycle which could have a chord actually has
a chord.
Chordal bipartite graphs are analogus to chordal graphs in many
other ways.It is known that G is chordal if and only if evry
minimal seperator is a clique, and that a bipartite graph is chordal
bipartite if and only if every minimal separator is a complete
bipartite graph.

6.2 Plane 3-tree with Nearest Neighbor Interchange
and Chordal Bipartite Graph Synthesis

In this section I want to show how a chordal bipartite graph can be
drwan as a plane 3-tree and its nearest neighbor interchanges
affect the representative tree.

Fig. 23. Illustration with figure.

With nearest neighbor interchanges we can develop a edge adding
mechanism calculating appropriate scoring function.
I have measured the scoring function based on the links with the
neighbor connected with each other node. In this way we can have
the maximum score for the center nodes. We can measure
maximum likelihood of the nodes for particle synthesis in DNA
matching problem. From figure 23 we can identify the maximum
score for node 4. Node 4 has maximum score of 4. So, maximum
likelihood function can be applicable for node 4. In this way, we
can draw figures for DNA synthesis and can add vales to the
colored images for each particle. These colored factor can be
further diagnosed in image analysis part which I have considered
separately in another design.
Plane 3-tree with chordal bipartite graph has many more
interesting properties, but I have mentioned only a portion of work
in this section. Because writing of this work focuses on
investigating how plane 3-tree can be affected by nearest neighbor
interchanges and chordal bipartite graph which is useful in DNA
sample matching and ribosome particle synthesis.

7. CONCLUSION
In this paper, I wanted to show how 3 types of graph can be joined
with a tree property to give a better understanding of some graph
properties which can be used to analyse bioinformatics research.
Calculating scoring function with nearest neighbor interchanges
we can improve our DNA matching problem, ribosome synthesis

operation. The scoring function can be designed with specific
information suitable for a particular problem. This is a survey on
different types of graphs and mechanisms of different types of
operation on graphs. While doing work on this survey I have
identified this new technique for chordal bipartite graph and plane
3-tree. These combined mechanism is useful for graph partitioning
in DNA and ribosome synthesis of bioinformatics research.
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