
International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

17

A Framework for Optimization of the Boot Time on

Embedded Linux Environment with Raspberry Pi

Platform

Md. Farukh Hashmi
Anurag Group of Institutions

Ghatkesar, R. R. District
Hyderabad, (India)

M. Pramod Kumar
Anurag Group of Institutions

Ghatkesar, R. R. District
Hyderabad, (India)

K. S. Rao
Anurag Group of Institutions

Ghatkesar, R. R. District
Hyderabad, (India)

ABSTRACT

Embedded system performance and utilization has increased

over years, these can be observed most obviously in the

electronic consumer market once a mobile phone are now

replaced by smart phones and internet tablets, once a car

radios are now replaced by In-Vehicle Infotainment Systems.

More and more functionality is introduced into the once

single-purpose system to utilize the increasing computational

power, driven by the system's main target of providing

improved services to the user. That implies an even faster

growing complexity to be handled by the embedded systems

and availability on demand. Operating system based on the

Linux kernel are used in most of these consumer electronic

devices, the user of these devices except these devices to be

available for use very soon after being turned on. This leads to

optimization of startup time for Linux. In this paper, the boot

process has been described under the Linux. Initial boot time

and by using some of available technique how to reduce boot

time for particular application. By using the boot chart he

have measured the initial boot time and optimization time.

After measuring the initial time he removed the unwanted

applications and services which you might not needed but

they are installed by default during OS installation and

unknowingly start eating your system resources. Unwanted

process need to kill. In order to kill a running process in

Linux, use the „Kill PID„command. But before running Kill

command, he must know the PID of the process. Here I want

to find a PID of „cupsd„ process. [nano@pramod]# ps ax |

grep cupsd To kill that PID, run the following command.

[nano@pramod]# kill -9 1511. He describe available

techniques how to reduce boot time for particular application

eg .reducing kernel boot time, System startup time and

application speed, Application size and Ram usage

Keywords

Embedded, Linux, Boot, Optimization, Kernel, System,

Raspberry Pi.

1. INTRODUCTION
Linux developed by Linux Torvalds. Today Linux has ported

on different microprocessors and runs on all sorts of platform.

Embedded Linux is a type of Linux operating system/kernel

that is designed to be installed and used within embedded

devices and appliances. It is a compact version of Linux that

offers features and services in line with the operating and

application requirement of the embedded system [1].

Embedded Linux offers relief from an unstable and unfocused

business model, and there are other strong reasons to consider

using Linux: Complete source code availability makes it

easier to fix items yourself, rather than being dependent on

black boxes that are under someone else‟s control.

Development tools to support different processors are

available as free downloads, or with a support offering that

comes with a cost. There are many Linux distributions

available with companies and organizations that support them,

creating a lack of dependence on the whims of a single

company. Many universities offer Linux courses, thus future

engineers will be available with basic knowledge. Availability

of different programming environments such as Java, Qt, and

.NET also means a company can port existing Windows

applications over the embedded Linux. BSP support is

available for a variety of processors: ARM, x86, PowerPC,

MIPS, etc. as well as driver support for many peripherals.

Linux drivers are as readily available as Windows drivers [2].

Boot time i.e. the time taken by the system to show its

"availability" since the power button was pushed on, is a

becoming a key differentiator in the usability factor.

The important point to understand is that optimization of boot

time should not compromise the system‟s existing

functionality and stability by any degree but in turn help the

system to enhance its booting process for faster system

upgrade. Before optimizing, first we have to understand the

boot process, measure the initial time and optimize it by using

different reduction techniques [2].

2. LITRETURE SURVEY
Optimization techniques on embedded Linux and methods to

improve boot up time in Linux so far developed by authors

1. Tim R. Bird," Methods to Improve Boot up Time in

Linux”: Users of consumer electronics products expect their

devices to be available for use very soon after being turned

on. Configurations of Linux for desktop and server markets

exhibit boot times in the range of 20 seconds to a few

minutes, which is unacceptable for many consumer products.

No single item is responsible for overall poor boot time

performance [1].

2. D. P. Bovet, M. Cesati, Understanding the Linux Kernel: In

the spring semester of 1997, we taught a course on operating

systems based on Linux 2.0. The idea was to encourage

students to read the source code [2].

3. Christopher Hallinan, Reducing Boot Time: Techniques for

Fast Booting: Fast Boot is Important to Many Products

Consumer, Automotive, Medical Devices, etc. Significant

gains w. minimal investment first, define “boot”. Does it

mean Splash screen? 1st user process started? Device fully up

and running, connected? Boot time is affected by many

factors Hardware Design Boot loader Implementation Kernel

Configuration Application Profile [3].

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

18

4. Doug Abbott: “Linux for Embedded and Real time

Applications”, by Doug Abbott has been of great help in

providing an introduction to the process of building embedded

systems in Linux. It has helped us understand the process of

configuring and building the Linux kernel and installing tool

chains [4].

5. Google‟s Larry: Linux development tools, being available

through the GPL license, are available online from sources

such as RDP protocol. These online helpdesks have been the

source for all the tool chains that we have downloaded and the

subsequent development [5].

3. PROPOSED METODOLOGY
Initially when the board starts hardware initialization take

place in the boot loader .next kernel starts to load and init

scripts and applications can be run the board is connected to

monitor using HDMI cable power supply given to board

externally. Mouse and keyboard are connected to the board

directly. The Proposed system Diagram shown in figure 1

below

 Block Diagram

Fig 1: Detailed System Diagram

When the power is on ROM boot starts and next bootstrap

starts .the boot loader is used to load the kernel and start it

after loading the kernel .the kernel starts and init scripts run

and after that critical applications run [3].

3.1 Various Optimization Techniques
To achieve the optimal or fast startup time the Linux

embedded system need to be optimized based on the

optimization process mentioned in the above section, once the

need and process is identified, the optimization can be

categorized and done by below activities reducing kernel boot

time

Kernel boot time can be reduced by performing some or all of

these activities

1. Disable IP auto config

2. Reducing the number of PTYs

3. Disable console output

4. Preset loops_per_jiffy

5. Kernel decompression

6. Reduce the kernel size

7. Faster rebooting

8. Copy kernel and initramfs from flash to RAM using DMA

9. A sync initcall

10. Deferred initcalls

3.2 System startup Time and Application

Speed
System startup speed is dependent on multiple factors apart

from the kernel, the file system, processor, IO and services,

the optimization for startup time can be achieved by utilizing

some or all the following activities.

1. Starting system services

2. Pre-fetching Reading ahead

3. Execute In Place (XIP)

4. Processor acceleration instructions

5. Use faster file systems

6. Speed up applications with tmpfs

7. Boot from a hibernate image

8. Reducing disk footprint and RAM size of the Linux kernel

9. Replacing initrd by initramfs

3.3 Application Size and RAM Usage
The application size can have a detrimental impact on the

whole embedded system embedded system is generally

starved for RAM and other hardware because of power

consumption, size and other environmental constraints. The

optimization of application size and RAM usage can be

performed based on some or all of the following activities [3]

1. Static or dynamic linking

2. Library Optimizer

3. Using a lighter C library

4. Compressing file systems

5. Restartable applications

6. Merging duplicate files

7. Compiler space optimizations

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

19

4. LINUX BOOT PROCESS

4.1 Boot Process Flow
 The boot time for an embedded system is of paramount

importance. To optimize the boot time of the Linux, let‟s

understand the process of booting a system running Linux

operating system, the Linux booting process consists of

multiple stages as shown in the figure 2 below

Fig 2: Process Flow for Optimization Process

This process includes early hardware initiation and interaction

and loads the kernel from flash to RAM [9]-[10]. The time

take during this process can be described as

1. Power/ Clock Stabilization  ------ usually negligible but

should be considered

2. Low Level CPU Initialization - ~ 100 ms ------ Boot loader

(often multi-stage, i.e. secure boot)

 Kernel Startup

This process does the following activities

1. Loading images (kernel, u -boot, root file system, dtb)  

 a. Usually from NOR or NAND Flash 

 b. Compressed kernel

2. Subsystem (Driver) initialization 

3. Mounting a root file system

4.2 User space
The user space process covers

1. Init scripts

2. System processes

3. Applications

The user space process and configuration are very user and

Applications dependent; the user space can have a display

Terminal or may not have a display terminal. The best

example of the user space is the user interface of the Android

operating system which is working over the Linux kernel [15].

Booting components:

Boot-loader: A boot loader, also called a boot manager, is a

small program that places the operating system (OS) of a

computer into memory. When a computer is powered-up or

restarted, the basic input/output system (BIOS) performs some

initial tests, and then transfers control to the master boot

record (MBR) where the boot loader resides. Here in

embedded platform we use Bootstrap program (for example u-

boot, red-boot)

X- Loader: The x-loader is a small first stage boot-loader

derived from the u-boot base code. It is loaded into the

internal static RAM by the OMAP ROM code. Due to the

small size of the internal static RAM, the x-loader is stripped

down to the essentials. The x-loader configures the pin

muxing, clocks, DDR, and serial console, so that it can access

and load the second stage boot-loader (u-boot) into the DDR.

U-boot : the u-boot is a second stage boot loader that is loaded

by x-loader .the u-boot can perform CPU dependent and board

dependent initialization and u-boot performs the operations

not performed by x-loader[10].

Kernel: kernel is used to communicate user applications and

hardware .it is interface between user and hardware. The main

tasks of the kernel are: Process management, Device

management, and Memory management, interrupt handling,

I/O communication, File system, etc. During boot process,

The kernel initializes devices, mounts the root file system

specified by the boot loader as read only, and runs Init

(/sbin/init) which is designated as the first process run by the

system (PID = 1)

Root file system: The root file system is the file system that is

contained on the same partition on which the root directory is

located, and it is the file system on which all the other file

systems are mounted (i.e., logically attached to the system) as

the system is booted up (i.e., started up)[17].

5. HARDWARE AND SOFTWARE

PLATFORM
Embedded Linux required hardware components .the

hardware board used in this project is Raspberry pi board [6].

Explanation of Raspberry pi and software used in this project

are explained in this paper.

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

20

5.1 Hardware Platform
The Raspberry Pi has a Broadcom BCM2835 system on a

chip (SOC), which includes an ARM1176JZF-S 700 MHz

processor, Video Core IV GPU, and was originally shipped

with 256 megabytes of RAM, later upgraded (Model B &

Model B+) to 512 MB. It does not include a built-in hard disk

or solid-state drive, but it uses an SD card for booting and

persistent storage, with the Model B+ using a Micro SD.

Model B is the higher-spec variant of the Raspberry Pi, with

512 MB of RAM, two USB ports and a 100mb Ethernet port.

It‟s our most popular model: you can use it to learn about

computing; to power real-world projects (like home

breweries, arcade machines, musical root vegetables, robot

tanks and much more); as a web server; a bit coin miner; or

you can just use it to play Mine craft[12]-[16].The Raspberry

pi board as shown in figure 3 Below

Fig 3: Raspberry pi Board

5.2 Software Platform
Linux or GNU/Linux is a free and open source software

operating system for computers. The operating system is a

collection of the basic instructions that tell the electronic parts

of the computer what to do and how to work. Free and open

source software (FOSS) means that everyone has the freedom

to use it, see how it works, and changes it [7].

GCC compiler: The original GNU C Compiler (GCC) is

developed by Richard Stallman, the founder of the GNU

Project. Richard Stallman founded the GNU project in 1984 to

create a complete Unix-like operating system as free software,

to promote freedom and cooperation among computer users

and programmers

1. Installation

Some simple guides to setting up the software on your

Raspberry Pi. Which gives the user an operating system

selection from the standard distributions? The recommended

distribution for normal use is Raspbian. Alternatives are

available, such as Open ELEC (XBMC media centre) or Arch

Linux.

2. Installing operating system images:

How to install a Raspberry Pi Operating System image on an

SD card. You will need another computer with an SD card

reader to install the image.

3. Download the Image

Official images for recommended Operating Systems are

available to download from the Raspberry Pi website:

raspberrypi.org/downloads

Alternative distributions are available from third party

vendors.

After downloading the .zip file, unzip it to get the image file

(.img) for writing to your SD card.

4. Writing an Image to The SD Card

With the image file of the distribution of your choice, you

need to use an image writing tool to install it on your SD card.

Installing operating system images on Linux:

Please note that the use of the dd tool can overwrite any

partition of your machine. If you specify the wrong device in

the instructions below you could delete your primary Linux

partition. Please be careful. Run df -h to see what devices are

currently mounted.

If your computer has a slot for SD cards, insert the card. If

not, insert the card into an SD card reader, and then connect

the reader to your computer.

Run df -h again. The new device that has appeared is your SD

card. The left column gives the device name of your SD card;

it will be listed as something like /dev/mmcblk0p1 or

/dev/sdd1. The last part (p1 or 1respectively) is the partition

number but you want to write to the whole SD card, not just

one partition. Therefore you need to remove that part from the

name (getting, for example, /dev/mmcblk0 or /dev/sdd) as the

device for the whole SD card. Note that the SD card can show

up more than once in the output of df; it will do this if you

have previously written a Raspberry Pi image to this SD card,

because the Raspberry Pi SD images have more than one

partition [8].

Now that you've noted what the device name is, you need to

unmount it so that files can't be read or written to the SD card

while you are copying over the SD image.

Run un-mount /dev/sdd1, replacing sdd1 with whatever your

SD card's device name is (including the partition number).

If your SD card shows up more than once in the output of df

due to having multiple partitions on the SD card, you should

un-mount all of these partitions.

In the terminal, write the image to the card with the command

below, making sure you replace the input file if= argument

with the path to your .imgfile, and the /dev/sdd in the output

file of= argument with the right device name. This is very

important, as you will lose all data on the hard drive if you

provide the wrong device name. Make sure the device name is

the name of the whole SD card as described above, not just a

partition of it; for example sdd, not sdds1 or sddp1; or

mmcblk0, not mmcblk0p1 [13].

dd bs=4M if=2015-05-05-raspbian-wheezy.img of=/dev/sdd

Please note that block size set to 4M will work most of the

time; if not, please try 1M, although this will take

considerably longer.

Also note that if you are not logged in as root you will need to

prefix this with sudo.

The dd command does not give any information of its

progress and so may appear to have frozen; it could take more

than five minutes to finish writing to the card. If your card

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

21

reader has an LED it may blink during the write process. To

see the progress of the copy operation you can run pkill -

USR1 -n -x dd in another terminal, prefixed with sudo if you

are not logged in as root. The progress will be displayed in the

original window and not the window with the pkill command;

it may not display immediately, due to buffering.

Instead of dd you can use dcfldd; it will give a progress report

about how much has been written [13]-[14].

You can check what's written to the SD card by dd-ing from

the card back to another image on your hard disk, truncating

the new image to the same size as the original, and then

running diff (or md5sum) on those two images.

The SD card might be bigger than the original image, and dd

will make a copy of the whole card. We must therefore

truncate the new image to the size of the original image. Make

sure you replace the input file if= argument with the right

device name. diff should report that the files are identical.

dd bs=4M if=/dev/sdd of=from-sd-card.img

Truncate --reference 2015-05-05-raspbian-wheezy.img from-

sd-card.img

Diff -s from-sd-card.img 2015-05-05-raspbian-wheezy.img

Run sync; this will ensure the write cache is flushed and that it

is safe to unmount your SD card.

Remove the SD card from the card reader.

6. MEASUREMENT AND

OPTIMIZATION

6.1 Initial Measurement
Optimization begins from knowing the current boot-time The

overall boot process involves boot-loader(s), Linux kernel and

the file system. We must identify the markers in the boot log

that can be used as delimiters for each stage of the boot

process. This helps in determining the time spent in each

stage. By using boot chart we can calculate the initial

measurement by typing this command boot chart

/var/log/bootchart.tgz in the terminal after measuring the

initial time we have to do optimization [11].

Boot chart: Boot chart is a tool for performance analysis and

visualization of the GNU/Linux boot process. Resource

utilization and process information are collected during the

boot process and are later rendered in a PNG, SVG or EPS

encoded chart.

Boot chart provides a shell script to be run by the kernel in the

init phase. The script will run in background and collect

process information, CPU statistics and disk usage statistics

from the/proc file system. The performance data are stored in

memory and are written to disk once the boot process

completes.

6.2 Optimization Process
Linux boot optimizations methods are very platform and

application dependent; the optimization need to consider the

whole system architecture for selecting the boot optimization

strategies

1. Size
The size dictates what would be kernel image size based on

the available hardware or application, the size optimization

process including

2. Speed

The speed optimization process includes

1. Optimize for target processor

2. Use faster medium for loading primary, secondary boot

loaders and kernel.

3. Reduce number of tasks leading to the boot.

6.3 Remove Unwanted Services from

Linux
 Lets first know what kind of services are running on the

system using the following commands.

[nano@pramod]# ps ax

Now, let‟s have a quick look at the processes accepting

connection (ports) using the netstat command as shown

below.

[nano@pramod]# netstat –lp

6.4 How to Kill a Process in Linux
In order to kill a running process in Linux, use the „Kill PID„

command. But, before running Kill command, we must know

the PID of the process. For example, here he want to find a

PID of „cupsd„ process.

[nano@pramod]# ps ax | grep cupsd

So, the PID of „cupsd„ process is „1511„. To kill that PID, run

the following command.

[nano@pramod]# kill -9 1511

6.5 How to Disable a Services in Linux
In Debian based distributions such as Ubuntu, Linux Mint and

other Debian based distributions use a script called updaterc.d.

For example, to disable the Apache service at the system

startup execute the following command. Here „-f‟ option

stands for force is mandatory.

[nano@pramod]# update-rc.d -f apache2 remove

After making these changes, The system next time will boot

without these UN-necessary process which in-fact will be

saving our system resource and the server would be more

practical, fast, safe and secure.

Disable Wait for Network

Step1: sudo raspi-config

Step2: select option 4 to disable network whole booting

Step3: select Finish

Auto Login

Step 1: Open a terminal session and edit inittab file.

sudo nano /etc/inittab

Step 2: Disable the getty program.

Navigate to the following line in inittab

1:2345:respawn:/sbin/getty 115200 tty1

And add a # at the beginning of the line to comment it out

#1:2345: respawn:/sbin/getty 115200 tty1

Step 3: Add login program to inittab.

Add the following line just below the commented line

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

22

1:2345: respawn: /bin/login -f pi tty1 </dev/tty1 >/dev/tty1

2>&1

This will run the login program with pi user and without any

authentication

Step 4: Save and Exit.

Press Ctrl+X to exit nano editor followed by Y to save the file

and then press Enter to confirm the filename.

6.6 U-boot Optimization:
Recompile reboot to remove features not needed in production

remove unnecessary functionality

1. disable features in include/configs/<soc>-<board>.h .this is

board specific file

2. remove boot delay setenv bootdealy 0.it saves several

seconds

3. CONFIG_ZERO_BOOTDELAY_CHECK : it allows to

stop the auto boot process by hitting a key even if boot delay

is set to 0.

4.simplify scripts: Some boards have over-complicated

scripts:

bootcmd=run bootf0

bootf0=run ${args0}; setenv bootargs ${bootargs} \

maximasp.kernel=maximasp_nand.0:kernel0; nboot

0x70007fc0 kernel0

Let's replace this by our own scripts

5. Boot loader: copy the exact kernel size

When copying the kernel from flash to RAM, we still see

many systems that copy too many bytes, not taking the exact

kernel size into account. In U-Boot, use the nboot command:

nboot ramaddr 0 nandoffset

6. U-Boot - Remove kernel CRC check : Disable CRC

checking with a U-boot environment variable: setenv verify

no

7. Optimizing init scripts : Start all your services directly from

a single startup script (e.g.

/etc/init.d/rcS). This eliminates multiple calls to /bin/sh.

Replace udev with mdev. mdev is part of BusyBox. It is not

running as a daemon and you can either run it only once or

have it handling hotplug events. Remove udev (or mdev) if

you just need it to create device

files. Use devtmpfs (CONFIG_DEVTMPFS) instead,

automatically managed by the kernel, and cheaper.

8. Reduce forking: fork/exec system calls are very expensive.

Because of this, calls to executables from shells are slow.

Even an echo in a Busy Box shell results in a fork syscall!

▶ Select Shells -> Standalone shell in Busy Box configuration

to make the shell call applets whenever possible. Pipes and

back-quotes are also implemented by fork/exec. You can

reduce their usage in scripts. Example: cat /proc/cpuinfo | grep

model

Replace it with: grep model /proc/cpuinfo

6.7 Reducing Kernel Boot Time
Reduce kernel size: Remove features not needed in your

system: features, drivers, and also debugging functionality. By

typing the command sudo rasp-config in this we can remove

the features that are not requirdafter completing the

optimization again we have to reboot by typing the command

sudo reboot after whole optimization. Comparisons the Time

without optimization and with optimization are shown Table

1.

Table 1. Comparisons the Time without optimization and

with optimization

Boot

Process

WITHOUT

OPTIMIZATION

WITH

OPTIMIZATION

u-boot 6sec 4 sec

Linux

kernel

9 sec 7 sec

Init 11sec 8 sec

Total 25sec 19sec

Recompile u-boot to remove features not needed in

production. Disable features in command line edition a

smaller and simpler u-boot is faster to load and faster to

initialize. We had removed boot delay it saves several seconds

before you do boot delay recompile u-boot with config -zero-

boot delay-check it allows to stop the boot process by hitting a

key even if boot delay is set to zero. by simplifying scripts we

saved many number of seconds .the scripts changed as our

requirement it saves many number of seconds. In boot loader

copy the exact kernel size from flash to memory. Instead of

loading the boot loader and then the kernel load the kernel

directly. Boot skips mem move operation by directly by

loading the u-image at the right address Optimizing kernel

code for size we reduced G-zip to lz4 it is a compressed file.

To reduce the kernel size main mechanism is to use kernel

modules. We compiled everything that is not needed at boot

time as a module by this kernel will be smaller and load

faster. In production console is not needed so disabled it by

passing quiet argument in command line you still be able to

get d messages to get kernel messages time between starting

kernel and init without quiet and with quiet it vary. Less time

will be saved in a reduced kernel. At each boot the Linux

kernel calibrates a delay loop preset the loops per jiffy.

Module loading and loading features are removed and power

management features are removed and we have optimized the

necessary functionality start all your services directly from a

single startup. These eliminate multiple calls to bin shell script

.replace u-dev to m-dev it is a part of busy box. Boot chart for

raspberry pi with and without optimization as shown in figure

4 and figure 5

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

23

Fig 4: Boot Chart without Optimization

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

24

Fig 5: Boot Chart with Optimization

Os installation on Raspberry pi, Snapshot of Raspberry pi

Board with Accessories as shown in figure 6,7

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

25

Fig 6: Os installation on Raspberry pi

Fig 7: Snapshot of Raspberry pi Board with Accessories

7. CONCLUSION
The tool Boot chart is useful to gain insight in the boot

process and to examine the different factors affecting boot

time such as resource utilization. It is used in experiments

performed to determine the time involved in kernel

decompression. Determination of time consumed during these

kinds of middle level steps can be a tedious task without help

of tools like print K and Grab serial. Some of the reduction

techniques which were initially meant for small embedded

systems can also be used in desktops or server systems. only

by few seconds but without causing any loss in functionality.

Apart from these, further experiments and research need to be

carried out in order to combine and implement various

techniques on different systems successfully. From above

results and experiments he conclude that booting process of

the Linux system is analyzed under different conditions.

8. FUTURE WORK
Apart from reduction techniques discussed in many sections

above, there are many other areas where research work is

carried out in order to minimize total system downtime

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 3, March 2017

26

without any loss in functionality. Dynamic updates and K

exec are among these areas.

9. ACKNOWLEDGMENTS
I express my sincere gratitude to my supervisor Dr. Md.

Farukh Hashmi, for his precious suggestions, motivation and

co-operation for the successful completion of this project.

10. REFERENCES
[1] Tim R. Bird," Methods to Improve Boot up Time in

Linux, “Sony Electronics. Proceedings of the Linux

Symposium Volume One July 21st–24th, 2004 Ottawa,

OntarioCanada.Available:http://kernel.org/doc/ols/2004/

ols2004v1-pages-79-88.pdf.[Jan.30, 2009].

[2] D. P. Bovet, M. Cesati, Understanding the Linux Kernel,

O‟Reilly press, 2002.

[3] Christopher Hallinan,” Reducing Boot Time: Techniques

for Fast Booting”, MontaVista Software,”

http://www.mvista.com/download//power/Reducing-

boot-time-techniquesfor- fast-booting.pdf [Accesses Jan

31 2009].

[4] Doug Abbott: “Linux for Embedded and Real time

Applications”,

[5] Google‟s Larry: Linux development tools

Software,”http://www.mvista.com/download//power/Red

ucing-boot-time-techniquesfor-fast-booting.pdf

[Accesses Jan 31 2009].

[6] Michael W. Godfrey, and QiangTu "Evolution in Open

Source Software: A Case Study," Software Maintenance,

2000.Proceedings. International Conference on

Publication Date: 2000, IEEE.

[7] Red Hat Linux Documentation, “Installing Red Hat

Linux Boot Loader Configuration ,”

http://www.redhat.com/docs/manuals/linux/RHL-9-

Manual/installguide/ s1-x86-bootloader.html [Accesses

Feb 23 2009]

[8] Linux on the IBM ESA/390 mainframe architecture, 2

Feb,2009,http://linas.org/linux/i370/i370.html.

WhoUsesLinux?,Feb2009,

http://www.lugod.org/presentations/ca4h/who_uses.html.

[9] Ibrahim F. Haddad,” Open-Source Web Servers:

Performance on a Carrier-Class Linux Platform,”, Feb

2009. http://www.linuxjournal.com/article/4752.

[10] LotteMygind, Rune Hylsberg Jacobsen and Oskar

Swirtun,”Introducing Linux and open source,

http://www.ericsson.com/ericsson/corpinfo/publications/r

eview/2006_01/files/.

[11] ChanjuPark,KyuhyungKim,Youngjun Jang and Kyungju

Hyun ,“Linux Boot up Time Reduction for Digital Still

Camera”, Samsung Electronics, “ ,Co. Proceedings of the

Linux Symposium Volume Two ,July 19th–22nd, 2006

Ottawa, Ontario Canada . Available

http://www.linuxsymposium.org/2006/linuxsymposium_

procv2.pdf#page=303.

[12] Kernel XIP, http://elinux.org/Kernel_XIP Last Accesses

Feb 25 2009].

[13] M. M. Lehman, D. E. Perry, and J. E Ramil. Implications

of evolution metrics on software maintenance. In Proc. of

the 1998 Inil.ConJ on Software Maintenance (ICSM‟98),

Bethesda, Maryland, Nov 1998.

[14] M. M. Lehman, J. E Ramil, P. D. Wemick, D. E. Perry,

and W. M. Turski ,” Metrics and laws of software

evolution – the nineties view ,” In Proc. of the Fourth

Intl. Software Metrics Symposium (Metrics‟97),

Albuquerque, NM, 1997.

[15] Inwhee Joe, Sang Cheol Lee. “Bootup Time

Improvement for Embedded Linux using Sanpshot

Images Created on Boot Time,” Proc. Of The 2nd Int.

Conf. on Next Generation Information Technology-

ICNIT, Gyeongju, South Korea, 2011

[16] https://www.raspberrypi.org/documentation/hardware/ras

pberrypi/bcm2835/README.md

[17] https://en.wikipedia.org/wiki/Linux_startup_process

IJCATM : www.ijcaonline.org

