Solution of Initial Value Problem of Bratu – Type Equation using Modifications of Homotopy Perturbation Method

Bothayna S. H. Kashkari
Department of Mathematics
Faculty of Science,
King Abdulaziz University
Jeddah, KSA

Sharifa S. Z. Abbas
Department of Mathematics
Faculty of Science,
King Abdulaziz University
Jeddah, KSA

ABSTRACT
Homotopy perturbation method (HPM) is an effective method for solving nonlinear differential equations. In this paper, some modifications of this method has been proposed to initial value problem of Bratu - Type model. The combination of Laplace transform and homotopy perturbation (LHPM), the new homotopy perturbation method (NHPM) and Laplace new homotopy perturbation method (LNHPM) are applied, and the solutions are considered as an infinite series that converge rapidly to the exact solutions.

Keywords
Bratu – Type equation, Homotopy perturbation method, Laplace homotopy perturbation method, new homotopy perturbation method, Laplace new homotopy perturbation method

1. INTRODUCTION
The Bratu-type equation arise from a simplification of the solid fuel ignition model in thermal combustion theory. This type has many other physical applications, such as chemical reactor theory, radiative heat transfer, electrostatics, fluid mechanics physical applications ranging from chemical reaction theory and nanotechnology to the expansion of universe [1]. Several numerical techniques had been applied to obtain the approximate solution of the Bratu-type problem. For example spline method [2-3], wavelet method [4-6], spectral method [7-10] and Adomain decomposition method [11-14].

In 1992, the homotopy analysis method (HAM) was proposed by Liou [15], some authors used that method and its modifications to solve Bratue – type equation [16-17].

In 1999, J. He presented perturbation technique coupled with the homotopy technique, it was known as HPM [18]. Recently, The homotopy perturbation method and its modification can effectively, easily, and accurately solve a large class of linear and nonlinear, ordinary or partial, deterministic or stochastic differential equations. The approximate solutions converge rapidly to accurate solutions. The method is well-suited to physical problems since it does not require the linearization and other restrictive methods, which may change the problem. The homotopy perturbation method and variational homotopy perturbation method had been applied for Bratue – type problem in [19-20].

In this paper, some modifications of homotopy perturbation method are presented to solve the initial value problem of second order differential equation of Bratue – Type. In section 2, HPM is reviewed. In section 3, the combination of Laplace transform and homotopy perturbation method is presented.

NHPM is reviewed in section 4. In section 5, the combination of Laplace transform and new homotopy perturbation method is presented. Finally, in section 6, the previous methods are applied to second order initial value problems of Bratue – Type.

2. THE HOMOTOPY PERTURBATION METHOD
HPM is combining the classical perturbation technique with the homotopy concept in topology [18].

Consider the nonlinear problem

\[ A(u) - f(x) = 0, \quad x \in \Omega \quad (0.1) \]

with boundary condition

\[ B(u, \frac{du}{dx}) = 0, \quad x \in \Gamma \quad (0.2) \]

where \( A \) is a general differential operator, \( B \) is a boundary operator, \( f(x) \) is a known analytic function, \( \Gamma \) is the boundary of the domain \( \Omega \).

The operator \( A \) can be divided into two operators’ \( L \) and \( N \), where \( L \) is linear and \( N \) is nonlinear, Eq. (0.1) can be rewritten as

\[ L(u) + N(u) - f(x) = 0 \quad (0.3) \]

Construct a homotopy \( v(x, p) : \Omega \times [0,1] \rightarrow \mathbb{R} \) which satisfies

\[ \phi(v, p) = (1 - p)[L(v) - L(u_0)] + p[A(v) - f(x)] = 0, \quad p \in [0,1], x \in \Omega \quad (0.4) \]

or

\[ \phi(v, p) = L(v) - L(u_0) + pL(u_0) + p[N(v) - f(x)] = 0 \quad (0.5) \]

where \( p \in [0,1] \) is an embedding parameter, \( u_0 \) is an initial approximation of Eq. (0.1), which satisfies the boundary conditions.

Assume that the solution of Eq. (0.4) can be written as a power series in \( p \):

\[ v(x, p) = \sum_{n=0}^{\infty} v_n(x)p^n \]

}\[ v_0(x) = u_0(x) \]

Then, the solution of the problem can be obtained as the limit of the approximate series as \( p \rightarrow 1 \):

\[ v(x) = \lim_{p \rightarrow 1} v(x, p) = \sum_{n=0}^{\infty} v_n(x) \]

In this paper, some modifications of homotopy perturbation method are presented to solve the initial value problem of second order differential equation of Bratue – Type.
\[ v = \sum_{n=0}^{\infty} p^n v_n \quad (0.6) \]

Substituting Eq. (0.6) into Eq. (0.5) and collecting the terms of the same power of \( p \) gives

\[
p^0 : \quad v_0 = u_0 \quad (0.7)
\]

\[
p^1 : \quad \begin{cases} L(v_1) = -L(u_0) - N(v_0) + f(x) \\ B(v_1, \frac{dv_1}{dx}) = 0 \end{cases} \quad (0.8)
\]

\[
p^2 : \quad \begin{cases} L(v_2) = -N(v_1, v_0) \\ B(v_2, \frac{dv_2}{dx}) = 0 \end{cases} \quad (0.9)
\]

\[
p^3 : \quad \begin{cases} L(v_3) = -N(v_2, v_1, v_0, \ldots, v_{1-i}) \\ B(v_3, \frac{dv_3}{dx}) = 0 \end{cases} \quad (0.10)
\]

\[
\text{Setting } p = 1, \text{ the approximate solution of Eq. (0.1) will be}
\]

\[ u = \lim_{p \to 1} v = \sum_{i=0}^{\infty} v_i \quad (0.11) \]

The series in Eq. (0.11) converges for most cases and it depends upon the nonlinear operator \( A(v) \).

3. LAPLACE HOMOTOPY PERTURBATION METHOD

LHPM is combining Laplace transform and HPM, it has good stability properties, this method is started by applying Laplace transform on both sides of (0.5), we get

\[
\mathcal{L}[L(v) - L(u_0) + pL(u_0)] + p[N(v) - f(x)] = 0 \quad (0.12)
\]

By using the differential property of Laplace transform

\[
\mathcal{L}[v] = \frac{1}{s} \{s^{-1}v(0) + s^{-2}v'(0) + \cdots + v^{(-1)}(0) + \mathcal{L}[L(u_0) - pL(u_0) - p[N(v) - f(x)]]\} \quad (0.13)
\]

By applying inverse Laplace transform on both side of Eq. (0.13)

\[
v = \mathcal{L}^{-1}\left\{\frac{1}{s} \{s^{-1}v(0) + s^{-2}v'(0) + \cdots + v^{(-1)}(0) + \mathcal{L}[L(u_0) - pL(u_0) - p[N(v) - f(x)]]\}\right\} \quad (0.14)
\]

Rewrite Eq. (0.14) is the form

\[
\sum_{n=0}^{\infty} p^n v_n = \mathcal{L}^{-1}\left\{\frac{1}{s} \{s^{-1}v(0) + s^{-2}v'(0) + \cdots + v^{(-1)}(0) + \mathcal{L}[L(u_0) - pL(u_0) - p[N(v) - f(x)]]\}\right\} \quad (0.15)
\]

By equating the terms with identical powers of \( p \)

\[
p^0 : \quad v_0 = \mathcal{L}^{-1}\left\{\frac{1}{s} \{s^{-1}v(0) + s^{-2}v'(0) + \cdots + v^{(-1)}(0) + \mathcal{L}[L(u_0) - pL(u_0) - p[N(v) - f(x)]]\}\right\} \quad (0.16)
\]

\[
p^1 : \quad \begin{cases} v_1 = \mathcal{L}^{-1}\left\{\frac{1}{s} \mathcal{L}[-L(u_0)] - [N(v_1, v_0)]\right\} - p[N(v_0) - f(x)] \end{cases} \quad (0.17)
\]

\[
p^2 : \quad \begin{cases} v_2 = \mathcal{L}^{-1}\left\{\frac{1}{s} \mathcal{L}[-N(v_1, v_0) - \mathcal{L}[-L(u_0)] - [N(v_1, v_0)]\right\} \end{cases} \quad (0.18)
\]

\[
p^3 : \quad \begin{cases} v_3 = \mathcal{L}^{-1}\left\{\frac{1}{s} \mathcal{L}[-N(v_2, v_1, v_0, \ldots, v_{1-i}) - \mathcal{L}[-L(u_0)] - [N(v_2, v_1, v_0, \ldots, v_{1-i})]\right\} \end{cases} \quad (0.19)
\]

Assuming that the initial approximation has the form

\[ v(0) = u_0, v'(0) = \alpha, \ldots, v^{(n)}(0) = \alpha_n \]

4. NEW HOMOTOPY PERTURBATION METHOD

For solving Eq. (0.1) by NHPM [21], construct the following homotopy

\[ \phi(v, p) = (1 - p)[L(v) - u_0] + p[A(v) - f(x)] = 0, \quad (0.20) \]

or equivalently

\[ \phi(v, p) = L(v) - u_0 + p u_0 + p[N(v) - f(x)] = 0 \quad (0.21) \]

Applying the inverse operator \( L^{-1} \) to both sides of Eq. (0.21) gives

\[ v = L^{-1}(u_0) - p L^{-1}(u_0) - p[N(v) - f(x)] = 0 \quad (0.22) \]

Assume that the initial approximation of Eq. (0.1) has the form

\[ u_0 = \sum_{n=0}^{\infty} a_n P_n(x) \quad (0.23) \]
Where \( a_0, a_1, a_2, \ldots \) are unknown coefficients which must be computed and \( P_0, P_1, P_2, \ldots \) are specific functions depending on the problem. Substituting Eq. (0.23) into Eq. (4.3) leads to

\[
\sum_{n=0}^{\infty} p^nv_n = L^{-1}\left(\sum_{n=0}^{\infty} a_n s^np_n(x)\right) - p L^{-1}\left(\sum_{n=0}^{\infty} a_n s^n p_n(x)\right)
\]

\[
-p L^{-1}[N(\sum_{n=0}^{\infty} p^n v_n)] - f(x) = 0
\]

(0.24)

By equating the terms with identical powers of \( p \)

\[
p^0: \quad v_0 = L^{-1}\left(\sum_{n=0}^{\infty} a_n s^n p_n(x)\right)
\]

(0.25)

\[
p^1: \quad v_1 = -L^{-1}\left(\sum_{n=0}^{\infty} a_n s^n p_n(x)\right)
\]

(0.26)

\[
p^2: \quad v_2 = -L^{-1}[N(v_0) - f(x)]
\]

(0.27)

\[
p^i: \quad v_i = -L^{-1}[N(v_0, v_1, \ldots , v_{i-1})]
\]

(0.28)

If these equations are solved by considering \( v_1(x) = 0 \), then \( v_2(x) = v_3(x) = \cdots = 0 \). Hence the exact solution may be written as

\[
u(x) = v_0 = L^{-1}\left(\sum_{n=0}^{\infty} a_n s^n p_n(x)\right)
\]

(0.29)

5. LAPLACE NEW HOMOTOPY PERTURBATION METHOD

In LNHPM Laplace transform and NHPM are combined [22], taking Laplace transform on both sides of Eq. (0.21) leads to

\[
\mathcal{L}[L(v)] = \mathcal{L}(u_0 - p u_0)
\]

\[
- p[\mathcal{L}(v) - f(x)]
\]

(0.30)

Using the differential property of Laplace transform gives

\[
\mathcal{L}[v] = \frac{1}{s^2} \left[s^{-2}v(0) + s^{-1}v'(0) + \cdots + v^{(n-1)}(0)\right]
\]

\[
+ \mathcal{L}[u_0 - p u_0 - p N(v) - f(x)]
\]

(0.31)

Applying inverse Laplace transform to both side of Eq. (0.31) leads to

\[
v = \mathcal{L}^{-1}\left\{\frac{1}{s^2} \left[s^{-2}v(0) + s^{-1}v'(0) + \cdots + v^{(n-1)}(0)\right]
\]

\[
+ \mathcal{L}[u_0 - p u_0 - p N(v) - f(x)]\right\}
\]

(0.32)

By substituting the series of \( v, u_0 \) once can rewrite Eq. (0.32) as

\[
\sum_{n=0}^{\infty} p^nv_n = \mathcal{L}^{-1}\left\{\frac{1}{s^2} \left[s^{-2}v(0) + s^{-1}v'(0) + \cdots + v^{(n-1)}(0)\right]
\]

\[
+ \mathcal{L}[v^{(n-1)}(0) + \sum_{n=0}^{\infty} a_n s^n p_n(x)]
\]

\[
- p[\mathcal{L}(v) - f(x)]\right\}
\]

(0.33)

By equating the terms with identical powers of \( p \)

\[
p^0: \quad v_0 = \mathcal{L}^{-1}\left\{\frac{1}{s^2} \left[s^{-2}v(0) + s^{-1}v'(0) + \cdots + v^{(n-1)}(0)\right]
\]

\[
+ \mathcal{L}[v^{(n-1)}(0) + \sum_{n=0}^{\infty} a_n s^n p_n(x)]\right\}
\]

(0.34)

\[
p^1: \quad v_1 = \mathcal{L}^{-1}\left\{-\frac{1}{s} [\mathcal{L}(-\sum_{n=0}^{\infty} a_n s^n p_n(x)]
\]

\[
- [N(v_0) - f(x)]\right\}
\]

(0.35)

\[
p^2: \quad v_2 = \mathcal{L}^{-1}\left\{-\frac{1}{s^2} \mathcal{L}[N(v_0, v_1)]\right\}
\]

(0.36)

\[
p^i: \quad v_i = \mathcal{L}^{-1}\left\{-\frac{1}{s} \mathcal{L}[N(v_0, v_1, \ldots , v_{i-1})]\right\}
\]

(0.37)

As in NHPM \( a_0, a_1, a_2, \ldots \) are computed and solved these equations by considering \( v_1(x) = 0 \).

6. ILLUSTRATIVE EXAMPLE

Consider the initial value problem of Bratu-Type

\[
u'' - 2e^\nu = 0 \quad 0 < x < 1
\]

\[
u(0) = u'(0) = 0
\]

(0.38)

The exact solution of above equation is

\[
u(x) = -2 \ln(\cos x)
\]

\[
x^2 + \frac{x^4}{6} + \frac{2x^6}{45} + \frac{17x^8}{1260} + \frac{62x^{10}}{14175} + \cdots
\]

(0.39)

To solve Eq. (0.38) by HPM, construct the following homotopy

\[
(1 - p)[\nu'' - u''_0] + p[\nu'' - 2e^\nu] = 0, \quad p \in [0,1]
\]
By applying Eq. (0.7) - (0.10)

\[ p^0: \quad v_0 = u_0 = x^2 \]

\[ p^1: \quad \begin{cases} v'_1 = -2 + 2 \sum_{i=0}^{\infty} \frac{v_{0,i}}{i!} \\ v_1(0) = v_1'(0) = 0 \end{cases} \]

\[ p^2: \quad \begin{cases} v''_2 = 2 \sum_{i=0}^{\infty} \frac{v_{0,i} v_{1,i}}{i!} \\ v_2(0) = v_2'(0) = 0 \end{cases} \]

\[ \vdots \]

By solving the differential equations above \( v_0, v_1, v_2, \ldots \) are found

\[ v_0(x) = x^2 \]

\[ v_1(x) = \frac{x^4}{6} + \frac{x^6}{30} + \frac{x^8}{168} + \frac{x^{10}}{1080} + \frac{x^{12}}{7920} + \cdots \]

\[ v_2(x) = \frac{x^6}{90} + \frac{x^8}{140} + \frac{103x^{10}}{37800} + \frac{97t^{12}}{124740} + \cdots \]

\[ v_3(x) = \frac{x^8}{2520} + \frac{x^{10}}{1400} + \frac{659x^{12}}{1247400} + \cdots \]

\[ \vdots \]

\[ (0.40) \]

\[ (0.41) \]

\[ (0.42) \]

Thus

\[ v(x) = \sum_{i=0}^{\infty} v_i(x) = x^2 + \frac{x^4}{6} + \frac{2x^6}{45} + \frac{17x^8}{1260} + \frac{62x^{10}}{14175} + \frac{691x^{12}}{46777} + \cdots \]

\[ (0.43) \]

Which converge to the exact solution in Eq. (0.39).

To solve Eq. (0.38) by LHPM, apply Laplace transform to both sides of Eq. (0.40)

\[ \mathcal{L}[v'' - u''_0 + p u''_0 - 2p e^r] = 0 \]

\[ (0.44) \]

By applying inverse Laplace transform

\[ v = \mathcal{L}^{-1}\left\{ \frac{1}{s^\nu} \mathcal{L}[u''_0 - p u''_0 - p e^r] \right\} \]

\[ (0.45) \]

Equating the terms with identical powers of \( p \) as Eq. (0.16) - (0.37) gives

\[ p^0: \quad v_0 = \mathcal{L}^{-1}\left\{ \frac{1}{s^\nu} \mathcal{L}[2] \right\} = x^2 \]

\[ p^1: \quad v_1 = \mathcal{L}^{-1}\left\{ \frac{1}{s^\nu} \mathcal{L}[-2 + 2 \sum_{i=0}^{\infty} \frac{v_{0,i}}{i!}] \right\} = \frac{x^4}{6} + \frac{x^6}{30} + \frac{x^8}{168} + \frac{x^{10}}{1080} + \cdots \]

\[ p^2: \quad v_2 = \mathcal{L}^{-1}\left\{ \frac{1}{s^\nu} \mathcal{L}[2 \sum_{i=0}^{\infty} \frac{v_{0,i} v_{1,i}}{i!}] \right\} = \frac{x^6}{90} + \frac{x^8}{140} + \frac{103x^{10}}{37800} + \frac{97t^{12}}{124740} + \cdots \]

\[ (0.46) \]

And once can get

\[ v(x) = \sum_{i=0}^{\infty} v_i(x) = x^2 + \frac{x^4}{6} + \frac{2x^6}{45} + \frac{17x^8}{1260} + \frac{62x^{10}}{14175} + \frac{691x^{12}}{46777} + \cdots \]

\[ (0.47) \]

For solving Eq. (0.38) by NHPM, consider the homotopy

\[ (1 - p)[v'' - u''_0] + p[v'' - 2e^r] = 0 \]

\[ (0.48) \]

By applying the inverse operator \( L^{-1} = \int_0^t \cdot \, dr \) to both sides of Eq. (0.48)

\[ v(x) = v(0) + v'(0) + \int_0^t u_0(r) \, dr \]

\[ -p\int_0^t u_0(r) \, dr \, dt + 2p\int_0^t e^{v(r)} \, dr \, dt \]

\[ (0.49) \]

By substituting the series of \( v, u_0 \) once can rewrite Eq. (0.49) as

\[ \sum_{n=0}^{\infty} p^n v_n = \int_0^t \sum_{n=0}^{\infty} a_n r^n \, dr \, dt - p\int_0^t \sum_{n=0}^{\infty} a_n r^n \, dr \, dt + 2p\int_0^t \sum_{n=0}^{\infty} e^{v(r)} \, dr \, dt \]

\[ (0.50) \]

Equating the terms with identical powers of \( p \) as Eq. (0.25) - (0.28) gives
\[
p_v^0: \quad v_0 = \int \int \sum_{n=0}^\infty a_n r^n \, dr \, dt
\]
\[
= x^2 \left( 1 - \frac{a_0}{2} \right) - \frac{x^4 a_1}{6} + \frac{x^4 a_2}{12} + \frac{x^5 a_3}{20} + \frac{x^5 a_3}{30} + \frac{x^6 a_4}{42} + \frac{x^6 a_4}{56} + \ldots
\]
\[
p_v^1: \quad v_1 = \int \int \sum_{n=0}^\infty a_n r^n \, dr \, dt
\]
\[
= x^4 \left( \frac{a_0 - a_1}{2} \right) + x^6 \left( \frac{a_2 - a_4}{60} \right) + x^6 \left( \frac{a_2 + a_4}{120} \right) + x^7 \left( \frac{a_0 a_1 - a_2}{120} \right) + x^8 \left( \frac{a_0 a_1 + a_2}{252} \right) + x^9 \left( \frac{a_0 a_1 + a_2 + a_3 + a_4}{1728} \right) + x^{10} \left( \frac{a_0 a_1 + a_2 + a_3 + a_4}{2016} \right) + x^{11} \left( \frac{a_0 a_1 + a_2 + a_3 + a_4 + a_5}{1344} \right) + \ldots
\]
\[
\mathcal{L} \{ v \} = \frac{1}{s^2} \{ s \, v(0) + v'(0) + \mathcal{L} \{ u_0 - p \, u_0 + 2p \, e^x \} \}
\]
\[
\begin{align*}
\mathcal{L} \{ u \} & = \frac{1}{s^2} \{ s \, u(0) + u'(0) + \mathcal{L} \{ \sum_{n=0}^\infty a_n r^n \} \} \\
& = \frac{x^2 a_0}{2} + \frac{x^4 a_1}{6} + \frac{x^4 a_2}{12} + \frac{x^5 a_3}{20} + \frac{x^5 a_3}{30} + \frac{x^6 a_4}{42} + \frac{x^6 a_4}{56} + \ldots
\end{align*}
\]
\[
\mathcal{L} \{ v \} = \frac{1}{s^2} \{ \sum_{n=0}^\infty a_n r^n \} \}
\]
\[
\sum_{n=0}^\infty p^n v_n = \frac{1}{s^2} \mathcal{L} \{ \sum_{n=0}^\infty a_n r^n \} \}
\]
\[
\sum_{n=0}^\infty \frac{v_n'(r)}{i!} \}
\]
\[
\text{Equating the terms with identical powers of } p \text{ leads to}
\]
\[
p_v^0: \quad v_0 = \mathcal{L}^{-1} \{ \frac{1}{s^2} \{ s \, v(0) + v'(0) \} + \mathcal{L} \{ \sum_{n=0}^\infty a_n x^n \} \}
\]
\[
= \frac{x^2}{2} - \frac{x^4 a_1}{12} + \frac{x^4 a_2}{20} + \frac{x^5 a_3}{30} + \frac{x^5 a_3}{42} + \frac{x^6 a_4}{56} + \ldots
\]
\[
p_v^1: \quad v_1 = \mathcal{L}^{-1} \{ \frac{1}{s^2} \mathcal{L} \{ -\sum_{n=0}^\infty a_n x^n - 2\sum_{n=0}^\infty \frac{v_n}{i!} \} \}
\]
\[
= \frac{1}{2} x^2 \left( 2 - a_0 \right) - \frac{x^4 a_1}{6} + \frac{x^4 a_2}{12} + \frac{x^5 a_3}{30} + \frac{x^5 a_3}{42} + \frac{x^6 a_4}{56} + \ldots
\]
\[
\text{Vanishing } v_1(x) \text{ lets the coefficients } a_n \ (n = 0, 1, 2, \ldots) \text{ to take the following values}
\]
\[
a_0 = 2, a_2 = 2, a_4 = \frac{1}{3}, a_3 = \frac{34}{45}, a_5 = \frac{4}{57}, a_6 = \frac{34}{45}, \ldots
\]
\[
a_i = a_3 = a_4 = \ldots = 0
\]
\[
\text{Hence the solution of Eq. (0.38) is written as}
\]
\[
u(x) = v_0(x) = x^2 + \frac{x^4}{6} + \frac{2x^6}{45} + \frac{17x^8}{1260} + \ldots
\]
\[
\text{And this in the limit of infinity many terms, yields the exact solution in Eq. (0.39).}
\]
\[
\text{For solving Eq. (0.38) by LNHPM, apply Laplace transform to both sides of Eq. (0.48)}
\]
\[ a_0 = 2, a_2 = 2, a_3 = \frac{4}{3}, a_4 = \frac{34}{45}, \ldots \]  
\[ a_i = a_3 = a_6 = \cdots = 0 \]

Therefore, the solution of Eq. (0.38) can be written as

\[ u(x) = v_0(x) = x^2 + \frac{x^4}{6} + \frac{2x^6}{45} + \frac{17x^8}{1260} + \cdots \]

Which converge to the exact solution in Eq. (0.39).

7. CONCLUSION

In this paper, some modifications of homotopy perturbation method have been used for solving second order initial value problem of Bratu type. It should be mentioned the results of the methods exhibit excellent agreement with the exact solution. The computations corresponding to the examples have been performed using Mathematica.

8. REFERENCES


International Journal of Computer Applications (0975 – 8887)  
Volume 162 – No 5, March 2017

IJCATM: www.ijcaonline.org

49