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ABSTRACT 
In this paper the study of rigorous basic dynamical facts on 

bifurcation and chaos for discrete models in time dynamics 

and introduce a generalized logistic map and its dynamical 

behavior with tent and Henon Map has recognized.Different 

discrete curves have been developed and more general 

biological logistic curve are studied. Review and compare 

several such maps and analysis properties of those maps on 

the applications of bifurcation and chaos. Discuss the concept 

of chaos and bifurcations in the discrete time dynamical tent 

maps and generalized logistic growth models as time 

dynamical attractor. 
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1. INTRODUCTION 
The dynamical system concept is a mathematical 

formalization for any fixed "rule" which describes the time 

dependence of a point's position in its ambient space. The 

concept unifies very different types of such "rules" in 

mathematics: the different choices made for how time is 

measured and the special properties the ambient space may 

give an idea of the varsity of the class of objects described by 

this concept. There are different terms to describe the time 

dynamical system, such as,Chaos (roughly) as "a kind of 

order without periodicity." Wiggins says, "A dynamical 

system displaying sensitive dependence on initial conditions 

on a closed invariant set (which consists of more than one 

orbit) will be called chaotic. We often say observations are 

chaotic when there is no discernible regularity ororder." In 

particular, is generally characterized by, 

Let X  be a compact metric space. A continuous map 

XXf :  is said to be chaotic on X  if f  satisfies the 

following properties: 

(a) periodic points of f  are dense in X , (b) f  is 

topologically transitive, (c) f  has sensitive dependence on 

initial conditions,  

Bifurcation, is about how dynamical systems change their 

behavior as some parameter of the system is changed. 

Otherwise A bifurcation is a qualitative change in an attractor 

structure as a control parameter. (for example,), we have to 

modify the differential equation to  

HPP
dt

dP
 )1(  

where H> 0 is the constant harvesting rate. Here is a simple 

example of a real-world problem modeled by a differential 

equation involving a parameter (the constant rate H). Clearly, 

the fishermen will be happy if H is big, while ecologists will 

argue for a smaller H (in order to protect the fish population). 

First, let us look at the equilibria (or constant solutions) of this 

model. We must have  

0)1(  Hpp  

which gives,
2

411 H
p


  

1. if H< 1/4, then we have two constant solutions. 

2. if H=1/4, then we have one constant solution;  

3. if H>1/4, then we do not have constant solutions.  

Therefore, H= 1/4 is a bifurcation value. 

2. PHYSICAL EXAMPLES OF CHAOS 

AND BIFURCATIONS 
1. Ignorance: this is labeled as "external influences". If 

you don't know what's happening than the result 

will be "surprising" and thus chaotic.  

2. Many simple systems interacting in space: you 

know well how the single system behaves but the 

overall result can be surprising and thus chaotic. 

The simplest case is cellular automata. In this case 

interaction in space is essential to have chaos.  

3. One single system developing in time: also, here if 

the law is recursive than the result (after some time) 

can be surprising and thus chaotic. Time in this case 

is essential to get chaos.  

4. Use a quantum system like a radioactive material: 

the law is then intrinsically chaotic. There is no way 

to know when exactly a radioactive substance will 

decay. Such as population growth in the city, 

signaling system. 
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3. CHAOS AND BIFURCATION OF 

THE LOGISTIC MAP: 

The function )(xfa and )(xf n

a is a map of [0,1] into itself.    

Consider )1()( xaxxfa  ,        40  a . 

Here, ,
1

1:,0
a

pxx a  are fixed points of f ,  

where .10  ap  

Note that changing the parameter a changes the rate at which 

the asymptotic values a is reached. 

Here .2)( axaxfa   

Therefore, )(xfa has only one fixed point 0x   iff 

1a . For small growth rate 1a . 

(say )2/1a ,  the population always dies out no matter 

what the initial condition is. In this case afa ,1  has two 

fixed points 0x   and ./)1( aax  Here,  

max .
4

)2/1()(
a

fxf   

So, ]1,0[]1,0[: f if and only if .4a   Here

afa  )0( and .2)( apf aa   Hence 0 is repelling 

fixed point for  a>1 and attracting fixed point for 10  a . 

Also ap is attracting for 31  a and is repelling if 

3a or a< 1. 

Here, ap is non-hyperbolic or neutral fixed point when 

3a is non-hyperbolic or neutral fixed point when 3a . 

For periodic points with prime period 2, we have to consider 

.)(2 xxf   

Here, 1)1(22  axaaxa has a real solution if and 

only if 1a or .3a  

Thus 01)1(22  axaaxa has the only one 

solution .3/2x  

For ,3a 01)1(22  axaaxa has two real 

solution say 2,1q where           

.
2

)3)(1(1
2,1

a

aaa
q


  

We have 21)( qqf  and ,)( 12 qqf   that is, 21, qq are 

periodic points with prime period 2 for .3a  

Thus 21, qq are attracting periodic points with prime period 2 

if and only if ,1|24||)()(| 2

1

2  aaqfa that is,     

.45.3613  a  

For ,361  a 21, qq become unstable fixed point 

of ).(2 xf  The 2 cycle disappears and is replaced by a 4 

cycle, that is, four attracting periodic points with period 4.For 

,221a there exists periodic points with prime period 

3. 

 

Figure 3.1: Logistic Map for different values of ‘a’ 

In the interval 445.3  a  changes occur rapidly, there 

is a three orbit when .6.3a  For ,4a  the map is 

chaotic on [0, 1]. For 52a , there is a Cantor set in 

[0,1] on which af is chaotic when .52 a  Slight 

changes in the parameter, "a", of the function can cause the 

iterated function to change from stable and predictable 

behavior to unpredictable behavior which is called chaos. The 

behavior of the logistic function varies greatly as the 

parameter “a” change. The Following Figure illustrates some 

of the changes in this behavior. 

 

Figure 3.2: a = 2.8,3and Seed = 0.1 
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Figure 3.3: a = 3.8,3.9 and Seed = 0.1 

The fixed points for each of the above figures are: 

In figure 2.2, the graphical iteration converges on the fixed 

point.Thus, the fixed point is an attractor. 

In figure 2.3, the graphical iteration appears to approach the 

fixedpoint but then begins to move away from it in a 

predictable patternover time. Thus, 0.667 is a repelling point. 

If a = 4 in this logistic function, the iteration pattern behaviors 

in amuch different way. Figure given below shows this 

behavior for aseed = 0.2 for a different number is iterations.  

 

Figure 3.4: a=4, 20 iterationsFigure 3.5: a=4, 40 iterations 

The fixed pointis ¾ the behavior of the iteration never seems 

to converge on any onepoint or pattern. Using many more 

iterations,theinterval 0 < x < 1 is filled. This behavior is very 

unstable.  

For a>3 changes to repelling and a 2 cycle is born. 

The system exhibits some interesting phenomena, which 

cannot be observed from the continuous logistic system. 

For 
,45.3613  a

 the two cycle is stable the 

population may oscillate between two values forever. 

For 
,544090.361 a

the 2 cycle becomes 

unstable and a stable 4 cycle is born then the population may 

oscillate between four values forever. 

For 
,544090.322161  a

 the 4 cycle 

becomes unstable and a stable 8 cycle is born, when a is 

slightly bigger than 3.54 then 8 than 16, 32 etc.  

In general, a stable 
k2 cycle is born at ka

and becomes 

unstable at 
,1ka

where 

...5644.3

...54409.3
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3

4
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1


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

a

a

a
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It should be clear that as n goes large these values are 

approaching a limit  

....569946.3lim 


 n
n

aa
 

It means that an cycle for the value of a. Note that the 

successive bifurcations come faster and faster. The 

convergence is essentially geometric; the limit of large n, the 

distance between successive transitions shrinks by a constant 

factor 

..6692016091.4lim
1

1 










nn

nn

n aa

aa


.. 

The number is called Feigenbaum constant. 

In the interval 444.3  a  changes rapidly, there is a 

three on increasing a from 3 to 4, periodic orbits arise at each 

step a doubling with the period. 

It should be noted that 
,4a

which means that all iterates 

are confined. When 
, aa
 behavior turns out to be chaos. 

As a increases, the fixed point ap
 becomes unstable for 

.3a  

For
...,569956.33  caa

the system exhibits some 

interesting phenomena which cannot be observed from the 

continuous logistic system, when 9.3a   shown in the 

cobweb diagram. 

For 
.4 aac  It is difficult to analysis this case. The 

sequence 
 nx

 never settles down to a fixed point or a 

periodic point, instead the long term behavior is aperiodic. 

For a = 4, the map is chaotic. The concept: An N-point 

attractor. 

 

Figure 3.6: Chaotic behavior of the Logistic map at a= 

3.99 

Remark: The map needs to be redefined for a > 4 because 

values x > 1 of can occur which ultimately divergent.   
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Also, slope outside 10  x  has magnitude strictly greater 

than 1. 

So, we restrict the control parameter a to the range 

.40  a  So that the logistic map maps the interval 

10  x  into itself. The behavior is much less interesting 

for other values of x and a.  

The logistic map 
)(xfa for different values of a. 

 

Figure 3.7: Bifurcation Diagram of Logistic Map 

4. CHAOS AND BIFURCATION OF 

THE TENT MAP 
Tent map is a conjugate, continuous, one-to-one and onto 

map. The chaotic behavior has given in below. By this  

theorem we can discuss it accurately.  

Theorem: Tent Map : X→X=[0,1] is a chaotic dynamical 

system. Proof: We show that the map  satisfies chaotic three 

conditions: -Periodic points of  are dense in X. is one sided 

topologically transitive.  has sensitive dependence one initial 

condition. 

1. Periodic points of  are dense in X    

For any xX and n, Pn() (x-
n2

1

, x+
n2

1

)≠ 

Let xX and an open set U be given. Then there exist >0 

such that U(x,)U.If we assume <1, then there  

exist n such that (x-
n2

1

, x+
n2

1

)  U(x, )U. 

Moreover, there exist xn such that xnPn()(
n

x
2

1


, x+

n2

1

),  

it follows that xnPn()U. That is Pn()U≠. Hence 

Pn() is dense in X. 

2.  is one sided topologically transitive 

For any xX and n, 

]
2

1
,

2
[

11 


nn

kk

 (x-
n2

1

, x+
n2

1

) ; 

k={0,1,…2n+1-1} 

Let U and V are two non-empty open set in X. Then there 

exist xU and >0 such that   

 (x-
n2

1

, x+
n2

1

)  U(x,  )U. Moreover, there exist k 

such that 

]
2

1
,

2
[

11 


nn

kk

 U(x, )U. We also have that  

n+1(

]
2

1
,

2
[

11 


nn

kk

)=[0,1]. Thus, [0,1]= n+1(

]
2

1
,

2
[

11 


nn

kk

)n+1(U). Therefore  n+1(U) V=[0,1] 

V≠.  

Hence  is one sided topologically transitive. 

3.  has sensitive dependence one initial conditions 

Let xX be given. Then there exists n such that 
n2

1

< . 

We assume that x

]
2

1
,

2
[

nn

kk 

 for some k={0,1,…2n- 

1}. Then n(

]
2

1
,

2
[

nn

kk 

)=[0,1]. There exists y

]
2

1
,

2
[

nn

kk 

 U(x,) and we have   d(n(x), n(y)) 2

1

=.  

Thus  has sensitive dependence one initial condition. 

(Proved)  

In mathematics, the tent map is an iterated function, in the 

shape of a tent, forming a discrete-timedynamical system.  

It takes a point 𝑥𝑛  on the real line and maps it to another 

point: 

 

Where μ is a positive real constant. 

 

Figure 4.1: Graph of tent map function. 

The tent map and the logistic map are topologically conjugate, 

and thus the behavior of the two maps are in this sense 

identical under iteration. 
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Figure 4.2: Bifurcation diagram for the tent map.  

Higher density indicates increased probability of the x 

variable  

If μ is less than 1 the point x = 0 is an attractivefixed point of 

the system for all initial values of x i.e. the systemwill 

converge towards x = 0 from any initial value of x.  

If μ is 1 all values of x less than or equal to 1/2 are fixed 

points of the system.  

If μ is greater than 1 the system has two fixed points, one at 0, 

and the other at μ/(μ + 1). Both fixed points are unstable i.e. a 

value of x close to either fixed point will move away from it, 

rather than towards it.  

If μ is between 1 and the square root of 2 the system maps a 

set of intervals between μ − μ2/2 and μ/2 to themselves.This 

set of intervals is the Julia set of the map i.e. it is the smallest 

invariant sub-set of the real line under this map. If μ is greater 

than the square root of 2, these intervals merge, and the Julia 

set is the whole interval from μ − μ2/2 to μ/2 (see bifurcation 

diagram).  

If μ is between 1 and 2 the interval [μ − μ2/2, μ/2]contains 

both periodic and non-periodic points, although all of 

theorbits are unstable (i.e. nearby points move away from the 

orbits rather than towards them). Orbits with longer  

lengths appear as μ increases. 

5. CHAOS AND BIFURCATION OF 

THE HENON MAP 
The Henon map is a discrete-time dynamical system. It is one 

of the most studied examples of dynamical systems that 

exhibit chaotic behavior. The Henon map is defined as 

2

1 1 nnn axyx   

nn bxy 1  

The map depends on two parameter  as, a and b, which for the 

canonical  Henon  map have values of  a = 1.4 and b = 0.3 It is 

one of the most studied examples of dynamical systems that 

exhibit chaotic behavior. The Hénon map takes a point (x, y) 

in the plane and maps it to a new point a = 1.4 and b = 0.3 

 

Figure 5.1: Hénon attractor for a = 1.4 and b = 0.3 

The map depends on two parameters, a and b, which for the 

canonical Hénon map have values of a = 1.4 and b = 0.3. For 

the canonical values the Hénon map is chaotic. For other 

values of a and b the map may be chaotic, intermittent, or 

converge to a periodic orbit. An overview of the type of 

behavior of the map at different parameter values may be 

obtained from its orbit diagram. 

The Hénon maps two points into themselves: these are the 

invariant points. For the canonical values of a and b of the 

Hénon map, one of these points is on the attractor: 

                              x = 0.631354477... and y = 0.189406343... 

This point is unstable. Points close to this fixed point and 

along the slope 1.924 will approach the fixed point and points 

along the slope -0.156 will move away from the fixed point. 

These slopes arise from the linearization’s of the stable 

manifold and unstable manifold of the fixed point. The 

unstable manifold of the fixed point in the attractor is 

contained in the strange attractor of the Hénon map. 

 

Figure 5.2: Bifurcation Diagram of  Henon Map 

The Hénon map does not have a strange attractor for all 

values of the parameters a and b. For example, by keeping b 

fixed at 0.3 the bifurcation diagram shows that for a = 1.25 the 

Hénon map has a stable periodic orbit as an attractor. 

Cvitanović and collaborators have shown how the structure of 

the Hénon strange attractor can be understood in terms of 

unstable periodic orbits within the attractor 
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this paper is to help you understand and describe discrete time 

dynamical system, for instance, it associated with a cycle of 

period n, where n is large is hopefully a motivator to discover 

and learn different method what would more easily finding 

these points. It is by thoroughly grasping these concepts will 

you be able to go into the complexities of this topic. 
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