
International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 9, March 2017

13

Model Query, Tokenization and Character Matching: A

Combined Approach to Prevent SQLIA

Sudhakar Choudhary
Student

SISTech-E
Bhopal, MP, India

Arvind Kumar Jain
Assistant Professor

SISTech-E
Bhopal, MP, India

Anil Kumar
M.Tech

IIIT, Allahabad
UP, India

ABSTRACT

With the rise of internet, web application, such as online

banking and web-based email, the web services as an instant

means of information dissemination and various other

transactions has essentially made them a key component of

today‟s Internet infrastructure. Web-based systems consist of

both infrastructure components and of application specific

code. But there are many reports on intrusion from external

hacker which compromised the back end database system.

SQL-Injection Attacks are a class of attacks that many of

these systems are highly vulnerable to.

Keywords

SQL Injection Attack, SQLIA Prevention, Tokenization,

Character List.

1. INTRODUCTION
Information is the most important business asset today and

achieving an appropriate level of information security can be

viewed as essential requirement. SQL Injection Attacks

(SQLIAs) are one of the topmost threats for web application

security and SQL injections are one of the most serious

vulnerability types. However, these are easy to detect and

exploit; that is why SQLIAs are frequently employed by

malicious users for different reasons, e.g. financial fraud, theft

confidential data, deface website, sabotage, espionage, cyber

terrorism, or simply for fun. Furthermore, SQL Injection

attack techniques have become more common, more

ambitious, and increasingly sophisticated, so there is a deep

need to find an effective and feasible solution for this

problem. To achieve those purposes, automatic tools and

security systems have been implemented, but none of these

are complete or accurate enough to guarantee an absolute

level of security on web applications. One of the important

reasons of this shortcoming is that there is a lack of common

and complete methodology for the evaluation either in terms

of performance or needed source code modification which in

terms is an over head for an existing system. So The authors

feel that there should be such type of mechanism which will

be easily deployable, does not need source code modification

as well as provide a good performance and to achieve this,

proposed research work is driven to the way of developing a

new modified SQL injection detection technique.

Proposed research work focused on the analyses and

resolution of the problem of SQL Injection attacks, in order to

protect and make reliable web applications. The authors try to

provide a technique to prevent SQLIAs without any source

code modification and without huge performance degradation.

To achieve desired goal the authors propose a general and

complete evaluation methodology which can be easily

deployable to an existing system to preserve the security of

the system against SQLIAs. In the proposed research work,

The authors combine the techniques describe by AMNESIA

[6] and ADAPTIVE METHOD [1], with some modification,

and try to remove the necessity of the source code

modification as well as to minimize the runtime response

time.

2. PRPPOSED METHODOLOGY
In this combined method, the authors maintain a database for

storing valid query structure called as model query. In runtime

validation it checks the dynamically generated query with the

previously stored model queries and characters list to

determine the possible SQLIA. Database of the valid query

structure and character list is made in static phase. The

authors are storing all the valid query structure by linked list

representation where each individual singly link list represents

a valid query structure and to store the starting address of all

these singly link list the authors use a doubly link list called

as main link list whose each node store the starting address of

a singly link list. In second stage of static phase the authors

create a list of characters such as: single quote, double quote,

semi colon, double dash, slash and SQL Keywords. The

authors store character list in an array. So when the authors

found a new query is arrived to the database server, after the

tokenization process, at first the authors start searching the

structure of the query in the linked representation and then

match the characters of inputted value with the characters

stored in the character list. If it is a successful search,

according to first stage and no match found according to

second stage then that query will be a valid query otherwise

it‟s interpreted as an SQLIA.

In this scheme, the authors stored the structure of the query by

preserving the order of the sequence of tokens generated by

the query; means the authors are checking the sequence of

tokens generated by the arrived query is in the same order as

the authors stored in the model query. If the sequence of the

arrived query is in same order as the query stored in the

database then that arrived query interpreted as valid query,

otherwise if the authors do not found any ordered sequence

like that arrived query in the entire database then it‟s a

possible SQLIA as the authors stored all the possible structure

of the valid SQL query in the database in static phase. During

the searching phase of the query in the singly linked list if the

authors found a valid query, means: (1) Number of tokens

generated by the dynamic query is same as that of model

query and (2) Except from user inputted token value all other

tokens are same in both the queries, then extract that token

value which is inputted by user and parse the queries by

character wise. If any of these characters match with the

characters stored in character list then reject that query as it

may cause SQLIA.

In the proposed technique when a query executed from the

application program for validation, it knows that which action

point of the application program generates this query, so the

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 9, March 2017

14

authors have to match this incoming query only to those

model queries which belongs to that action point.

Figure 2.1: finding of Action Point

In the figure 2.1, red part of the code indicates that action

point. An action point is defined as a point in the application

code that issues SQL queries to the underlying database.

There is one query model for each action point. For each

Action Point the authors generate a query model that

represent all the possible queries generated by that Action

Point and store the length of all possible model queries in an

array. There is one array for each Action Point.

Figure 2.2: Array to store the length of queries

To store the starting address of the doubly link list or the

starting address of the group the authors use this array where

each cell of the array stores the starting address of a group.

The index of this array cell will represent the group number,

the number of tokens each singly link list possesses in that

group. For example, in figure 2.2, If a group having all the

singly link list with „n‟ number of tokens then the starting

address of the group be assigned to nth cell in the array. In

addition, in this representation there are many cells in the

array may not be used but by using some extra storage the

authors have a great advantage that The authors don‟t need to

search the starting address of a specific group because after

calculating the number of tokens in the incoming query the

number itself represents the cell number of the array holding

the starting address of the group that the incoming query may

belong. Suppose the authors get this query from that action

point which the authors have discussed in the previous

section.

select ID from Employee where EmpName = “vats” and

EmpPwd = “vatsChy”

To find an ordered sequence of token in that singly link list

for an incoming query to the database the authors first

separate the tokens from the query by a SQL parser of the

specific DBMS. After parsing those into tokens, on the basis

of space by using code, convert these string tokens into sum

of its ASCII Code value of each character. For example

consider the keyword „select‟, the corresponding ASCII

decimal values for the literals is s = 115, e = 101, l = 108, e =

101, c = 99, t = 116, so adding the ASCII value of each

literals the authors get the corresponding integer value of

„select‟ is 640.

select = 115 + 101 + 108 + 101 + 99 + 116 = 640

After getting the ASCII value of all strings of a query the

authors store into in the form of linked list. If the authors

closely analyze any web application most of the cases similar

type of query is used with different user input. To store a valid

individual query structure, the authors preserve the sequence

of tokens generated by the query using a singly link list where

each node store a single token of a query. After token

separation and integer conversion the authors get the ordered

sequence of the tokens of the query then the authors start

searching the singly link list.

Figure 2.3: Singly linked list to store integer tokens

The figure 2.3 shows the linked list representation of the

query after token translation and integer conversion. For a

valid incoming query the number of tokens is same as the

number of tokens in its corresponding query structure in the

Database. However, to reduce the search space and time the

authors group together all the query structure having same

number of tokens. It can be interpreted as a query having 4

tokens belongs in a separate group than a query having 5

tokens. Therefore, before searching the similar structure for an

incoming query the authors first calculate the number of

tokens it have, then the authors start searching in the group

having all the structure of valid query having the same

number of tokens. Moreover, to group all the singly link list

having same number of tokens, The authors use a doubly link

list usually referred as main link list whose each node holds

the starting address of a singly link list among all the singly

link list having same number of tokens. That means if The

authors have „n‟ groups of singly link list then The authors

have „n‟ number of doubly link list and for an incoming query

The authors only search a single doubly link list among the

„n‟ number of list. Figure 2.4 shows a group of singly linked

list having 4 tokens connected to main linked list.

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 9, March 2017

15

Figure 2.4: Singly and Doubly linked list connection

While searching the single link list if position of the token

from the incoming query matches the token of the same

position in the singly link list then The authors move to the

next token as well as to the next node of the list until any

mismatch found or the end of the list. In this way if the

authors reach at the end of the single link list and there is no

more token left in the incoming query then it‟s a successful

search and the incoming query is a valid query. But during the

matching process if a mismatch occurs and the node in the

linked list indicate that it is a position of user input then the

authors extract the value of the token which are inputted by

user and parse the queries by character wise by using some

code. Now match these characters with the characters stored

in the character list. Character List is a list which contains

some prohibited characters such as:

 „ , ‟ , “ , ” , space , -- , / and SQL Keyword

If any character of token variable match with the characters

stored in the character list then that query will be an invalid

query otherwise go for matching process of the next token. If

the authors found a match at this position then continue the

matching process or if a mismatch found at that position then

it is clear that the link list the authors are searching for the

similar query structure for the incoming query is not correct

list so the thread searching this singly list should stop its

execution. The search for the similar structure for the

incoming query is done in this fashion in a multithreaded way.

If no similar type of structure found in the model query then

it‟s a possible SQLIA. But if a thread found the correct path, it

intimates the other threads to terminate as it already performs

a successful search. From the above description of matching

technique it is clear that for a successful search, number of

token in the incoming query is same as the length of the link

list stored its structure. In the figure 2.5 the authors combine

all the procedures in a single unit.

For runtime token matching, if the authors used literal wise

matching then it will be a huge computational over head. In

worst case the authors have to check „n‟ number of literals for

each „q‟ number of query available in the database of the

same length of the incoming query, therefore the complexity

will be O (n × q). Instead of using literal wise string matching

algorithms the authors simply mapped each token into an

integer value. The authors also store these integer values in

the database instead of storing the tokens in string format. It

also takes very less space, for example if there are „n‟ no of

literals and „m‟ no of tokens in the query instead of storing „n‟

no of values The authors are storing „m‟ no of values where

m<<n. So in run time validation the length of a singly link list

storing the query having „m‟ no of tokens is m. In cases of

incoming query after token separation the authors transform

each token into its corresponding integer values then the

authors start searching. In worst case the authors have to

check „m‟ no of integer values for each „q‟ no of query, so the

complexity become O (m × q) instead of O (n × q) where

m<<n. This is a performance gain as both space complexity

and time complexity improves.

Figure 2.5: The complete structure of proposed methodology

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 9, March 2017

16

3. RESULT ANALYSIS

Figure 3.1: Design of query model for LogIn Action Method

Suppose there is a query model for LogIn action point on the

home page by which user can visit website by two mode of

authentication, either user is a registered user or any user visit

website to just take a look. Figure 3.1 shows the two modes of

authenticated user. If user is not a registered user then he/she

will be treated as „guest‟ but if user already registered him/her

then he/she will have to input „EmpName‟ and „EmpPwd‟

field with correct information. These input variables will take

the places of both the „$‟ placeholders. This LogIn Action

Query Model have two model queries having query length

(number of tokens) 10 and 16. The separation point for both

the structures is „=‟, after EmpName. The structure above this

„=‟ is for „guest‟ user and the structure below this „=‟ is for

registered user. User inputs a blank space for token number

15 in the lower part of figure 3.1 in case 1 and a $ sign in case

2. For the sake of better readability and understandability the

authors represent tokens in the form of string in place of

integer in the figure 3.1 and figures present in all the three

cases in this section.

3.1 Case 1
User inputs „ ” OR 1 = 1 --‟ for EmpName variable and „ ‟ for

EmpPwd variable. So the complete query formed after

tokenization is given in the picture below:

In this case user inputs value for the EmpName field, token

number 9 in the lower part of figure 3.1, separated with blank

space and the authors know, according to proposed method,

tokens are separated whenever a blank space found so the

number of tokens generated by this query is 22. Now control

goes to array and search for the cell which contains the value

22 but in array there is not a single cell having value 22. So

further steps will not take place and process stops as the query

structure doesn‟t match with any of the structure described

(guest or registered) in the model queries. So this is an invalid

query.

3.2 Case 2
User inputs „ ”OR1=1--‟ for EmpName variable and „ ‟ for

EmpPwd variable. Since no blank space is inputted by user for

token number 9 in the lower part of figure 3.1 so the complete

query formed after tokenization is given in the picture below:

The number of tokens generated by this query is 16, so the

control goes to array and search for the cell which contains

the value 16 and found it. This cell redirects query to the main

linked list which contains the address of the singly linked list

which further contains the valid query model. As the authors

reach at the very first node of the singly linked list matching

will start. After successful matching up to 8th token, when The

authors reach at the „9th‟ token of the query (since it is an

input field for „EmpName‟) The authors get the value of that

token and parse the query on character basis by using code.

Now match each character with the character stored in

character list. Here match occurs as input variable contains

single quote and double dash. So this is an invalid query.

3.3 Case 3
User inputs „xxx‟ for EmpName variable and „zzz‟ for

EmpPwd variable so the complete query formed after

tokenization is given in the picture below:

The number of tokens generated by this query is 16, so the

control goes to array and search for the cell which contains

the value 16 and found it. This case acts same as case 2 until

control reach at the 8th token in the above figure. After

successful matching up to 8th token, when The authors reach

at the „9th‟ token of the query The authors get the value of

that token and parse the selected queries into on character

basis by using code. Now match each character with the

character stored in character list but no match are found, so

process goes for next token matching and successfully

matched up to 14th token. Again when the authors reach at the

15th token same matching process executes but this time also

no match found, so process goes for the next and last token

matching. After the matching of 16th token the authors can say

that the entire tokens are matched with the stored query

structure and character list so this is a valid query.

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 9, March 2017

17

4. ALGORITHM
Step 1: Separates each token from the sqlStatement, store in

tokenSequence and returns total number of tokens as

numberOfToken.

numberOfToken = tokensOfSql (tokenSequence,

sqlStatement);

Step 2: Convert each token into its corresponding integer

value and store it in a linked list named as integerSequence.

tokenToInt (numberOfToken, tokenSequence,

integerSequence)

Step 3: Initialize starting node of the doubly link list to search.

while (searchNode -> rlink! = NULL) do

{

startThreadSearch (tokenSequence,

integerSequence, searchNode);

if (token is an input field)

{

 if (searchValidCharacter ())

{

return false;

// it‟s a SQL injection

}

else

{

return true;

// it‟s a valid query

}

}

searchNode = searchNode -> rlink;

}

Step 4: After a successful search; the thread, which found the

right sequence, informs all other thread to stop execution as it

found a valid query structure.

Step 5: Exit.

Declaration of variables:

sqlStatement is a query string generated by the Action Point.

tokenSequence is 2D arrays where each row represents a token

and each cell holds a literal of that token and total number of

rows represent total number of tokens it stored.

numberOfToken is the total number of tokens present in

tokenSequence.

integerSequence is an integer linked list where each cell stores

an integer value of a token.

searchNode = sqlDbArray [numberOfToken]

sqlDbArray is an array holding the starting address of all

groups storing individual array.

Declarations of methods

tokensOfSql () separates each token from the sqlStatement on

the basis of space, collection of characters between two

spaces will be treated as a token, and store into the in

tokenSequence and returns total number of token in a

sqlStatement.

tokenToInt () convert token into its corresponding integer

value. For example, select will be converted to 640.

startThreadSearch () search for an ordered sequence of

integer provided by integerSequence in the singly link list

whose starting address is stored in searchNode. This method

will call itself as long as tokens of dynamically generated

query match with the stored one. If tokens do not match then

this method will stop processing and control will go to next

singly linked list of the same group and same process will

execute.

searchValidCharacter () returns true if a thread perform a

successful match. In this method matching of inputted

character with the character stored in character list is

performed. During the processing of startThreadSearch

method if a token is found which is actually an input data

value then this method will executes. This method will extract

each literal which is present in input data value and compare

the data value with the stored character in the character list, if

a match found then this method will return false and query

will be treated as a SQL injection.

5. CONCLUSION AND FUTURE WORK
As it is a multi threaded implementation is fully utilized the

newly available multi core processors and performs the search

quickly. However, due to use of array indexing techniques the

frequently generated SQL query structure parsing will be

processed quickly which is a performance gain to the existing

available solution. As in the proposed scheme, validates each

dynamically generated SQL at runtime, this approaches

increases the runtime overload of the system but reduces the

possibility of SQLIA. The authors‟ proposed technique can

also detect such type of attack which are may cause by only

changing the data value of a query but not changing the

structure of the query by character matching technique for the

inputted value in the query. In the proposed method up to

token matching stage all test cases works fine but in the

character matching stage with some case such as when each

character/literal of inputted data value is matched with

characters stored in character list, there may possibly that the

proposed technique will not result as optimal results. It may

happen that inputted data value may contain some SQL

keywords which correct according to an authenticated user

point of view but since that input value is matched with

character list content so it will be treated as an invalid query,

furthermore, further in future authors will expand this solution

to handle the character matching algorithm and develop a tool

to enhance the efficiency of the proposed method. Currently,

the proposed system approaches preventing from almost most

of the attack of SQLIA.

6. AUTHORS CONTRIBUTION
All authors have contributed equally to his work and declare

no conflict of interest.

International Journal of Computer Applications (0975 – 8887)

Volume 162 – No 9, March 2017

18

7. REFERENCES
[1] Noor Ashitah Abu Othman, Fakariah Hani Mohd Ali and

Mashyum Binti Mohd Noh: Secured Web Application

Using Combination of Query Tokenization and Adaptive

Method in Preventing SQL Injection Attacks. 2014

IEEE, 2014 International Conference on Computer,

Communication, and Control Technology (l4CT 2014),

September 2 - 4,2014 - Langkawi, Kedah, Malaysia

[2] Anamika Joshi and Geetha V: SQL Injection Detection

using Machine Learning. 2014 International Conference

on Control, Instrumentation, Communication and

Computational Technologies (ICCICCT) ©2014 IEEE.

[3] Jaskanwal Minhas, Raman Kumar. Blocking of SQL

Injection attack by Comparing Static and Dynamic

queries. International Journal of computer network and

Information Security 2013.

[4] A. Dasgupta, V. Narasayya, M. Syamala. A Static

Analysis Framework for Database Applications. IEEE

25th International Conference on Data Engineering.

Pages 1403 – 1414, March 2009.

[5] W. Halfond, J. Viegas and A. Orso. A Classification of

SQL Injection Attacks and Countermeasures,

Proceedings of the IEEE International Symposium on

Secure Software Engineering (ISSSE), 2006

[6] W. G. Halfond and A. Orso. AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks. In

Proceedings of the IEEE and ACM International

Conference on Automated Software Engineering (ASE

2005), Long Beach, CA, USA, Nov 2005.

[7] Wikipedia, “SQL injection”

http://en.wikipedia.org/wiki/SQL_injection

[8] William G. J. Halfond, Alessandro Orso. Combining

Static Analysis & Runtime Monitoring to Counter SQL-

Injection Attacks. SIGSOFT Software Engineering Notes

Volume 30 Issue 4. July 2005.

[9] Kumar, Anil, Rohit Agarwal, and Rahul Kala. "Temporal

Logic based Motion Planning in Unstructured

Environments."

[10] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based

Approach to the Detection of SQL Attacks. In

Proceedings of the Conference on Detection of

Intrusions and Malware and Vulnerability Assessment

(DIMVA), pages 123–140, 2005.

[11] Boyd and A. Keromytis. SQLrand: Preventing SQL

injection attacks. In Proceedings of the Applied

Cryptography and Network Security (ACNS), pages 292–

304, 2004.

[12] G. Wassermann and Z. Su. An Analysis Framework for

Security in Web Applications. In Proceedings of the FSE

Workshop on Specification and Verification of

Component-Based Systems (SAVCBS), pages 70–78,

2004.

[13] Kumar, Anil, and Rahul Kala. "Linear Temporal Logic-

based Mission Planning." IJIMAI 3.7 (2016): 32-41.

IJCATM : www.ijcaonline.org

