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ABSTRACT 
Image processing is one of the real research regions in the 

most recent four decades. Numerous researchers have 

contributed very great algorithms and reported outstanding 

results. In this paper, state of matter search optimization based 

multilevel thresholding is implemented for the segmentation 

of gray scale Images. Set of standard gray level images are 

considered for image segmentation. The optimal multilevel 

threshold is found by maximizing the very popular objectives 

such as between class variance (Otsu method) and Kapur’s 

entropy. The outcomes are looked at with the aftereffects of 

the existing algorithms like IDSA, HSA, PSO, and BF. The 

outcomes uncover that the execution of state of matter search 

optimization algorithm based optimal multilevel threshold for 

image segmentation is better and has predictable execution 

than officially reported techniques.  

Keywords 
Multilevel thresholding, gray scale image segmentation, state 

of matter search optimization, qualitative and quantitative 

analysis 

1. INTRODUCTION 
Image segmentation plays crucial role in medical image 

analysis. It is frequently used to segment an image into 

independent regions, which preferably compares two various 

true objects [1]. Thresholding is a standout amongst the most 

important and viable methods for image segmentation, as it 

works taking a threshold (th) value so that pixels, whose 

intensity level is higher than th are marked as first class while 

the rest relate to second class label. At the point when the 

picture is portioned into two classes, the undertaking is called 

bi-level thresholding (BT) and requires only one th value. 

Then again, when pixels are isolated into more than two 

classes, then assignment is named as multilevel thresholding 

(MT) and requests more than one th value[2]. Multilevel 

thresholding fragments a gray level image into a few 

particular locales by identifying more than one 

threshold[3][4][5] and straightforwardness in control, 

thresholding methods have drawn a considerable measure of 

consideration amid the last couple of decades. Since 

multilevel thresholding is a very much inquired problem in 

image processing, there exist numerous techniques for 

deciding optimal threshold levels of the image. 

In general, thresholding techniques are categorized into 

parametric and nonparametric[6][7]. In Parametric 

methodology we have to forecast the values of probability 

density function to model every class. The estimation 

procedure is tedious and computationally costly. On the other 

hand, the ‘th’ nonparametric utilizes a few criteria, for 

example, between-class variance, entropy, and error rate 

[6][8][9] keeping in mind the end goal to check the nature of a 

‘th’ value. These measurements could likewise be utilized as 

improvement capacities since they come about as an alluring 

alternative because of their robustness and exactness. 

Otsu's strategy [10] is one of the prevalent histogram 

thresholding techniques that picks an optimal threshold by 

expanding the between class variance, while the second 

strategy, proposed by Kapur et al. in [4], the threshold is 

controlled by amplifying the entropy of the object and 

background pixels. The least error thresholding technique [11] 

characterized a measure taking into account the presumption 

that the object and background pixels are ordinarily 

distributed and the optimal threshold is accomplished by 

upgrading a standard function related to Bayes risk. As a 

contrasting option to traditional strategies, the MT issue has 

additionally been investigated through swarm intelligence and 

evolutionary algorithms. Various authors demonstrated to 

deliver better solutions than techniques based on classical 

approach in terms of exactness, quick convergence and 

robustness. Various optimization techniques based 

methodologies are presented in the literature. 

Genetic algorithm (GA), motivated on the biological 

evolution, has been utilized for solving segmentation 

problems. One intriguing case is introduced in [12], where a 

GA-based technique is consolidated with Gaussian models for 

multilevel thresholding. [13] proposed an enhanced GA for 

optimal multilevel thresholding where a learning procedure 

has been utilized to enhance the rate of convergence. 

Evolutionary methodologies motivated on swarm knowledge, 

for example, particle swarm optimization (PSO) [14] and 

artificial bee colony (ABC) [15], have been utilized to 

confront the segmentation issue. In [16], both the strategies 

are utilized to locate the optimal multilevel threshold values 

by utilizing the Kapur's entropy as objective function. In [17], 

the optimal threshold values are predicted by utilizing the 

bacterial foraging algorithm (BFA). Such strategy means to 

augment the Kapur's and Otsu's target objective functions by 

considering an arrangement of administrators which depend 

on the social scavenging conduct of the microorganisms 

Escherichia Coli. Authors [18] exhibited altered rendition of 

BFA for the determination of optimal threshold levels for 

image segmentation taking into account between class 

variance (Otsu's strategy). Multilevel thresholding for image 

segmentation, tackled taking into account harmony search 

algorithm (MHSA), consolidates the original version of 

harmonic search algorithm (HSA) based on Otsu's and 

Kapur's strategies are exhibited in [2]. Authors [19] proposed 

Cuckoo Search algorithm (CS) and a nature inspired 
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algorithm for the determination of optimal multilevel 

thresholding, exclusively for satellite image segmentation in 

view of Kapur's entropy. Authors [20] exhibited a point by 

point correlation of evolutionary and swam based 

computational strategies for optimal multilevel thresholding 

selection for color images taking into account Kapur's 

entropy. Kotte et.al presented PSNR maximization method for 

better multilevel thresholding image segmentation based on 

Improved Differential Search Algorithm (IDSA)[21]. The 

convergence time of the proposed method is very high. From 

the literature, it is understand that numerous authors proposed 

their work in light of either Kapur's entropy or Otsu's between 

class variance as a target objective function for the 

optimization of multilevel thresholding levels for image 

segmentation. 

The different great results reported by different authors to this 

specific engineering optimization issue persuaded us to 

execute a proficient optimization technique for multilevel 

image segmentation in light of state of matter search 

optimization (SMS) was proposed by [22]. Nonetheless, from 

the literature survey it is seen that the use of SMS to 

multilevel thresholding image segmentation has not been 

investigated. This persuaded the authors to utilize SMS as a 

streamlining tool for multilevel thresholding selection for 

image segmentation taking into account existing target 

objective functions i.e. Otsu’s and Kapur’s methods. The 

proposed method has been assessed by applying it on an 

arrangement of standard test gray scale images which offered 

encouraging results. So as to approve the results, subjective, 

objective and measurable examinations has been exhibited. 

Rest of the paper is composed as takes after: In section 2, 

mathematical treatment of bi-level and multilevel thresholding 

is clarified. In section 3, portrayal of target objective functions 

(Otsu's, Kapur's methods) maximization strategies are 

introduced. In section 4, execution of SMS optimization 

algorithm for optimal selection of multilevel thresholding is 

depicted. Execution results and examinations are outfitted in 

section 5. At long last, in section 6, finishes of the work and 

future scope are accounted for.  

2. MULTILEVEL THRESHOLDING 
Thresholding is a process in which the pixels of a gray scale 

image are divided into sets or classes depending on their 

intensity level (𝐿). For this classification it is necessary to 

select a threshold value (th) and follow the simple rule of 

𝐶1 ←  𝑝 𝑖𝑓 0 ≤  𝑝 < 𝑡    (1) 

𝐶2 ←  𝑝 𝑖𝑓 𝑡 ≤  𝑝 < 𝐿 −  1   (2) 

Where, ‘𝑝’ is one of them × n pixels of the gray scale image 𝑔 

that can be represented in ‘𝐿’ gray scale levelsL =
 {0, 1, 2, . . . , L − 1}.𝐶1 and 𝐶2 are the classes in which the 

pixel ‘𝑝’can be located, while ‘th’ is the threshold. The rule in 

Eq.2 corresponds to a bi-level thresholding and can be easily 

extended for multiple sets: 

𝐶1 ←  𝑝 𝑖𝑓 0 ≤  𝑝 < 𝑡1, 

𝐶2 ←  𝑝 𝑖𝑓 𝑡1 ≤  𝑝 < 𝑡2 , 

𝐶𝑖+1 ←  𝑝 𝑖𝑓 𝑡𝑖 ≤  𝑝 < 𝑡𝑖+1, 

𝐶𝑛 ←  𝑝 𝑖𝑓 𝑡𝑘 ≤  𝑝 < 𝐿 −  1,  (3) 

Where,{th1, th2, . . . , thi , thi+1, thk} represents different 

thresholds. The problem of both bi-level and ‘MT’ is to select 

the ‘th’ values that correctly identify the classes. Although, 

Otsu’s and Kapur’s methods are well-known approaches for 

determining such values, both propose a different objective 

function which must be maximized in order to find optimal 

threshold values, just as it is discussed below. 

3. OBJECTIVE FUNCTIONS 

3.1 Otsu’s between class variance 
In computer vision and image processing, Otsu's technique is 

utilized to naturally perform grouping based image 

thresholding or, the diminishment of a gray level image to a 

binary image. The algorithm expects that the image contains 

two classes of pixels taking after bi-level histogram 

(foreground pixels and background pixels); it then ascertains 

the optimal threshold isolating the two classes so that their 

consolidated spread (intra-class difference) is negligible. The 

expansion of the first strategy to multi-level thresholding is 

alluded to as the Multi Otsu technique [10].  

This is a nonparametric technique for thresholding proposed 

by Otsu that utilizes the most extreme fluctuation estimation 

of the distinctive classes as a measure to fragment the image. 

Taking the 𝐿 intensity levels from a gray scale image, the 

probability distribution of the intensity values is computed as 

follows: 

𝑝𝑖
𝑐 =

𝑖
𝑐

𝑁𝑃
 

 𝑝𝑖
𝑐𝑁𝑃

𝑖=1 = 1 ;𝑤𝑒𝑟𝑒, 𝑐 = 1   (4) 

Where, ‘𝑖’ is a specific intensity level (0 ≤  𝑖 ≤  𝐿 −  1), 𝑐is 

the component of the image. ‘NP’ is the total number of pixels 

in the image.  (histogram) is the number of pixels that 

corresponds to the ‘𝑖’ intensity level in ‘𝑐’. The histogram is 

normalized within a probability distribution 𝑝𝑖
𝑐 . For the 

simplest segmentation (bilevel) two classes are defined as 

𝐶1 =
𝑝1

𝑐

𝑤0
𝑐 𝑡 

,…………… ,
𝑝𝑡

𝑐

𝑤0
𝑐 𝑡 

 

𝐶2 =  
𝑝𝑡+1

𝑐

𝑤1
𝑐 𝑡 

,…………… ,
𝑝𝐿

𝑐

𝑤1
𝑐 𝑡 

  (5) 

Where, 𝜔0 𝑡  𝑎𝑛𝑑 𝜔1(𝑡) are probability distributions for 

𝐶1 𝑎𝑛𝑑 𝐶2 as it is shown by 

ω0
𝑐  th =  𝑝𝑖

𝑐

𝑡

𝑖=1

 

ω1
𝑐 th =  𝑝𝑖

𝑐     𝐿
𝑖=𝑡+1    (6) 

It is necessary to compute mean levels 𝜇0
𝑐  𝑎𝑛𝑑 𝜇1

𝑐 that define 

the classes using Eq.7. Once those values are calculated, the 

Otsu variance between classes 𝜎2𝑐  is calculated using Eq.8 as 

follows: 

𝜇0
𝑐 =  

𝑖𝑝𝑖
𝑐

ω0
𝑐  𝑡 

𝑡

𝑖=1

 

𝜇1
𝑐 =  

𝑖𝑝𝑖
𝑐

ω1
𝑐  𝑡 

𝐿
𝑖=𝑡+1    (7) 

𝜎2𝐶 = 𝜎1
2𝑐 + 𝜎2

2𝑐     (8) 

Notice that for both equations, Eq.7 and Eq.8, 𝑐 = 1 for gray 
level image. In Eq.8 the number two is part of the Otsu’s 

variance operator and does not represent an exponent in the 

mathematical sense. Moreover 𝜎1
2𝑐𝑎𝑛𝑑 𝜎2

2𝑐 in Eq.8 are the 

variances of 𝐶1 𝑎𝑛𝑑 𝐶2which are defined as 

𝜎1
2𝑐 = 𝜔𝑜

𝑐(𝜇0
𝑐 + 𝜇𝑇

𝑐 )2 

𝜎2
2𝑐 = 𝜔1

𝑐(𝜇1
𝑐 + 𝜇𝑇

𝑐 )2   (9) 
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Where, 𝜇𝑇
𝑐 = 𝜔𝑜

𝑐𝜇0
𝑐 + 𝜔1 

𝑐 𝜇1
𝑐and 𝜔𝑜

𝑐+𝜔1
𝑐 = 1. Based on the 

values of 𝜎1
2𝑐𝑎𝑛𝑑 𝜎2

2𝑐 , Eq.10 represents the objective 

function: 

𝐽 𝑡 =  𝑚𝑎𝑥  𝜎2𝐶 𝑡  , 0 ≤  𝑡 ≤  𝐿 − 1 (10) 

Where, 𝜎2𝑐(𝑡) is the Otsu’s variance for a given ‘th’value. 

Therefore, the optimization problem is reduced to find the 

intensity level (th) that maximizes Eq.10. The previous 

description of such bi-level method can be extended for the 

identification of multiple thresholds. Considering ‘𝑘’ 
thresholds, it is possible to separate the original image into ‘𝑘’ 
classes using Eq.3; then it is necessary to compute the ‘𝑘’ 
variances and their respective elements. The objective 

function 𝐽(𝑡) in Eq.10 can thus be rewritten for multiple 

thresholds as follows: 

𝐽 𝒕𝒉 =  𝑚𝑎𝑥  𝜎2𝑐 𝒕𝒉  , 0 ≤  𝑡𝑖 ≤   𝐿 − 1, 𝑖 = 1,2, . . . , 𝑘
     (11) 

Where, 𝒕𝒉 =  [𝑡1, 𝑡2, . . . , 𝑡𝑘−1], is a vector containing 

multiple thresholds and the variances are computed through 

𝜎2𝑐 =  𝜎𝑖
𝑐𝑘

𝑖=1 =   𝜔𝑖
𝑐𝑘

𝑖=1 (𝜇1 
𝑐 −  𝜇𝑇

𝑐 )2  (12) 

Here, ‘𝑖’ represents the ‘𝑖th’class, 𝑤𝑖
𝑐𝑎𝑛𝑑 𝜇𝑗  

𝑐  are, respectively, 

the probability of occurrence and the mean of a class. In ‘MT’, 

such values are obtained as 

ω0
𝑐  𝑡 =  𝑝𝑖

𝑐

𝑡1

𝑖=1

 , 

ω1
𝑐 𝑡 =  𝑝𝑖

𝑐

𝑡2

𝑖=𝑡𝑖+1

, 

ω𝑘−1
𝑐  𝑡 =  𝑝𝑖

𝑐𝐿
𝑖=𝑡𝑘+1

   (13) 

And, for the mean values 

𝜇0
𝑐 =  

𝑖𝑝𝑖
𝑐

𝜔𝑜
𝑐(𝑡1)

,

𝑡1

𝑖=1

 

𝜇1
𝑐 =  

𝑖𝑝𝑖
𝑐

𝜔𝑜
𝑐 (𝑡2)

𝑡2

𝑖=𝑡𝑖+1
 , 

μk−1
c =  

𝑖𝑝𝑖
𝑐

ω1
𝑐 (𝑡𝑘)

𝐿
𝑖=𝑡𝑘+1

 .                 (14) 

Similar to the bi-level case, for the ‘MT’ using the Otsu’s 

method, ‘𝑐’ corresponds to the image components, for gray 

scale image 𝑐 =  1. 

3.2 Kapur’s entropy 
Another nonparametric technique that is utilized to decide the 

optimal threshold value was proposed by [4]. It depends on 

the entropy and the probability distribution of the image 

histogram. The strategy intends to locate the optimal "th" that 

amplifies the general entropy. The entropy of image measures 

the compactness and distinguishableness among classes. In 

this sense, when the optimal "th" estimate suitably isolates the 

classes, the entropy has the most extreme worth. For the bi-

level illustration, the target capacity of the Kapur's issue can 

be characterized as 

𝐽 (𝑡)  =  𝐻1
𝑐 + 𝐻2

𝑐 ,𝑤𝑒𝑟𝑒, 𝑐 = 1   

   (15)           

Where, the entropies𝐻1 𝑎𝑛𝑑 𝐻2are computed using the 

following model

𝐻1
𝑐 =  

𝑝𝑖
𝑐

ω𝑜
𝑐

𝑡
𝑖=1 ln  

𝑝𝑖
𝑐

ω𝑜
𝑐   , 

𝐻2
𝑐 =  

𝑝𝑖
𝑐

𝑤1
𝑐

𝐿
𝑖=𝑡+1 ln  

𝑝𝑖
𝑐

ω1
𝑐   .            (16) 

𝑝𝑖
𝑐 is the probability distribution of the intensity levels which 

is obtained using Eq.4. 𝜔0(𝑡) 𝑎𝑛𝑑 𝜔1(𝑡)are probability 

distributions for 𝐶1 𝑎𝑛𝑑 𝐶2. ln(⋅) stands for the natural 

logarithm. Similar to the Otsu’s method, the entropy-based 

approach can be extended for multiple threshold values for 

such case, it is necessary to divide the image into ‘𝑘’ classes 

using the similar number of thresholds. Under such 

conditions, the new objective function is defined as: 

𝐽 (𝒕𝒉)  =  𝑚𝑎𝑥( 𝐻𝑖
𝑐𝑘

𝑖=1 )  𝑤𝑒𝑟𝑒, 𝑐 = 1 (17) 

Where, 𝒕𝒉 =  [𝑡1, 𝑡2 , . . . , 𝑡𝑘−1]is a vector that contains the 

multiple thresholds. Each entropy is computed separately with 

its respective ‘th’ value, so Eq.18 is expanded for ‘𝑘’ 
entropies: 

𝐻1
𝑐 =  

𝑝𝑖
𝑐

ω𝑜
𝑐

𝑡1

𝑖=1 ln  
𝑝𝑖

𝑐

ω𝑜
𝑐   , 

𝐻2
𝑐 =  

𝑝𝑖
𝑐

ω1
𝑐

𝑡2

𝑖=𝑡𝑖+1
ln  

𝑝𝑖
𝑐

ω1
𝑐  , 

𝐻𝑘
𝑐 =  

𝑝𝑖
𝑐

ω𝑘−1
𝑐

𝐿
𝑖=𝑡𝑘+1

ln  
𝑝𝑖

𝑐

ω𝑘−1
𝑐  .             (18) 

The values of the probability occurrence 

 ω0
𝑐 ,ω1

𝑐 ,………ω𝑘−1
𝑐  of the ‘𝑘’ classes are obtained using 

Eq.13 and the probability distribution𝑝𝑖
𝑐  using Eq.7. Finally, 

it is necessary to use Eq.3 to separate the pixels into the 

corresponding classes.  

4. STATE OF MATTER SEARCH 

ALGORITHM 
State of matter search is novel and efficient nature inspired 

evolutory algorithm for solving global optimization problems. 

The SMS algorithm is based on the simulation of states of 

matter phenomenon. In SMS, individuals emulate molecules 

which interact to each other by using evolutionary operations 

based on the physical principles of the thermal-energy motion 

mechanism. Such operations allow the increase of the 

population diversity and avoid the concentration of particles 

within a local minimum. The proposed approach combines the 

use of the defined operators with a control strategy that 

modifies the parameter setting of each operation during the 

evolution process. In contrast to other approaches that 

enhance traditional EA (evolutory algorithms) by 

incorporating some procedures for balancing the exploration–

exploitation rate, the proposed algorithm naturally delivers 

such property as a result of mimicking the states of matter 

phenomenon. The algorithm is devised by considering each 

state of matter at one different exploration–exploitation ratio. 

Thus, the evolutionary process is divided into three stages 

which emulate the three states of matter: gas, liquid and solid. 

At each state, molecules (individuals) exhibit different 

behavior. Beginning from the gas state (pure exploration), the 

algorithm modifies the intensities of exploration and 

exploitation until the solid state (pure exploitation) is reached. 

As a result, the approach can substantially improve the 

balance between exploration–exploitation, yet preserving the 

good search capabilities of an evolutionary approach [22]. 

4.1 SMS implementation procedure 
The overall SMS algorithm is comprised of three phases 

corresponding to the three states of matter: the gas, the liquid 

and the solid state. Each phase has its own behavior. In the 
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gas phase exploration is intensified whereas in liquid phase a 

mild transition between exploration and exploitation is 

executed. Finally, in the solid phase, solutions are refined by 

emphasizing the exploitation process. 

At each phase, the same operations are implemented. 

However, depending on which phase is referred, they are 

employed considering a different parameter configuration. 

The procedure in each phase is shown in algorithm steps for 

SMS. Such procedure is composed of nine steps and maps the 

current population Pk to a new population Pk +1. The 

algorithm receives the current population Pk as input and the 

configuration parameters α, β, ρ, and H will help to yield the 

new population Pk +1. 

4.2 Steps for implementation of SMS 

algorithm 
Step 1: Initialization of optimization problem and algorithm 

parameters 

Initialize population size (Pop), N, α, β, ρ, H for all phases, D, 

maxit, Phase and limits for threshold levels. 

Step 2: Initialization of Population of molecules (Generation 

of random solution) 

The (P) is generated randomly; where, elements of P 

represent the sets of decision variables (threshold levels). P 

matrix is represented by: 





































Pop

N

Pop

N

PopPop

Pop

N

Pop

N

PopPop

NN

NN

xxxx
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xxxx

xxxx

P

121

11

1

1

2

1

1

22

1

2

2

2

1

11

1

1

2

1

1











 

     (19) 

𝑥𝑗
𝑖 = 𝑥𝑗

𝑚𝑖𝑛 +  𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛  ∗ 𝑟𝑎𝑛𝑑   (20) 

[𝑡1
1 𝑡2

1  𝑡𝑁−1
1  𝑡𝑁

1 ] = 𝑃1    (21)              

Where, N is the number of decision variables (dimension of 

the problem), 𝑥𝑗
𝑖represents parameter output, i.e., ith 

population of jth parameter, which is generated randomly 

between the limits, as 𝑥𝑗
𝑚𝑎𝑥  and 𝑥𝑗

𝑚𝑖𝑛  are the jth parameter 

maximum and minimum limits and rand() is a random 

number between 0 and 1.  

Step 3: Evaluate the objective function and record the best 

solution of the population P 

Calculate the objective value for each initial solution using 

Eq. 11 and Eq.17. Record the gbest solution so far. 

𝑃 ∈  𝑃 𝑎𝑛𝑑 𝑓 𝑃𝑏𝑒𝑠𝑡  = max{𝑓 𝑃1 , 𝑓 𝑃1 ,… . . , 𝑓 𝑃𝑃𝑜𝑝  } 

    (22) 

Step 4: Calculate Vinit (initial velocity of each molecule) and r 

(collision radius) 

𝑣𝑖𝑛𝑖𝑡 =
  𝑥𝑗

𝑚𝑎𝑥 −𝑥𝑗
𝑚𝑖𝑛  𝑁

𝑗=1

𝑁
∗ 𝛽                 𝑟 =  

  𝑥𝑗
𝑚𝑎𝑥 −𝑥𝑗

𝑚𝑖𝑛  𝑁
𝑗=1

𝑁
∗ 𝛼

    (23) 

Where, β ϵ [0, 1] and α ϵ [0, 1] 

Step 5: Compute new molecules (solutions) by using the 

direction vector operator Eq. 24 

 For (i = 1; i < Pop+1; i++) 

 𝑎𝑖 =
 𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖 

 𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑖 
  

 For (j = 1; j < N+1; j++) 

 𝑑𝑖𝑟𝑖 ,𝑗
𝑘+1 = 𝑑𝑖𝑟𝑖 ,𝑗

𝑘 ∗  1 −
𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡
 ∗ 0.5 + 𝑎𝑖 ,𝑗  

    (24)  

 𝑣𝑖 ,𝑗 = 𝑑𝑖𝑟𝑖 ,𝑗
𝑘+1 ∗ 𝑣𝑖𝑛𝑖𝑡    

     (25) 

 𝑃𝑖 ,𝑗
𝑘+1 = 𝑃𝑖 ,𝑗

𝑘 + 𝑣𝑖 ,𝑗  . 𝑟𝑎𝑛𝑑.𝜌.  𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛   

    (26) 

 End for j 

End for i 

Step 6: Solve collisions by using Collision operator Eq. 27 

 For (i = 1; i < Pop+1; i++) 

 For (j = 1; j < N+1; j++) 

 𝑖𝑓    𝑃𝑖 − 𝑃𝑗 < 𝑟 𝑎𝑛𝑑 𝑖 ≠ 𝑗    

    (27) 

 𝑡 = 𝑑𝑖𝑟𝑖      
    

 𝑑𝑖𝑟𝑖 = 𝑑𝑖𝑟𝑗     

     

 𝑑𝑖𝑟𝑗 = 𝑡     

    

End for if 

 End for j 

End for i 

Step 7: Generate new random positions by using the random 

position operator Eq. 28 

 For (i = 1; i < Pop+1; i++) 

 𝑖𝑓  𝑟𝑚 < 𝐻 𝑡𝑒𝑛;𝑤𝑒𝑟𝑒 𝑟𝑚 ∈ 𝑟𝑎𝑛𝑑   
   

 For (j = 1; j < N+1; j++) 

𝑃𝑖 ,𝑗
𝑘+1 =

 
𝑥𝑗
𝑚𝑖𝑛 +  𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛  . 𝑟𝑎𝑛𝑑    𝑤𝑖𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻

𝑃𝑖 ,𝑗
𝑘+1                                      𝑤𝑖𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐻)

  

    (28)  

End for j 

 End for if 

End for i 

Step 8: Initiate change of phase, evaluate the new solution P 

and update gbest 

Calculate the objective value based on new solution P using 

Eq. 11 and Eq.17 and select the best solution in new P. If the 

new solution is better than the previous solution then record 

the best solution (gbest) so far otherwise discard new solution 

and preserve the previous solution.  

Step 9: Stopping criterion 
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If the maximum number of iterations is reached, computation 

is terminated. Otherwise, Step 4 to Step 8 is repeated. 

The detailed implementation flow chart for SMS algorithm in 

the context of image enhancement is given in Figure 1. 

 

Fig 1: Implementation flow chart for SMS algorithm 

5. RESULTS AND DISCUSSIONS 
In this section, the proposed strategy taking into account 

productive outcome is accepted through applying it on 

segmentation of standard ten test images. Each image of size 

256*256, 8-bit gray level. Algorithm parameter determination 

assumes a noteworthy part of any optimization algorithm as 

far as execution. Consequently, parameter tuning is essential 

for streamlining methods before execution. The values doled 

out for these parameters are chosen by the quantity of trails on 

the execution of the proposed technique/algorithm. The 

parameter depiction and doled out values for SMS algorithm 

are outfitted in Table 1. The proposed technique in light of 

novel optimization algorithm has been contrasted with well-

existing methodologies/algorithms in the literature. All 

simulations are self-developed MATLAB codes utilizing 

MATLAB R2010a on an Intel Core i5-2400 Duo 3.10 GHz 

processor with 4 GB RAM.  

To demonstrate the effectiveness of proposed approach, the 

following two different strategies are taken into account: 

1. Maximization of Between Class Variance (Otsu 

method) 

2. Maximization of Entropy (Kapur method) 

 

 

 

Table 1 Assigned values for SMS algorithm parameters 

Algorithm Parameter Description 
Assigned 

value 

SMS 

Pop Size of population 50 

N 
Dimension of the 

problem 

Dependent 

on ‘k’ 

maxit 
Maximum number 

of iterations 

1000 for 

Otsu/ 

500 for 

Kapur 

β Movement operator 
[0.9, 0.5, 

0.1] 

α Collision operator 
[0.3, 0.05, 

0.0] 

H Threshold operator 
[0.9, 0.2, 

0.0] 

ρ Direction operator 
[0.85, 

0.35, 0.1] 

The aim of the proposed approach is to select best 

thresholding values and higher objective values with fast 

convergence. Subjective analysis and comparison of 

considered strategies for test images like cameraman, lena, 

baboon, hunter and butterfly has been presented in Figure 2 to 

Figure 6. 

Each Figure gives detailed information about input image, 

thresholded output image at various optimal thresholds with 

related convergence characteristics of the proposed approach. 

From Figure 2 to Figure 6 it is observed that the Kapur-SMS 

approach was not so good to segment the given input image at 

threshold level two for all images. Besides, Otsu-SMS has 

been successful in segmentation of given input image at all 

considered threshold levels. Table 2 presents the comparison 

of optimal threshold values obtained by Otsu-SMS approach 

with various well existing optimization approaches. Table 3 

presents the comparison of objective function values obtained 

by Otsu-SMS approach with existing optimization approaches 

such as IDSA, HAS, BF and PSO. Form Table 3 it is observed 

that the values of objective function values obtained by Otsu-

SMS is appreciably higher than existing approaches at all 

threshold levels for all the images and the marginal difference 

is high in case of number of threshold levels is five. Similarly, 

Table 4 shows the comparison of optimal threshold values 

obtained by Kapur-SMS approach with various well existing 

optimization approaches.  Table 5 presents the comparison of 

objective function values obtained by Kapur-SMS approach 

with existing optimization approaches such as IDSA, HAS, 

BF and PSO. In case of Kapur-SMS approach the objective 

function value at threshold level two is marginal or 

approximately closer to existing approaches. However, the 

objective function value obtained by Kapur-SMS at remaining 

threshold levels is considerably higher than existing methods. 

Statistical comparison of image quality metric such as PSNR 

obtained by Otsu-SMS and Kapur-SMS with existing 

approaches has been furnished in Table 6. From Table 6 it is 

clear that the PSNR values obtained by Otsu-SMS and Kapur-

SMS are superior to existing approaches for all the images. 

An important factor for the analysis of performance of 

optimization algorithms is convergence time. A detailed 

comparison of computational time of various approaches has 

been presented in Table 7. Form Table 7 it is observed that the 

average time of convergence of SMS for the optimal 

multilevel thresholding image segmentation is between 3s to 
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5s depends on number of threshold levels which is 

considerably small. 

6. CONCLUSIONS 
This paper presents a fast and efficient optimization approach 

for the optimal selection of threshold levels for gray level 

image segmentation. Two well existing objective functions 

maximization of entropy and between class variance are 

considered for the evaluation of proposed approach. Detailed 

qualitative, quantitative and statistical analysis of results of 

proposed approach has been presented. Form the obtained 

results it is concluded that the Otsu-SMS and Kapur-SMS 

approaches were outperformed than existing methods in terms 

of quality and convergence. It is noticed that the clarity and 

information of segmented image increased with increase in 

number of thresholds levels. Development of hybrid 

optimization algorithms and novel objective functions may 

give better results is future scope of the work. 
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8. APPENDIX

 

Fig 2: Implementation results of Otsu-SMS and Kapur-SMS over Cameraman Image 

 

Fig 3: Implementation results of Otsu-SMS and Kapur-SMS over Lena Image 
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Fig 4: Implementation results of Otsu-SMS and Kapur-SMS over Baboon Image 

 

Fig 5: Implementation results of Otsu-SMS and Kapur-SMS over Hunter Image 
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Fig 6: Implementation results of Otsu-SMS and Kapur-SMS over butterfly image 

Table 2 Comparison of optimal threshold values obtained by Otsu’s method using various optimization algorithms 

Input 

Image 

Name 

k SMS IDSA[21] HSA[2] BF[17] PSO[17] 

Camer

aman 

2 71,144 70,144 70, 144 70,143 71,143 

3 59,117,155 59,119,156 59, 119, 156 61,118,155 71,134,166 

4 46, 99,143,172 38,93,140,172 42, 95, 140, 170 48,104,142,170 65,121,147,172 

5 35,85,121,149,173 31,83,135,165,209 36, 82, 122, 149, 173 40,86,125,151,174 45,78,121,146,172 

Lena 

2 86,146 86,146 91, 150 92,151 94,152 

3 67,112,156 59,115,180 79, 125, 170 79,125,170 7 9,127,170 

4 60,100,130,168 65,114,138,181 73, 112, 144, 179 76,117,151,182 78,112,134,175 

5 59, 91,117,143,182 61,96,128,167,242 71, 107, 134, 158,186 66,92,122,149,183 79,110,140,167,188 

Baboo

n 

2 97,149 97,150 97, 149 98,150 9 6,149 

3 84,123,161 73   125   162 85, 125, 161 84,126,159 85,126,166 

4 72,106,137,165 33,84,124,161 71, 105, 136, 167 77,109,139,169 79,105,140,174 

5 60, 91,118,141,172 37,83,111,151,168 66, 97, 123, 147, 173 70,99,127,154,177 74,104,134,161,180 

Hunter 

2 51,116 51,116 51, 116 51,117 52,116 

3 37,85,134 36,86,135 36, 86, 135 36,86,135 39,86,135 

4 26,64,105,141 30,72,111,146 27, 65, 104, 143 31,80,120,152 36,84,130,157 

5 30,64,92,130,157 36,86,112,135,256 22, 53, 88, 112, 152 31,73,109,141,178 37,85,125,154,177 

Butterf

ly 

2 99,151 97,153 99, 151 99,151 99,150 

3 80,119,160 72,100,145 82, 119, 160 78,117,162 79,119,164 

4 74, 99,129,159 74,115,159,201 71, 102, 130, 163 75,105,135,165 80,113,145,177 

5 71,100,121,149,180 63,111,131,150,192 62, 77, 109, 137, 167 76,104,129,154,180 75,106,129,157,180 
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Table 3 Comparison of Objective function values obtained by Otsu’s method using various optimization algorithms 

Input 

Image 

Name 

k SMS IDSA[21] 
DSA[21

] 
HSA[2] BF[17] PSO[17] GA[17] 

Camera

man 

2 
3652.87

8 
3651.9 3651.1 3651.9 

3609.49

9 
3609.370 3609.076 

3 
3728.17

8 
3727.2 3727 3727.4 

3682.56

9 
3677.178 3643.215 

4 
3793.47

8 
3792.5 3785.1 3782.4 

3737.12

0 
3722.644 3710.731 

5 
3855.17

8 
3854.2 3834 3813.7 

3769.22

3 
3764.957 3755.552 

Lena 

2 
1980.37

8 
1979.4 1967 1964.4 

1961.55

5 
1961.414 1960.960 

3 
2165.67

8 
2164.7 2141 2131.4 

2128.07

0 
2127.777 2126.410 

4 
2213.17

8 
2212.2 2199 2194.9 

2189.02

6 
2180.686 2173.714 

5 
2257.27

8 
2256.3 2228 2218.7 

2215.60

9 
2212.555 2196.274 

Baboon 

2 
1552.17

8 
1551.2 1550 1548.1 

1548.01

2 
1547.997 1547.658 

3 
1669.37

8 
1668.4 1645 1638.3 

1637.00

7 
1635.362 1633.522 

4 
1703.17

8 
1702.2 1695 1692.1 

1690.72

2 
1684.336 1677.705 

5 
1755.17

8 
1754.2 1729 1717.5 

1716.72

8 
1712.958 1699.390 

Hunter 

2 
3065.17

8 
3064.2 3054.2 3054.2 

3064.11

8 
3064.068 3064.015 

3 
3214.37

8 
3213.4 3213.4 3213.4 

3213.44

6 
3212.058 3211.794 

4 
3283.77

8 
3282.8 3271 3269.5 

3266.35

0 
3257.176 3231.131 

5 
3368.47

8 
3367.5 3345 3308.1 

3291.13

3 
3276.317 3244.738 

Butterfl

y 

2 
1579.17

8 
1578.2 1563 1553.0 

1553.07

3 
1553.068 1552.412 

3 
1696.37

8 
1695.4 1673 1669.2 

1667.28

0 
1665.758 1662.696 

4 
1739.67

8 
1738.7 1724 1708.3 

1707.09

9 
1702.906 1696.694 

5 
1765.27

8 
1764.3 1740 1728.0 

1733.03

1 
1730.787 1716.042 

 

Table 4 Comparison of optimal threshold values obtained by Kapur’s method using various optimization algorithms 

Input 

Image 

Name 

k SMS IDSA[21] HSA[2] BF[17] PSO[17] 

Cameraman 

2 193,254 128,196 128,196 116,196 115,196 

3 132,193,254 44,103,196 44,103,196 95,139,193 96,138,191 

4 40,106,197,255 43,96,147,198 44,96,146,196 42,96,139,200 77,116,151,202 

5 36,89,133,198,252 24,61,98,147,195 24,60,98,146,196 42,84,115,150,198 64,95,121,156,198 

Lena 

2 142,254 96,163 96,163 97,164 99,165 

3 94,157,249 23,96,163 23,96,163 88,142,188 86,151,180 

4 20,89,151,233 23,81,127,170 23,80,125,173 74,114,149,184 92,129,162,191 

5 20,65,105,148,238 22,71,108,145,180 23,71,109,144,180 64,95,128,163,194 74,115,145,170,197 



International Journal of Computer Applications (0975 – 8887) 

Volume 163 – No 11, April 2017 

45 

Baboon 

2 108,255 79,143 79,143 81,144 76,144 

3 78,143,254 79, 143, 231 79,143, 231 53,112,150 72,130,181 

4 74,147,233,255 44, 97, 153, 230 44, 98, 152, 231 39,90,131,168 65,121,153,180 

5 39,93,149,234,255 
33, 75, 114, 

158,232 

33, 74, 114, 

159,231 
38,79,113,148,180 73,110,142,166,192 

Hunter 

2 99,255 92,179 92, 179 85,179 83,179 

3 91,179,248 59,117,179 59, 117, 179 57,104,175 85,128,166 

4 63,118,178,244 45, 89, 132, 179 44, 89, 133, 179 50,98,139,180 74,131,174,200 

5 46,95,134,179,241 
44,89, 132, 179, 

221 

44, 89, 133, 179, 

222 
49,93,137,179,222 90,120,164,190,219 

Butterfly 

2 213,254 27,213 27, 213 97,144 95,141 

3 26,214,251 27,120, 213 27, 120, 213 75,109,154 63, 96,103, 

4 27,84,215,252 27, 97, 144, 212 27, 96, 144, 213 73,97,127,157 71,113,162,184 

5 25,103,157,214,255 
27,82, 118, 151, 

212 

27, 83, 118, 152, 

213 
74,97,120,144,167 92,116,142,157,182 

 

Table 5 Comparison of objective values obtained by Kapur’s method using various optimization algorithms 

Input 

Image 

Name 

k SMS IDSA[21] HSA[2] BF[17] PSO[17] 

Cameraman 

2 14.5915 14.584 14.584 12.2646 12.2595 

3 17.5130 16.007 16.007 15.2507 15.2110 

4 21.8986 19.686 19.586 18.4066 18.0009 

5 26.2731 23.753 23.553 21.2111 20.9631 

Lena 

2 12.8999 12.334 12.334 12.3470 12.3459 

3 17.7490 16.955 16.995 15.2206 15.1336 

4 22.0405 18.319 18.089 17.9333 17.8388 

5 26.1341 20.429 20.349 20.6099 20.4427 

Baboon 

2 12.8372 12.984 12.984 12.2164 12.2134 

3 17.6236 16.745 16.745 15.2114 15.0088 

4 22.0459 18.925 18.815 17.9992 17.5743 

5 26.2779 21.647 21.662 20.7200 20.2245 

Hunter 

2 12.7879 12.349 12.349 12.3733 12.3708 

3 17.8420 16.838 16.838 15.5533 15.1286 

4 22.4961 19.352 19.218 18.3819 18.0401 

5 26.6963 21.624 21.563 21.2565 20.5339 

Butterfly 

2 11.9402 10.470 10.470 10.4749 10.4743 

3 16.4652 13.628 13.628 12.7546 12.3130 

4 20.6659 15.425 15.314 14.8777 14.2317 

5 24.7890 17.812 17.756 16.8282 16.3374 
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Table 6 Comparison of PSNR values obtained in proposed method, Otsu’s and Kapur’s method using SMS 

Input 

Image 

Name 

k 

PSNR (dB) 

Otsu’s Method Kapur’s Method 

SMS IDSA[21]  HSA[2] BF[17] PSO[17]  SMS IDSA[21]  HSA[2] BF[17] PSO[17]  

Cameraman 

2 17.3241 17.2491  17.247 17.048 17.033  14.079 13.626  13.626 11.941 12.259  

3 20.3023 20.2165  20.211 17.573 19.219  14.913 14.460  14.460 14.827 15.211  

4 21.6670 21.2508  21.533 20.523 21.254  21.577 21.124  20.153 17.166 18.000  

5 23.4517 23.3124  23.282 21.369 22.095  21.893 20.84  20.661 19.795 20.963  

Lena 

2 15.2389 15.2389  15.401 15.040 15.077  15.091 14.638  14.638 12.334 12.345  

3 18.2208 17.7239  17.427 17.304 17.276  16.671 16.218  16.218 14.995 15.133  

4 19.8082 18.8069  18.763 17.920 18.305  19.995 19.542  19.287 17.089 17.838  

5 20.5840 19.7791  19.443 18.402 18.770  21.667 21.214  21.047 19.549 20.442  

Baboon 

2 15.4227 15.4198  15.422 15.304 15.088  16.469 16.016  16.016 12.184 12.213  

3 17.8546 18.3130  17.709 17.505 17.603  16.469 16.016  16.016 14.745 15.008  

4 20.1668 20.3641  20.289 18.708 19.233  18.974 18.521  18.485 16.935 17.574  

5 22.3062 21.9156  21.713 20.203 20.526  20.977 20.524  20.507 19.662 20.224  

Hunter 

2 17.8950 17.8950  16.299 17.088 17.932  15.659 15.206  15.206 12.349 12.370  

3 20.3748 20.3508  18.359 20.045 19.940  18.953 18.500  18.500 14.838 15.128  

4 22.1772 22.1550  20.737 20.836 21.128  21.567 21.114  21.065 17.218 18.040  

5 23.4901 21.6472  22.310 21.284 22.026  21.697 21.244  21.086 19.563 20.533  

Butterfly 

2 13.9348 13.9610  13.934 13.007 13.092  8.646 8.1930  8.1930 10.470 10.474  

3 16.9622 17.7078  16.932 15.811 17.261  13.868 13.415  13.415 11.628 12.313  

4 18.6771 18.9879  19.259 17.104 17.005  17.277 16.824  16.725 13.314 14.231  

5 22.6969 21.8066  21.450 18.593 18.099  19.987 19.534  19.413 15.756 16.337  

Table 7 Comparison of CPU time (in seconds) for various methods 

Input 

Image 

Name 

k 

Otsu’s Method Kapur’s Method 

SMS IDSA[21] BF[17] PSO[17]  SMS IDSA[21] BF[17] PSO[17]  

Cameraman 

2 3.0505 2.9345 3.0625 3.4844  4.767 5.8813 7.7813 8.4844  

3 3.6755 3.5595 3.6875 4.125  4.988 6.372 8.272 9.0625  

4 4.2224 4.1064 4.2344 4.7406  6.374 6.6938 8.5938 9.125  

5 4.6599 4.5439 4.6719 5.2656  5.921 7.3969 9.2969 10.1094  

Lena 

2 3.2849 3.1689 3.2969 3.5781  5.645 5.3063 7.2063 7.8594  

3 3.8161 3.7001 3.8281 4.4031  6.114 5.706 7.606 8.3594  

4 4.2068 4.0908 4.2188 4.75  5.786 6.6 8.5 9.1719  

5 4.7693 4.6533 4.7813 5.2031  5.767 6.9125 8.8125 9.4063  

Baboon 

2 3.2693 3.1533 3.2813 3.8469  5.651 5.725 7.625 8.0016  

3 3.7849 3.6689 3.7969 4.3125  6.198 6.3824 8.2824 8.7188  

4 4.2693 4.1533 4.2813 4.9063  6.649 6.8188 8.7188 9.1084  

5 4.8086 4.6926 4.8206 5.3281  6.874 7.2875 9.1875 9.7813  

Hunter 
2 3.2224 3.1064 3.2344 3.8438  4.565 5.4594 7.3594 8  

3 3.8943 3.7783 3.9063 4.4844  6.279 6.3813 8.2813 8.7031  
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4 4.1755 4.0595 4.1875 4.8125  6.237 6.8344 8.7344 9.0313  

5 4.8008 4.6848 4.8128 5.3031  7.363 7.725 9.625 10.1406  

Butterfly 

2 3.238 3.122 3.25 3.5313  5.127 5.2719 7.1719 7.7188  

3 3.7068 3.5908 3.7188 4.1875  6.358 5.9906 7.8906 8.5469  

4 4.1911 4.0751 4.2031 4.8281  6.294 6.5688 8.4688 9  

5 5.0505 4.9345 5.0625 5.4594  7.150 6.7563 8.6563 9.3813  
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