
International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

31

HCLBLAST for Genome Sequence Matching

Monika Yadav
All Saints’ of technology,

Bhopal

Sonal Chaudhary
All Saints’ of technology,

Bhopal

ABSTRACT
Genome sequence matching is used to reveal biological

information hidden in the DNA sequences and genome

sequences. The main objective is to find whether the given

sequence is like other sequence or not. To find the similarity

between the diseases and intensity of the disease DNA

sequences are matched. There is large number of sequences

and the database is still growing. Given a genome sequence

and to find matching sequences from the complete database is

a big challenge. The genome sequence matching algorithms

are also computation intensive like BLAST; which performs

large number of string matching operations. So to handle this

genome sequence matching algorithms and to store data

which is Big data; Hadoop is used. Hadoop is a parallel

processing Big data framework. The genome sequence

database can be stored on Hadoop distributed filesystem. And

then can be efficient;y processed using Map/Reduce. The data

is distributed in the form of blocks and for every block an

instance of mapper is mapped to process the block and then

output of all the mappers is combined by reducer. This

Map/Reduce process has inter-node parallelism. To further

speedup the process and to efficiently utilize the resources

like Central processing unit and Graphical processing unit, a

parallel processing framework called OpenCL is used. In this

work OpenCL is integrated with Hadoop using a API called

APARAPI. In addition to inter-node parallelism, intra-node

parallelism is also provided and Map/reduce is accelerated for

BLAST algorithm which is termed as HCLBLAST. The

HCLBLAST is compared with HBLAST and BLAST

algorithm for different datasets. It is found that HCLBLAST

outperforms in all cases.

Keywords
DNA, HCLBLAST, BLAST, NGS

1. INTRODUCTION
Big data is outlined as great quantity of data that has want of

recent technologies and design to create potential to extort

worth from it by capturing and analysis method. New sources

of massive data embody location specific knowledge that has

arrived from traffic management and from the trailing of

private devices like Smartphone‟s. Huge data has acquired

read as a result of we have a tendency to live within the world

that makes mounting use of data intensive technologies.

Because of such giant size of knowledge it becomes terribly

tough to realize effective analysis mistreatment existing

ancient techniques. Since huge data is new approaching

technology within the market which might bring the massive

advantages to the business organizations, it becomes

necessary varied challenges and problems associated in

delivery and adopting to the current technology are have to be

compelled to be perceive. Huge data thought means that a

dataset that continues grew such a lot that it becomes tough to

manage it mistreatment existing info models and tools.

Therefore finally huge data is data that exceeds the process

capability of typical info systems. The data is big sized,

moves too quick, or doesn‟t work the structures of our info

architectures. To realize gain from this data you should have a

method to process it.

2. RELATED WORK
Alignment Search Tool (BLAST) ,a heuristic version of the

pairwise native alignment Smith boatman rule, remains the

foremost wide used machine procedure for alignment

interrogating biological databases supported a heuristic

version of the pairwise native alignment Smith boatman rule.

It compares the similarity of a reference super molecule or

deoxyribonucleic acid sequence against data of sequences,

higher than a nominative threshold, and returns similar,

statistically important, matches. In spite of its heuristic

approach, it still faces important measurability challenges

associated primarily with the need to go looking new and ever

increasing knowledgebase; like UniMES for met genomic

data sets that still expand exponentially as Next Generation

Sequencing (NGS) prices still decline. BLAST, together with

most different bioinformatics algorithms, is meant to execute

domestically i.e. consecutive. However, the augmented

turnout of ordering sequencing has light-emitting diode to

large knowledge generation requiring a big increase within the

speed of execution of those algorithms. the appearance of

cloud computing and massive knowledge „„scale out‟‟

technologies like Hadoop give value effective process of T

sized knowledge sets therefore it's currently potential to

analyse these immense datasets apace; a very important

demand within the rapidly increasing field of molecular

medicine. Thus, because the size of genomic knowledge sets

increase earlier than native process power and disk scan

speed, it's intuitive to port these naturally parallel

bioinformatics tasks to use the Hadoop Map Reduce

framework. Standard approaches to parallelizing BLAST

mistreatment Hadoop area unit 3 fold: the primary and

commonest approach distributes the input question sequences

amongst a cluster of nodes, the second approach partitions the

data amongst nodes and at last a hybrid approach partitions

each the input sequences and therefore the data. The downside

of the primary approach is that it exhibits restricted

measurability and cargo equalisation doesn't occur with a little

range of input sequences. The second approach needs a

complicated rule to partition the data so as to make sure

measurability and optimum performance. moreover, it ends up

in high disk I/O. the ultimate hybrid approach is desirable

because it handles giant databases yet as an oversized range of

input question sequences, but it's the foremost difficult to

implement and deploy whereas minimising inter-node

communications and optimising the partitioning strategies.

BLAST parallelization mistreatment MPI and CUDA a

standard parallelised approach includes the Message Passing

Interface (MPI) a parallel programming paradigm wherever a

root device spawns programs on all machines in its (Ghemwat

2010)„„MPI World‟‟. Additional recently, CUDA, NVIDIA‟s

parallel programming model for contemporary graphic

processors (GPUs) addresses extremely parallel computations

on one node. Darling et al. planned mpiBLAST, partitioning a

sequence data supported a changed version of NCBI BLAST

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

32

with Sul et al. proposing MR-MPI-BLAST that utilises the

NCBI BLAST program with AN MPI wrapper. The downside

of MPI primarily based systems is that they provide restricted

measurability, notably once operating with giant knowledge

sets. Knowledge neck of the woods i.e. processes the info

wherever its keep isn't thought-about, with knowledge instead

emotional over the network to be computed on a special

physical node. In distinction, fashionable paradigms like

Hadoop use native storage and process to avoid network

bottlenecks. Moreover, Hadoop expressly considers fault

tolerance that isn't supported by default in MPI distributions.

GPU primarily based approaches like GPU-BLAST,

SWCUDA [12], CUDASW++ and GPU Smith-Waterman

have conjointly been planned. However, such approaches

exhibit inherent drawbacks like high power consumption and

lower performance over multicore servers. Moreover, the

utilization of GPUs doesn't carry memory constraints like MPI

or Hadoop, exhibits restricted measurability and programming

quality.

3. PROPOSED APPROACH
Algorithm SeqBLAST

{

1. Take pattern genome sequence from the user.

2. Divide the pattern genome sequence into

suffix arrays of length 3.

3. For every suffix array generated do

Slide suffix array until it reaches end of

genome sequence in database

 If pattern sequence matches with

database genome

 Sequence

 Increment match count

 End if

 End slide

 End for

4. Return match count

}

Fig 1: Database for genome sequence

Algorithm ParallelBLAST

{

1. Take pattern genome sequence from the

user.

2. Divide the pattern genome sequence into

suffix arrays of length 3.

3. For every suffix array generated in parallel

do

Slide suffix array until it reaches end of

genome sequence in database

 If pattern sequence matches with

database genome

 Sequence

 Increment match count

 End if

 End slide

 End for

4. Return match count

}

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

33

Fig 2: Database for Genome Sequence

4. RESULTS
In this work Basic local alignment search algorithm is

implemented on Hadoop platform and execution time for

different datasets is calculated on 2 nodes cluster, 4 nodes

cluster, 6 nodes cluster and 8 nodes cluster. It is found that

execution on 8 nodes cluster took least time for execution.

Table I Execution Time For Hadoop Blast

EXECUTION TIME ON HADOOP IN MILLISECONDS

Data

(In GB)

Time

on 2

nodes

Time on 4

nodes

Time on 6

nodes

Time on 8

nodes

2 912751 736946 576148 212751

5 1625487 1247952 976425 794562

10 2947541 2167190 1801307 1497038

Table II Execution Time for Hadoopcl Blast

EXECUTION TIME ON HADOOPCLIN

MILLISECONDS

Data

(In

GB)

Time on 2

nodes

Time on 4

nodes

Time on 6

nodes

Time on 8

nodes

2 384657 317945 201907 98706

5 619037 507640 390450 210721

10 1376420 783170 576103 310640

5. CONCLUSION
Basic local alignment search is a genome sequence matching

algorithm. Lot of data is involved in genome sequence

matching and this database is increasing at a very fast speed.

So genome sequence matching can be termed as Big data

problem. To handle big data single system is not sufficient.

Cluster of machines is used. In this work cluster is formed

using a parallel big data processing framework Hadoop. To

process large amount of genome sequences BLAST has been

0

200000

400000

600000

800000

1000000

2 4 6 8

Ex
e

cu
ti

o
n

 t
im

e

No. of nodes

Comparison of execution time for 2 GB

data

2 GB DATA
HADOOP

2 GB
HADOOPCL

0

500000

1000000

1500000

2000000

2 4 6 8

Ex
e

cu
ti

o
n

 t
im

e

No. of nodes

Comparison of execution time for 5 GB

data

5 GB HADOOP

5 GB
HADOOPCL

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

2 4 6 8

Ex
e

cu
ti

o
n

 t
im

e

No. of nodes

Comparison of execution time for 10

GB data

10 GB
HADOOP

10 GB
HADOOPCL

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

34

implemented on Hadoop by some authors. Still improvement

in terms of speedup can be done. In this work:

 Genome sequence databases are stored on Hadoop

cluster.

 BLAST has been implemented using Java.

 Same algorithm is executed using Map/reduce on

distributed dataset of 2 GB, 5 GB and 10 GB.

 In this parallel to increase intra-node parallelism

OpenCL is integrated over Hadoop using

APARAPI.

 Parallel version of BLAST on hadoop termed as

HCLBLAST performs well for all datasets as

compared to HBLAST.

6. REFERENCES
[1] Matsunaga A, Tsugawa M, Fortes J. CloudBLAST:

Combining MapReduce and virtualization on distributed

resources for bioinformatics applications. IEEE

International Conference on eScience, Indiana, USA,

December 2008.

[2] M. Wang, S. B. Handurukande, and M. Nassar, “2012

IEEE 4th International Conference on Cloud Computing

Technology and Science RPig : A Scalable Framework

for Machine Learning and Advanced Statistical

Functionalities,” pp. 3–10, 2012.

[3] L. P. Thompson and D. P. Miranker, “Fast Scalable

Selection Algorithms for Large Scale Data,” pp. 412–

420, 2013.

[4] [D. Chung, X. Rui, D. Min, and H. Yeo, “Road traffic big

data collision analysis processing framework,” 2013 7th

Int. Conf. Appl. Inf. Commun. Technol., pp. 1–4, Oct.

2013.

[5] S. H. Park and Y. G. Ha, “Large Imbalance Data

Classification Based on MapReduce for Traffic Accident

Prediction,” 2014 Eighth Int. Conf. Innov. Mob. Internet

Serv. Ubiquitous Comput., pp. 45–49, Jul. 2014.

[6] S. G. Manikandan and S. Ravi, “Big Data Analysis Using

Apache Hadoop,” 2014 Int. Conf. IT Converg.Secur., pp.

1–4, Oct. 2014.

[7] S. Maitrey and C. K. Jha, “Handling Big Data Efficiently

by Using Map Reduce Technique,” 2015 IEEE Int. Conf.

Comput. Intell.Commun. Technol., pp. 703–708, Feb.

2015.

[8] J. Nandimath, “Big Data Analysis Using Apache

Hadoop,” pp. 700–703, 2013.

[9] J. Shafer, S. Rixner, and A. L. Cox, “The Hadoop

Distributed Filesystem : Balancing Portability and

Performance” in IEEE 2010.

[10] J. Conejero, P. Burnap, O. Rana, and J. Morgan, “Scaling

Archived Social Media Data Analysis using a Hadoop

Cloud,” 2013.

[11] F. Berman, “Got data?: a guide to data preservation in the

information age,” Commun. ACM, vol. 51, pp. 50–56,

December 2008. [Online]. Available:

http://doi.acm.org/10.1145/1409360.1409376

IJCATM : www.ijcaonline.org

