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ABSTRACT 
Since the introduction of public-key cryptography by Diffe 

and Hellman in 1976, the potential for the use of the 

discrete logarithm problem in public-key cryptosystems 

has been recognized. Although the discrete logarithm 

problem as first employed by Diffe and Hellman was 

defined explicitly as the problem of finding logarithms 

with respect to a generator in the multiplicative group of 

the integers module a prime, this idea can be extended to 

arbitrary groups and in particular, to elliptic curve groups. 

The resulting public – key systems provide relatively small 

block size, high speed, and high security. This paper 

identified an efficient performance of concurrent algorithm 

using complementary recoding over 𝐺𝐹(2𝑚 ) for scalar 

multiplication in the polynomial basis (PB) to use in an 

elliptic curve cryptosystems, which enhances security. So 

this scheme is of less computation cost which is valuable 

in applications with limited memory, communications 

bandwidth or computing power. 
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1. INTRODUCTION  
There are three families of public–key algorithms that have 

considerable significance in current data security practice. 

They are integer factorization, discrete logarithm and 

elliptic curve based schemes [1, 2]. Integer factorization 

based schemes such as RSA [3] and discrete logarithm 

based schemes such as  Diffe -Hellman [4] provide 

intuitive ways of implementation. However both methods 

admit of sub-exponential algorithm of cryptanalysis [5]. In 

this regard elliptic curve cryptography, first introduced 

Koblitz [1] and Miller [2] may be the most cryptographic 

method available [6, 7]. The best current brute force 

algorithm for   cryptanalysis of ECC require 𝑂(𝑛1/2) steps 

where 𝑛 is the order of the additive group. For example, 

using the best current brute force algorithms ECC with a 

key size of 173 bits provides the same level of 

cryptographic security as RSA with a key size of 1024 

bits. This results in smaller system parameters band width 

savings, faster implementations and lower power 

consumptions. In addition, elliptic curve over finite fields 

offer an inexhaustible supply finite abelian groups, thus 

allowing more flexible fields selections than conventional 

discrete logarithm schemes [8]. Because of these 

advantages ECC has attracted extensive attention in recent 

years [9, 10]. This paper identified an efficient 

performance of concurrent algorithm using complementary 

recoding over 𝐺𝐹(2𝑚 ) for scalar multiplication in the 

polynomial basis (PB) {1, 𝛼, 𝛼2, 𝛼3, 𝛼4}, where 𝛼 is the 

root of an irreducible polynomial 𝑓 𝑥 = 𝑥5 + 𝑥2 + 1  (1) 

to use in ECC.  

In the elliptic curve cryptosystem, main operations such as 

key agreement, signature generation, signing and 

verification involve scalar multiplication. The speed of 

scalar multiplication plays an important role in the 

efficiency of whole system. Fast multiplication is very 

essential in some environments such as constrained 

devices, central servers, where large number of key 

agreements, signature generations and verification occurs. 

In this paper, scalar multiplication using concurrent 

algorithm is proposed with the help of complementary 

recoding. This is achieved by representing the integer  

𝑘 =




 
1

0

)1( 1)0..100(2
l

i

bitsl

i

i kk . (2) 

This computation is very simple and efficient when 

compared to other standard methods. Earlier in [11] 

concurrent algorithm has been proposed, but employed 

only the binary coding. We employed as a first time 

Complementary recoding to speedup the arithmetic 

operation in the concurrent algorithm [18] and reduced the 

computation time considerably [19, 20]. 

2. 𝑮𝑭(𝟐𝟓) ARITHMETIC 

OPERATIONS 
There is a representations for an element of a finite field 

𝐺𝐹(25), The polynomial  basis (PB), where {1,
𝛼, 𝛼2, 𝛼3, 𝛼4} where   is a root of an irreducible 

polynomial 𝑓 𝑥 = 𝑥5 + 𝑥2 + 1 over the field  𝐹2. An 

element in 𝐺𝐹(25) can then be represented as a 

polynomial {𝑐0 + 𝑐1𝛼 + 𝑐2𝛼
2 + 𝑐3𝛼

3 + 𝑐4𝛼
4 /𝑐𝑖 = 0 or 

1} or in vector form [𝑐𝑜 , 𝑐1, 𝑐2, 𝑐3, 𝑐4] 

Hence it is easy to see the elements of 𝐺𝐹(25) and [

5 22
/F FRes 𝐺𝐹(25)] (𝐹2). Observe that there is a 

isomorphism of sets.  

       𝐺𝐹(25) ≅ [
5 22

/F FRes  𝐺𝐹(25)] (𝐹2)      (3) 

The efficiency of elliptic curve algorithm heavily depends 

on the performance of the under lying field arithmetic 

operations. These operations include addition, Subtraction, 

Multiplication, and Inversion. 

3. SCALAR MULTIPLICATION 
The elliptic curve cryptographic scheme requires the scalar 

multiplication defined as follows [12]. 

    𝑄 = 𝑘𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃  ,  𝑘 times         (4) 
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where 𝑃 denotes a point on the elliptic curve and 𝑘 is a 

random integer with  1 ≤ 𝑘 ≤ order  𝑃 ≈ 2𝑚 − 1. 1. 

Algorithm gives the well-known double and add algorithm, 

also referred to as the binary method, to compute 𝑘𝑃 

assuming that 𝑄 is initialized as an infinite  point denoted 

by the symbol 𝑂. 

In this paper the scalar multiplication is computed with 

concurrent algorithm  which uses complementary recoding 

for reducing of hamming distances of the scalars and 

generated a cyclic group. It is considered a super singular 

elliptic curve 𝑦2 + 𝑦 = 𝑥3 defined over 𝐺𝐹(25), the 

primitive polynomial chosen for constructing the finite 

field be 𝑥5 + 𝑥2 + 1.  

Algorithm 1: Double –and-add  -binary method 

Input: 𝑘 and 𝑃 

Output: 𝑄 = 𝑘𝑃 

/∗ convert the integer 𝑘 into the binary representation ∗/ 

𝑄 = 𝑘𝑃; 𝑘 =  𝑘𝑡−1, 𝑘𝑡−2, … . , 𝑘0 ;  𝑘𝑖 ∈ {0,1}            

1. 𝑄 = 𝑂; 

2. for 𝑖 from 𝑡 − 1 down to 0 do 

3. 𝑄 = 𝑄 = 𝑄;  

4.  if 𝑘𝑖 = 1, then 𝑄 = 𝑄 + 𝑃; 

5.  return 𝑄: 

As seen from  algorithm 1, the expected number of point 

additions is approximately 0.5𝑡 and the number of doubles 

is exactly 𝑡. The expected number of point additions is 

actually equivalent to the average number of nonzero 

coefficients of 𝑘. To reduce the nonzero coefficients of 𝑘, 

the non-adjacent form (NAF) and modified Booth‟s 

encoding are commonly applied to achieve an expected 

value of 𝑡/3 and 3𝑡/8, respectively. The NAF 

representation of 𝑘 means that all its nonzero digits, e.g. 1 

of −1, are never adjacent to each other. 

A detailed inspection shows that converting an operand 

into the corresponding NAF starts with the least significant 

bit (LSB), which is the counter direction while performing 

the double-and –add algorithm.  Therefore, NAF may not 

be an appropriate choice to be embedded in the double-

and-add algorithm, even though the  NAF exhibits better 

encoding efficiency than the modified Booth‟s encoding. 

To overcome this deficiency, Satoh and Takano introduced 

complementary recoding to transfer the binary number 𝑘 

from the most significant bit (MSB). This method is very 

suitable for VLSI design. 

The cost of multiplication depends on the length of the 

binary representation of „𝑘‟ and the number of 1‟s in this 

representation. If the representation  𝑘𝑛−1 …  𝑘1 𝑘0  2 has 

𝑘𝑛−1 ≠ 0 then the number of doubling operation is 

(𝑛 − 1) and the number of addition operation is one less 

than the number of non-zero digits in   𝑘𝑛−1 …  𝑘1 𝑘0  2 

.the number of non-zero digit is called  the hamming 

weight of scalar multiplication. In an average, binary 

method requires (𝑛 − 1)  doublings and (𝑛 − 1)/2 

additions. 

For example, the integer  𝑘 =  729 and the binary 

representation is (1011011001)2, computation of 729𝑃 

requires  9 doubles and 5 additions. Whenever the bits is 1, 

two elliptic curve operation  such as ECDBL and ECADD 

will be made and if it is 0 , only one operation ,ECDBL  

required. So if we reduce number of ones in the scalar 

representation or hamming weight, we could speed up the 

above computation.  

3.1 Addition –Subtraction Method  
In 1951, Booth [9] proposed a new scalar representation 

called signed binary method and later Reitweisner [13] 

proved that every integer could be uniquely represented in 

this way.  The property of this representation is that, of any 

consecutive digits, at most one is non-zero.  Here the 

integer „𝑘‟ is represented as  𝑘𝑗 2𝑗𝑙−1
𝑗 =0 , where each 

𝑘𝑗 ∈ {−1,0,1}. Reitweisner‟s canonical representations 

have become to be called non- adjacent form (NAF) [14]. 

Fortunately, the NAF of „k‟ is at most one digit longer than 

the {0,1}-radix 2-representstion. Algorithm 2 is for the 

conversion of an integer k into the NAF of the same using 

three digits {0,1, −1}-radix 2 representation and this 

conversion will take place from right-to-left. 

Algorithm 2: Computation of NAF of an Integer 

Input: positive integer 𝑘 

Output: 𝑠(NAF representation of 𝑘) 

𝐶 = 𝑘; 𝑙 = 0 

While (𝑐 > 0) 

If (𝑐 is odd) 

𝑠 𝑙 = 2 − (𝑐 𝑚𝑜𝑑 4) 

𝑐 = 𝑐 − 𝑠[𝑙] 

else 

𝑠 𝑙 = 0 

endif 

𝑐 = 𝑐/2; 𝑙 = 𝑙 + 1 

end while 

Return  𝑠 

The average hamming weight of signed binary 

representation is 𝑛/3 and it has the lower hamming weight 

than the binary representation. For example, the binary 

representation of 2927 is (101101101111)2, the hamming 

weight is 9 and NAF of 2927 is (01100-100-1000-1)2, the 

hamming weight is only 5. Here the hamming weight is 

reduced from 9 to 5, which improve the speed of the scalar 

multiplication . 

One notable property of elliptic curve group is that the 

inverse of a point can be computed virtually free. This is 

the reason why a signed representation of the scalar is 

meaningful. The binary method is revised accordingly the 

new algorithm is called addition-subtraction method [14] 

given in the following algorithm. 

Algorithm 3: addition and subtraction method 

Input:  𝑘 and 𝑃 

Output: 𝑄 = 𝑘𝑃  

𝑠 = NA𝐹(𝑘) /∗ the NAF form of  𝑘 stored in 𝑠 ∗/ 

Q=0 

For 𝑖 = 𝑛 − 1 down to 0 

𝑄 = 2𝑄 
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If (𝑠𝐼 = 1) 

𝑄 = 𝑄 + 𝑃 

Endif (𝑠𝐼 = −1)  

𝑄 = 𝑄 − 𝑃 

end If 

Return  𝑄 

The algorithm performs (𝑛 − 1) doublings and (𝑛 − 1)/3 

additions in an average. In the case of elliptic curve scalar 

multiplication, the left-to-right evaluation stage is natural 

choice. The disadvantage of the addition and subtraction 

method is that is necessary to complete the recoding and 

store them before starting left-to-right  evaluation stage . 

Hence it requires additional n-bit memory for the right-to 

left exponent recoding. 

3.2 Mutual Opposite Form (MOF) 
The left-to-right recoding method eliminates the need for 

recoding and storing the multiplier in advance[15]. Joye 

and Yen proposed first left –to-right recoding algorithm in 

2000. In CRYPTO 2004, Okeya proposed a new efficient 

left-to-right recoding scheme called mutual opposite form 

(MOF) and the property of MOF  is that  

• Sign of adjacent non-zero bits (without 

considering 0 bits) are opposite 

• Most non-zero bit and the least non-zero bit are 1 

and −1, respectively 

• All the positive integers can be represented by 

unique MOF 

The 𝑛-bit binary string 𝑘 is converted into a signed binary 

string by computing  𝑚𝑘 = 2𝑘 − 𝑘, where „−„ stands for a 

bit wise subtraction. Algorithm given below is a simple 

and flexible conversion from n-bit binary string k to (k+1) 

bit MOF of the same. 

Algorithm 4: left-to-right generation from binary to 

MOF 

Input: 𝑛-bit binary string 

𝑑 = 𝑑𝑛−1 𝑑𝑛−2 … . |𝑑1|𝑑0 

Output: MOF of 𝑑(𝑚𝑑𝑛 | … .  𝑚𝑑1 𝑚𝑑0) 

𝑚𝑑𝑛 = 𝑑𝑛−1 

for 𝑖 = 𝑛 − 1 down to 1 do 

𝑚𝑑𝑖 = 𝑑𝑖−1 − 𝑑𝑖  

𝑚𝑑0 = −𝑑0 

return  (𝑚𝑑𝑛 , … . . , 𝑚𝑑1, 𝑚𝑑0)) 

The above algorithm converts the binary string to MOF 

from the most significant bit efficiently. The conversion of 

MOF representation of an integer. 

Is highly flexible because, conversion can be made either 

from right- to- left or left-to-right. The output of MOF is 

same as the output of NAF. 

4. COMPLEMENTARY RECODING  
In 2003, chang et al. [16, 17] proposed an efficient method 

to compute the general multiplication by performing 

complement operation. Assume the binary representation 

of a scalar 𝑘 is (𝑘𝑛−1 …𝑘1𝑘0)2,the procedure for 

converting binary string using complementary method is 

given below.  

  𝑘 =  𝑘𝑖
𝑙−1
𝑖=1 2𝑖 = (100 … 0)(𝑙+1)𝑏𝑖𝑡𝑠 − 𝑘 − 1  

where  𝑘 = 𝑘 𝑖−1𝑘 𝑖−2 …𝑘 0, 

And 𝑘 𝑖 = 0 if  𝑘𝑖 = 1 

  𝑘 𝑖 = 1 if  𝑘𝑖 = 0 for 𝑖 = 0,1,2 …𝑘 − 1 

Illustration  

  𝑘  = 687 = (1010101111)2 

=  10000000000 − 𝑘 − 1 

= (100000000)2 − (0101010000)2 − 1 

= (10 − 10 − 10 − 1000 − 1)2 

= 1024 − 256 − 64 − 16 − 1 = 687 

The hamming weight of binary representation is 7 and 

signed binary representation using complementary 

recoding is just 5, here two elliptic curve addition  

operations have been saved. One addition operation 

requires 2𝑆 + 2𝑀 + 𝐼 and this representation saves totally 

4𝑆 + 4𝑀 + 2𝐼 operations. 

4.1 The Proposed Algorithm  
According to the data dependency of the three operations 

in point addition / doubling, there exists idle time for the 

consecutive point addition or doubling operation. An 

efficient way would be to increase the hardware utilization 

by introducing another sequence of point addition or 

doubling operations into the idle time. To accomplish this 

goal, we employ the interleaving scheme by dividing the 

scalar 𝑘 into two parts, the high-order part

),....( 2/)1(1)2/1(1  tttH kkkk and the low-

order part ),.....( 011)2/1( kkkk tL  and 

dealing with these two parts separately. An extra initial 

point is needed for processing the higher order part. The 

extra initial point is defined as PP t

H

2/)1(2    to be 

consistent with the weight of the high – order part. 

Moreover, to reduce the number of 1‟s in the scalar 

operand 𝑘 and to be conform with the operating sequence 

of the double- and-add algorithm, the operand 𝑘 is encoded 

by complementary recoding. Note that two operating steps 

with the same step number but different suffixes, e.g 1𝑎 

and 1𝑏, denote that these two operations can be executed 

independently. Algorithm 4.1 gives the algorithm.  

Algorithm 5: Concurrent Algorithm with 

Complementary Recoding 

Input: 𝑘 and 𝑃 

Output: 𝑄 =  𝑘𝑃 

/∗ convert the integer 𝑘 into the signed binary 

representation of the same using complementary recoding 

∗/ 

 𝑘′ =  𝑘𝑙2
𝑙 , 𝑘𝑙𝜖 {−1,0,1}𝑡−1

𝑙=0  

 𝑄 = 𝑘𝑃 = 𝑘′𝐻𝑃𝐻 + 𝑘 𝐿𝑃𝐿 = 𝑄𝐻 + 𝑄𝐿; 

 1𝑎. 𝑄𝐻 = 𝑂, 𝑃𝐻 = 2 𝑡 2   

 2𝑎. 𝑓𝑜𝑟 𝑖 𝑓𝑟𝑜𝑚
𝑡

2
𝑡𝑜 𝑡 − 1 𝑑𝑜 

 3𝑎. 𝑄𝐻 = 𝑄𝐻 + 𝑄𝐻  

 4𝑎. 𝑖𝑓 𝑘𝑖
′ = 1 𝑡ℎ𝑒𝑛 𝑄𝐻 = 𝑄𝐻 + 𝑃𝐻  
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 1𝑏. 𝑄𝐿 = 𝑂, 𝑃𝐿 = 𝑃; 

 2𝑏. 𝑓𝑜𝑟 𝑗 𝑓𝑟𝑜𝑚 0 𝑢𝑝𝑡𝑜  
𝑡

2
 − 1 𝑑𝑜 

 3𝑏. 𝑄𝐿 = 𝑄𝐿 + 𝑄𝐿; 

4b. 𝑖𝑓 𝑘𝑗
′ = 1 𝑡ℎ𝑒𝑛 𝑄𝐿 = 𝑄𝐿 + 𝑃𝐿 

 5. 𝑄 = 𝑄𝐻 + 𝑄𝐿  

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑄 

When applying the concurrent double –and-add algorithm 

using complementary recoding and  drawing a time 

schedule similar to the one shown in 4.Algorithm, it 

reveals that one inversion circuit and two multipliers will 

be needed to accomplish the desired scalar multiplication, 

but the resulting hardware utilization is less than 100%. 

To overcome this deficiency, it is employed the division 

rather than the inversion circuit for the concurrent double-

and-add algorithm. The table (a) gives comparison of 

timings of various scalar multiplication algorithms.    

The proposed arithmetic operations  have been 

implemented in the Xilinx Virtex300 FPGA using the 

Synopsys FPGA Express synthesis tool and Foundation 

3.3i implementation tool. The functionality has been 

verified in the ModelSim simulator. Timings of various 

scalar multiplication algorithms (ms) is given below: 

Table 1. Timings of Various Scalar Multiplication Algorithms (Ms) 

Algorithms  Binary  NAF MOF Proposed  

Timings (ms) 𝟏. 𝟕𝟔𝟗 𝟏. 𝟎𝟓𝟏 𝟎. 𝟖𝟖𝟒 𝟎. 𝟔𝟔𝟕 

 

The timings of various scalar multiplication algorithm 

given in table 1.  are based on the elliptic curve group of 

elements in 𝑦2 + 𝑦 = 𝑥3 over 𝐺𝐹(25).  

A point (5, 21) means (𝛼5, 𝛼21)where 𝛼 is the root of 

polynomial𝑥5 + 𝑥2 + 1. There are 33 points (including the 

point at infinity) on the elliptic curve, out of which 10 

point have order 11 while remaining 21 points have order 

33. The cyclic group of the point (5, 21) is shown in the 

following table. 2𝑃 = (20,7), 3𝑃 = (22,12), etc.,

       

 𝟓, 𝟐𝟏   20,7   22,12   18,26   27,1   26,30   23,5  

 𝟏𝟎, 𝟏𝟗   13,24   15,10   −∞, −∞   11,6   29,9   30,8  

 𝟐𝟏, 𝟑   9,13   9,14   21,29   30,20   29,16   11,27  

 −∞, 𝟎   15,4   13,15   10,11   23,2   26,17   27,18  

 𝟏𝟖, 𝟐𝟖   22,23   20,22   5,25     

5. CONCLUSION  
Finite field 𝐺𝐹(25) arithmetic operations include addition, 

subtraction, multiplication, squaring and inversion. Due to 

proposed field 𝐺𝐹(25) and irreducible polynomial 

𝑓 𝑥 = 𝑥5 + 𝑥2 + 1 both additions and subtractions can 

be implemented very efficiently. Multiplication in PB 

using the said polynomial is 17% faster than RSA. 

Squaring a special case of multiplication can be 

implemented 40% faster than multiplication in the PB. 

Also inversions in the PB with the „almost inverse method 

runs‟ 10% faster then RSA. Also this paper presents a 

concurrent algorithm using complementary recoding to 

speed up the scalar multiplication for the elliptic curve 

cryptosystem. With only an extra memory space to store an 

intermediate point, the algorithm can achieve 100% 

Hardware utilization based on the presented time schedule. 

Compared to the previous works, the time complexity of 

completing the scalar multiplication in this work can save 

35%. In our future work, we are planning to reduce further 

the timings taken by scalar multiplication using other 

scalar recoding by reducing Hamming weight. 
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