
International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 2, April 2017

13

An Improved Scalar Multiplication Over 𝑮𝑭(𝟐𝒎) for

ECC

S. Revathi
Research scholar, Mathematics,

Theivanai Ammal College for Women,
villupuram-605 602, T.N India,

A. R. Rishivarman
Assistant Professor, Mathematics,

Theivanai Ammal College for women,
villupuram-605 602, T.N India,

ABSTRACT
Since the introduction of public-key cryptography by Diffe

and Hellman in 1976, the potential for the use of the

discrete logarithm problem in public-key cryptosystems

has been recognized. Although the discrete logarithm

problem as first employed by Diffe and Hellman was

defined explicitly as the problem of finding logarithms

with respect to a generator in the multiplicative group of

the integers module a prime, this idea can be extended to

arbitrary groups and in particular, to elliptic curve groups.

The resulting public – key systems provide relatively small

block size, high speed, and high security. This paper

identified an efficient performance of concurrent algorithm

using complementary recoding over 𝐺𝐹(2𝑚) for scalar

multiplication in the polynomial basis (PB) to use in an

elliptic curve cryptosystems, which enhances security. So

this scheme is of less computation cost which is valuable

in applications with limited memory, communications

bandwidth or computing power.

Keywords
Secret sharing, Elliptic Curve Cryptography (ECC),

𝐺𝐹(2𝑚), Irreducible polynomial, ECDLP.

1. INTRODUCTION
There are three families of public–key algorithms that have

considerable significance in current data security practice.

They are integer factorization, discrete logarithm and

elliptic curve based schemes [1, 2]. Integer factorization

based schemes such as RSA [3] and discrete logarithm

based schemes such as Diffe -Hellman [4] provide

intuitive ways of implementation. However both methods

admit of sub-exponential algorithm of cryptanalysis [5]. In

this regard elliptic curve cryptography, first introduced

Koblitz [1] and Miller [2] may be the most cryptographic

method available [6, 7]. The best current brute force

algorithm for cryptanalysis of ECC require 𝑂(𝑛1/2) steps

where 𝑛 is the order of the additive group. For example,

using the best current brute force algorithms ECC with a

key size of 173 bits provides the same level of

cryptographic security as RSA with a key size of 1024

bits. This results in smaller system parameters band width

savings, faster implementations and lower power

consumptions. In addition, elliptic curve over finite fields

offer an inexhaustible supply finite abelian groups, thus

allowing more flexible fields selections than conventional

discrete logarithm schemes [8]. Because of these

advantages ECC has attracted extensive attention in recent

years [9, 10]. This paper identified an efficient

performance of concurrent algorithm using complementary

recoding over 𝐺𝐹(2𝑚) for scalar multiplication in the

polynomial basis (PB) {1, 𝛼, 𝛼2, 𝛼3, 𝛼4}, where 𝛼 is the

root of an irreducible polynomial 𝑓 𝑥 = 𝑥5 + 𝑥2 + 1 (1)

to use in ECC.

In the elliptic curve cryptosystem, main operations such as

key agreement, signature generation, signing and

verification involve scalar multiplication. The speed of

scalar multiplication plays an important role in the

efficiency of whole system. Fast multiplication is very

essential in some environments such as constrained

devices, central servers, where large number of key

agreements, signature generations and verification occurs.

In this paper, scalar multiplication using concurrent

algorithm is proposed with the help of complementary

recoding. This is achieved by representing the integer

𝑘 =

1

0

)1(1)0..100(2
l

i

bitsl

i

i kk . (2)

This computation is very simple and efficient when

compared to other standard methods. Earlier in [11]

concurrent algorithm has been proposed, but employed

only the binary coding. We employed as a first time

Complementary recoding to speedup the arithmetic

operation in the concurrent algorithm [18] and reduced the

computation time considerably [19, 20].

2. 𝑮𝑭(𝟐𝟓) ARITHMETIC

OPERATIONS
There is a representations for an element of a finite field

𝐺𝐹(25), The polynomial basis (PB), where {1,
𝛼, 𝛼2, 𝛼3, 𝛼4} where is a root of an irreducible

polynomial 𝑓 𝑥 = 𝑥5 + 𝑥2 + 1 over the field 𝐹2. An

element in 𝐺𝐹(25) can then be represented as a

polynomial {𝑐0 + 𝑐1𝛼 + 𝑐2𝛼
2 + 𝑐3𝛼

3 + 𝑐4𝛼
4 /𝑐𝑖 = 0 or

1} or in vector form [𝑐𝑜 , 𝑐1, 𝑐2, 𝑐3, 𝑐4]

Hence it is easy to see the elements of 𝐺𝐹(25) and [

5 22
/F FRes 𝐺𝐹(25)] (𝐹2). Observe that there is a

isomorphism of sets.

 𝐺𝐹(25) ≅ [
5 22

/F FRes 𝐺𝐹(25)] (𝐹2) (3)

The efficiency of elliptic curve algorithm heavily depends

on the performance of the under lying field arithmetic

operations. These operations include addition, Subtraction,

Multiplication, and Inversion.

3. SCALAR MULTIPLICATION
The elliptic curve cryptographic scheme requires the scalar

multiplication defined as follows [12].

 𝑄 = 𝑘𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃 , 𝑘 times (4)

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 2, April 2017

14

where 𝑃 denotes a point on the elliptic curve and 𝑘 is a

random integer with 1 ≤ 𝑘 ≤ order 𝑃 ≈ 2𝑚 − 1. 1.

Algorithm gives the well-known double and add algorithm,

also referred to as the binary method, to compute 𝑘𝑃

assuming that 𝑄 is initialized as an infinite point denoted

by the symbol 𝑂.

In this paper the scalar multiplication is computed with

concurrent algorithm which uses complementary recoding

for reducing of hamming distances of the scalars and

generated a cyclic group. It is considered a super singular

elliptic curve 𝑦2 + 𝑦 = 𝑥3 defined over 𝐺𝐹(25), the

primitive polynomial chosen for constructing the finite

field be 𝑥5 + 𝑥2 + 1.

Algorithm 1: Double –and-add -binary method

Input: 𝑘 and 𝑃

Output: 𝑄 = 𝑘𝑃

/∗ convert the integer 𝑘 into the binary representation ∗/

𝑄 = 𝑘𝑃; 𝑘 = 𝑘𝑡−1, 𝑘𝑡−2, … . , 𝑘0 ; 𝑘𝑖 ∈ {0,1}

1. 𝑄 = 𝑂;

2. for 𝑖 from 𝑡 − 1 down to 0 do

3. 𝑄 = 𝑄 = 𝑄;

4. if 𝑘𝑖 = 1, then 𝑄 = 𝑄 + 𝑃;

5. return 𝑄:

As seen from algorithm 1, the expected number of point

additions is approximately 0.5𝑡 and the number of doubles

is exactly 𝑡. The expected number of point additions is

actually equivalent to the average number of nonzero

coefficients of 𝑘. To reduce the nonzero coefficients of 𝑘,

the non-adjacent form (NAF) and modified Booth‟s

encoding are commonly applied to achieve an expected

value of 𝑡/3 and 3𝑡/8, respectively. The NAF

representation of 𝑘 means that all its nonzero digits, e.g. 1

of −1, are never adjacent to each other.

A detailed inspection shows that converting an operand

into the corresponding NAF starts with the least significant

bit (LSB), which is the counter direction while performing

the double-and –add algorithm. Therefore, NAF may not

be an appropriate choice to be embedded in the double-

and-add algorithm, even though the NAF exhibits better

encoding efficiency than the modified Booth‟s encoding.

To overcome this deficiency, Satoh and Takano introduced

complementary recoding to transfer the binary number 𝑘

from the most significant bit (MSB). This method is very

suitable for VLSI design.

The cost of multiplication depends on the length of the

binary representation of „𝑘‟ and the number of 1‟s in this

representation. If the representation 𝑘𝑛−1 … 𝑘1 𝑘0 2 has

𝑘𝑛−1 ≠ 0 then the number of doubling operation is

(𝑛 − 1) and the number of addition operation is one less

than the number of non-zero digits in 𝑘𝑛−1 … 𝑘1 𝑘0 2

.the number of non-zero digit is called the hamming

weight of scalar multiplication. In an average, binary

method requires (𝑛 − 1) doublings and (𝑛 − 1)/2

additions.

For example, the integer 𝑘 = 729 and the binary

representation is (1011011001)2, computation of 729𝑃

requires 9 doubles and 5 additions. Whenever the bits is 1,

two elliptic curve operation such as ECDBL and ECADD

will be made and if it is 0 , only one operation ,ECDBL

required. So if we reduce number of ones in the scalar

representation or hamming weight, we could speed up the

above computation.

3.1 Addition –Subtraction Method
In 1951, Booth [9] proposed a new scalar representation

called signed binary method and later Reitweisner [13]

proved that every integer could be uniquely represented in

this way. The property of this representation is that, of any

consecutive digits, at most one is non-zero. Here the

integer „𝑘‟ is represented as 𝑘𝑗 2𝑗𝑙−1
𝑗 =0 , where each

𝑘𝑗 ∈ {−1,0,1}. Reitweisner‟s canonical representations

have become to be called non- adjacent form (NAF) [14].

Fortunately, the NAF of „k‟ is at most one digit longer than

the {0,1}-radix 2-representstion. Algorithm 2 is for the

conversion of an integer k into the NAF of the same using

three digits {0,1, −1}-radix 2 representation and this

conversion will take place from right-to-left.

Algorithm 2: Computation of NAF of an Integer

Input: positive integer 𝑘

Output: 𝑠(NAF representation of 𝑘)

𝐶 = 𝑘; 𝑙 = 0

While (𝑐 > 0)

If (𝑐 is odd)

𝑠 𝑙 = 2 − (𝑐 𝑚𝑜𝑑 4)

𝑐 = 𝑐 − 𝑠[𝑙]

else

𝑠 𝑙 = 0

endif

𝑐 = 𝑐/2; 𝑙 = 𝑙 + 1

end while

Return 𝑠

The average hamming weight of signed binary

representation is 𝑛/3 and it has the lower hamming weight

than the binary representation. For example, the binary

representation of 2927 is (101101101111)2, the hamming

weight is 9 and NAF of 2927 is (01100-100-1000-1)2, the

hamming weight is only 5. Here the hamming weight is

reduced from 9 to 5, which improve the speed of the scalar

multiplication .

One notable property of elliptic curve group is that the

inverse of a point can be computed virtually free. This is

the reason why a signed representation of the scalar is

meaningful. The binary method is revised accordingly the

new algorithm is called addition-subtraction method [14]

given in the following algorithm.

Algorithm 3: addition and subtraction method

Input: 𝑘 and 𝑃

Output: 𝑄 = 𝑘𝑃

𝑠 = NA𝐹(𝑘) /∗ the NAF form of 𝑘 stored in 𝑠 ∗/

Q=0

For 𝑖 = 𝑛 − 1 down to 0

𝑄 = 2𝑄

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 2, April 2017

15

If (𝑠𝐼 = 1)

𝑄 = 𝑄 + 𝑃

Endif (𝑠𝐼 = −1)

𝑄 = 𝑄 − 𝑃

end If

Return 𝑄

The algorithm performs (𝑛 − 1) doublings and (𝑛 − 1)/3

additions in an average. In the case of elliptic curve scalar

multiplication, the left-to-right evaluation stage is natural

choice. The disadvantage of the addition and subtraction

method is that is necessary to complete the recoding and

store them before starting left-to-right evaluation stage .

Hence it requires additional n-bit memory for the right-to

left exponent recoding.

3.2 Mutual Opposite Form (MOF)
The left-to-right recoding method eliminates the need for

recoding and storing the multiplier in advance[15]. Joye

and Yen proposed first left –to-right recoding algorithm in

2000. In CRYPTO 2004, Okeya proposed a new efficient

left-to-right recoding scheme called mutual opposite form

(MOF) and the property of MOF is that

• Sign of adjacent non-zero bits (without

considering 0 bits) are opposite

• Most non-zero bit and the least non-zero bit are 1

and −1, respectively

• All the positive integers can be represented by

unique MOF

The 𝑛-bit binary string 𝑘 is converted into a signed binary

string by computing 𝑚𝑘 = 2𝑘 − 𝑘, where „−„ stands for a

bit wise subtraction. Algorithm given below is a simple

and flexible conversion from n-bit binary string k to (k+1)

bit MOF of the same.

Algorithm 4: left-to-right generation from binary to

MOF

Input: 𝑛-bit binary string

𝑑 = 𝑑𝑛−1 𝑑𝑛−2 … . |𝑑1|𝑑0

Output: MOF of 𝑑(𝑚𝑑𝑛 | … . 𝑚𝑑1 𝑚𝑑0)

𝑚𝑑𝑛 = 𝑑𝑛−1

for 𝑖 = 𝑛 − 1 down to 1 do

𝑚𝑑𝑖 = 𝑑𝑖−1 − 𝑑𝑖

𝑚𝑑0 = −𝑑0

return (𝑚𝑑𝑛 , … . . , 𝑚𝑑1, 𝑚𝑑0))

The above algorithm converts the binary string to MOF

from the most significant bit efficiently. The conversion of

MOF representation of an integer.

Is highly flexible because, conversion can be made either

from right- to- left or left-to-right. The output of MOF is

same as the output of NAF.

4. COMPLEMENTARY RECODING
In 2003, chang et al. [16, 17] proposed an efficient method

to compute the general multiplication by performing

complement operation. Assume the binary representation

of a scalar 𝑘 is (𝑘𝑛−1 …𝑘1𝑘0)2,the procedure for

converting binary string using complementary method is

given below.

 𝑘 = 𝑘𝑖
𝑙−1
𝑖=1 2𝑖 = (100 … 0)(𝑙+1)𝑏𝑖𝑡𝑠 − 𝑘 − 1

where 𝑘 = 𝑘 𝑖−1𝑘 𝑖−2 …𝑘 0,

And 𝑘 𝑖 = 0 if 𝑘𝑖 = 1

 𝑘 𝑖 = 1 if 𝑘𝑖 = 0 for 𝑖 = 0,1,2 …𝑘 − 1

Illustration

 𝑘 = 687 = (1010101111)2

= 10000000000 − 𝑘 − 1

= (100000000)2 − (0101010000)2 − 1

= (10 − 10 − 10 − 1000 − 1)2

= 1024 − 256 − 64 − 16 − 1 = 687

The hamming weight of binary representation is 7 and

signed binary representation using complementary

recoding is just 5, here two elliptic curve addition

operations have been saved. One addition operation

requires 2𝑆 + 2𝑀 + 𝐼 and this representation saves totally

4𝑆 + 4𝑀 + 2𝐼 operations.

4.1 The Proposed Algorithm
According to the data dependency of the three operations

in point addition / doubling, there exists idle time for the

consecutive point addition or doubling operation. An

efficient way would be to increase the hardware utilization

by introducing another sequence of point addition or

doubling operations into the idle time. To accomplish this

goal, we employ the interleaving scheme by dividing the

scalar 𝑘 into two parts, the high-order part

),....(2/)1(1)2/1(1 tttH kkkk and the low-

order part),.....(011)2/1(kkkk tL and

dealing with these two parts separately. An extra initial

point is needed for processing the higher order part. The

extra initial point is defined as PP t

H

2/)1(2 to be

consistent with the weight of the high – order part.

Moreover, to reduce the number of 1‟s in the scalar

operand 𝑘 and to be conform with the operating sequence

of the double- and-add algorithm, the operand 𝑘 is encoded

by complementary recoding. Note that two operating steps

with the same step number but different suffixes, e.g 1𝑎

and 1𝑏, denote that these two operations can be executed

independently. Algorithm 4.1 gives the algorithm.

Algorithm 5: Concurrent Algorithm with

Complementary Recoding

Input: 𝑘 and 𝑃

Output: 𝑄 = 𝑘𝑃

/∗ convert the integer 𝑘 into the signed binary

representation of the same using complementary recoding

∗/

 𝑘′ = 𝑘𝑙2
𝑙 , 𝑘𝑙𝜖 {−1,0,1}𝑡−1

𝑙=0

 𝑄 = 𝑘𝑃 = 𝑘′𝐻𝑃𝐻 + 𝑘 𝐿𝑃𝐿 = 𝑄𝐻 + 𝑄𝐿;

 1𝑎. 𝑄𝐻 = 𝑂, 𝑃𝐻 = 2 𝑡 2

 2𝑎. 𝑓𝑜𝑟 𝑖 𝑓𝑟𝑜𝑚
𝑡

2
𝑡𝑜 𝑡 − 1 𝑑𝑜

 3𝑎. 𝑄𝐻 = 𝑄𝐻 + 𝑄𝐻

 4𝑎. 𝑖𝑓 𝑘𝑖
′ = 1 𝑡ℎ𝑒𝑛 𝑄𝐻 = 𝑄𝐻 + 𝑃𝐻

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 2, April 2017

16

 1𝑏. 𝑄𝐿 = 𝑂, 𝑃𝐿 = 𝑃;

 2𝑏. 𝑓𝑜𝑟 𝑗 𝑓𝑟𝑜𝑚 0 𝑢𝑝𝑡𝑜
𝑡

2
 − 1 𝑑𝑜

 3𝑏. 𝑄𝐿 = 𝑄𝐿 + 𝑄𝐿;

4b. 𝑖𝑓 𝑘𝑗
′ = 1 𝑡ℎ𝑒𝑛 𝑄𝐿 = 𝑄𝐿 + 𝑃𝐿

 5. 𝑄 = 𝑄𝐻 + 𝑄𝐿

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑄

When applying the concurrent double –and-add algorithm

using complementary recoding and drawing a time

schedule similar to the one shown in 4.Algorithm, it

reveals that one inversion circuit and two multipliers will

be needed to accomplish the desired scalar multiplication,

but the resulting hardware utilization is less than 100%.

To overcome this deficiency, it is employed the division

rather than the inversion circuit for the concurrent double-

and-add algorithm. The table (a) gives comparison of

timings of various scalar multiplication algorithms.

The proposed arithmetic operations have been

implemented in the Xilinx Virtex300 FPGA using the

Synopsys FPGA Express synthesis tool and Foundation

3.3i implementation tool. The functionality has been

verified in the ModelSim simulator. Timings of various

scalar multiplication algorithms (ms) is given below:

Table 1. Timings of Various Scalar Multiplication Algorithms (Ms)

Algorithms Binary NAF MOF Proposed

Timings (ms) 𝟏. 𝟕𝟔𝟗 𝟏. 𝟎𝟓𝟏 𝟎. 𝟖𝟖𝟒 𝟎. 𝟔𝟔𝟕

The timings of various scalar multiplication algorithm

given in table 1. are based on the elliptic curve group of

elements in 𝑦2 + 𝑦 = 𝑥3 over 𝐺𝐹(25).

A point (5, 21) means (𝛼5, 𝛼21)where 𝛼 is the root of

polynomial𝑥5 + 𝑥2 + 1. There are 33 points (including the

point at infinity) on the elliptic curve, out of which 10

point have order 11 while remaining 21 points have order

33. The cyclic group of the point (5, 21) is shown in the

following table. 2𝑃 = (20,7), 3𝑃 = (22,12), etc.,

 𝟓, 𝟐𝟏 20,7 22,12 18,26 27,1 26,30 23,5

 𝟏𝟎, 𝟏𝟗 13,24 15,10 −∞, −∞ 11,6 29,9 30,8

 𝟐𝟏, 𝟑 9,13 9,14 21,29 30,20 29,16 11,27

 −∞, 𝟎 15,4 13,15 10,11 23,2 26,17 27,18

 𝟏𝟖, 𝟐𝟖 22,23 20,22 5,25

5. CONCLUSION
Finite field 𝐺𝐹(25) arithmetic operations include addition,

subtraction, multiplication, squaring and inversion. Due to

proposed field 𝐺𝐹(25) and irreducible polynomial

𝑓 𝑥 = 𝑥5 + 𝑥2 + 1 both additions and subtractions can

be implemented very efficiently. Multiplication in PB

using the said polynomial is 17% faster than RSA.

Squaring a special case of multiplication can be

implemented 40% faster than multiplication in the PB.

Also inversions in the PB with the „almost inverse method

runs‟ 10% faster then RSA. Also this paper presents a

concurrent algorithm using complementary recoding to

speed up the scalar multiplication for the elliptic curve

cryptosystem. With only an extra memory space to store an

intermediate point, the algorithm can achieve 100%

Hardware utilization based on the presented time schedule.

Compared to the previous works, the time complexity of

completing the scalar multiplication in this work can save

35%. In our future work, we are planning to reduce further

the timings taken by scalar multiplication using other

scalar recoding by reducing Hamming weight.

6. ACKNOWLEDGEMENT
The authors gratefully acknowledge the anonymous

reviewers for their valuable comments.

7. REFERENCES
[1] Blake, I., Seroussi, G., and Smart, N. Press, 1999.

“Elliptic Curves in Cryptography, Cambridge

University”.

[2] Buhler, P., Lenstra, H.W., and Pomerance, C. “The

development of the number field sieve”, lecture Notes

in Computer Science, volume- 1554, Springer-Verlag,

1994.

[3] W.Diffie and M.E.Hellman. 1976, “New directions in

cryptography,” IEEE Trans. On Information Theory,

IT-22, (644-654).

[4] D.M.Gordon, 1998 “A Survey of fast exponention

methods,” J. Algorithms, 27, (129-146).

[5] Han, Y., leong, P., Tan, P., and Zhang, J “Fast

Algorithms for Elliptic Curve Cryptosystems over

Binary Finite Field,” Advances in Cryptology-

CRYPTO 1999. LNCS 1716, (75-85).

[6] Guajardo, J. and Paar, C. “Efficient Algorithms for

Elliptic Curve Cryptosystems,” Advances in

Cryptology-CYYPTO 1997.LNCS 1462, (342-356).

[7] Itoh, T. and Tsujii, S. 1988, “A fast Algorithm for

Computing Multiplication inverses in𝐺𝐹(2𝑚) Using

Normal Bases,” Information & Computation,

Volume-78, (171-177).

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 2, April 2017

17

[8] Leca, C.L. and Rîncu C.I, May 2014, “Combining

point operations for efficient elliptic curve

cryptography scalar multiplication”, 10th International

Conference on Communications (1 – 4).

[9] Kobayashi, T. Morita, H., Kobayashi, K. and

Hoshino, F. “Fast Elliptic Curve Algorithm

Combining Frobenius map and Table referenced to

Adapt to higher Characteristic,” Adapt to higher

Charecteristic,” Advances in Cryptology-CRYPTO

1999. LNCS 1592, (176-189).

[10] ZhiLi, John Higgins, and Mark Element “Perfomance

of Finite Field Arithmatic in an Elliptic Curve Crypto

Systems” IEEE, (249-256), 0-7695-1315-8/01, 2001.

[11] Miller, V.S. “Use of Elliptic Curves in

Cryptography,” Advances in Cryptology

CRYPTO‟85, LNCS 218, Springer-Verlag, 1986,

(417-426).

[12] Christina Thomas, “Analysis of Elliptic Curve Scalar

Multiplication in Secure Communications”. Global

Conference on Communication Technologies (623-

627), 2015.

[13] N.Koblitz, “Introduction to Elliptic Curves and

Modular Forms”, 2nd, Spinger-Verlag, 1993.

N.Koblitz, “Elliptic Curve Cryptosystems”,

Math.Compu.Volume-48, No-177, January1987,

(203-209).

[14] Chang, C.C, Kuo, Y.T. and Lin, C.H. March 2003.

“Fast algorithms for common multiplicand

multiplication and exponentiation, by performing

complements”, in Proceeding of 17th International

Conference on Advanced Information Networking

and Applications, (807-811).

[15] MuthuKumar, B. and Jeevananthan, S. 2010, “High

Speed Hardware Implementation of an Elliptic Curve

Cryptography (ECC) Co- Processor”, Conference on

Trendz in Information Sciences and Computing (176-

180).

[16] D.E.Knuth, Seminumerical Algorithms, MA,

Addison-Wesley 1981.

[17] Frey, G. “Applications of arithmetical geometry to

cryptographic construction”. Proceedings of the Fifth

International Conference on Finite Fields and

Applications, Springer-Verlag, 2001, (128-161).

[18] Galbraith, S., and Smart, N. 1999. “A cryptographic

application of Weil descent”, Codes and

Cryptography, Lecture Notes in Computer science,

1746, springer-Velag, (191-200).

[19] Frey, G. “How to disguise an elliptic curve (Weil

descent)” Talk at ECC‟98, Waterloo, 1998.

[20] Gallant, R., Lambert, R. and Vanstone, S. 2000,

“Improving the parallelized Pollard lambda search on

anomalous binary curves”, Mathematics of

Computation, volume-69, (1699-1705).

IJCATM : www.ijcaonline.org

