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ABSTRACT 

Feedforward Neural Network (FFNN) is a surrogate of 

Artificial Neural Network (ANN) in which links amongst the 

units do not form a directed cycle.  ANNs, akin to the 

vast network of neurons in the brain (human central nervous 

system) are usually presented as systems of interweaving 

connected "neurons" which exchange messages between each 

other. These connections have numeric hefts that can be 

adjusted and grounded on experience, enforcing adaptively on 

neural networks to inputs and learning capabilities. This paper 

presents a comprehensive review of FFNN with emphasis on 

implantation issues, which have been addressed by previous 

approaches. We also propose a theoretical model that exhibits 

potential superior performances in terms of convergence 

speed, efficient and effective computation and generality than 

state of the art models. 
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1. INTRODUCTION 
A FFNN is an ANN where associations amongst the nodes do 

not form a directed cycle. Note that this is not the same as 

Recurrent Neural Networks (RNNs). Further, ANNs do not 

have a unique single recognized definition, however, a group 

of statistical models may generally be christened neural if it 

exhibits traits as described as follows: a) Encompasses groups 

of adaptive numerical weights tuned by a learning algorithm, 

and b) Ability to approximate inputs of nonlinear functions. 

The adaptive weights which are the association strength 

amongst neurons are stimulated during prediction and 

training. Neural networks (NNs) are comparable to biological 

NNs in the performance of their roles communally and is 

analogous to the nodes, instead of there being a clear 

demarcation of sub-jobs to which respective units are allotted 

[1, 2]. NNs functions by creating relationships amongst 

processing elements instead of digital models that massages 

0’s and 1’s during its computation. NNs are predominantly 

effective for forecasting events for large data array of 

networks based on the findings of prior studies. Stringently, a 

NN indicates an analogue computer, but NNs can be 

replicated on digital computers. In addition, the weights and 

the structure of these associations determines the output of the 

network.  

In contemporary times, we have seen the application of NNs 

in medical imaging, industrial robotics, voice recognition 

systems, image recognition systems, data mining and 

aerospace applications. This was pioneered by Bernard 

Widrow of Stanford University in the 1950s [3].The modest 

definition of a NN, more appropriately conferred to as an 

ANN, is provided by Robert Hecht-Nielsen, the inventor of 

one of the first neurocomputers, and he explains an NN as a 

computing system consisting of a number of unpretentious 

and extremely interconnected processing elements, which 

execute information by their active state response to inputs 

externally [4, 5]. 

NN representations are usually recognized as an ANNs in the 

field of AI and are mathematically modelled by way of 

function definition as 𝑓: 𝑋 → 𝑌or a dispersal over 𝑋 or both 𝑋 

and 𝑌, which are coherently linked sometimes with particular 

learning rulebooks or algorithm. Furthermore, in situations 

where the class are gotten by erratic parameters, specifics of 

the architecture such as the number of neurons or their 

connectivity and connection weights, then such instances are 

phrased commonly as an ANN model. The maiden and the 

simplest sort of   type of ANN invented was FFNN, in which 

the flow of information is in one direction through the hidden 

nodes (if any) of the network to the output from the input 

nodes and has no loops or circles as depicted by fig. 1 below; 
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Fig 1. Structure of a FFNN 

The term, "feed foreword" describes how this neural network 

processes the pattern and recalls patterns. neurons are 

normally coupled foreword when implementing FFNN and 

every layer of the NN holds connections to the next node. For 

instance, from the input to the hidden layer (HL), but 

however, there are no links backwards as could be seen in fig 

1 above. 

2. TAXONOMY OF FNN 
FFNN is an inter-connection of perceptrons in which data and 

computations flow in a single direction, from the input data to 

the outputs. The number of layers of perceptrons is made up 

of the number of layers in a NN. FFNNs could be used to map 

any function from input to output and they are known as 

gradient based learning algorithms (Steepest Decent Method) 

which is the supreme algorithm used in FFNNs [6-10]. 

However, since FFNNs model is based on human thought 

processes, it is essential to appreciate how the human brain 

functions on a basic level [11, 12]. The brain is largely made 

up of cells called neurons and the human brain has about 10
11

 

of these cells which are inter-connected in a very complex 

network, with every neuron being connected to about 10 
4 

others [13]. These neurons can switch in about 10 
-3 seconds, 

which is much longer than a switch in a computer system. 

Despite this, the human brain can identify a face easily; seen 

as a very complex computational issue in a split of a second. 

The ability to address complex issues in spite of neurons 

exhibiting comparatively sluggish switching period usually 

comes from the soaring degree of inter-connectedness of the 

neurons and an appreciable degree of parallel processing. The 

concerns raised above is what FFNN is seeking to model [6]. 

 

Fg 2. An ANN with interconnected groups of nodes 

Fig 2. Above shows an interconnected collection of nodes, 

analogous to the huge network of neurons in a brain where 

every circular node denotes an artificial neuron and an arrow 

indicates a link from the output of a neuron to the input of 

another. 

 

 

2.1 The Structure of FFNN 
The building of a FFNN comprises of a (conceivably large) 

array of unpretentious neuron-like processing units, 

systematized into layers. Each unit (often called nodes) in a 

layer is linked with all the units in the preceding layer. These 

links are not all equivalent: each link may have a dissimilar 

forte or heft. The hefts on these links encrypt the knowledge 

of a network. Data enters the network through the inputs and 

passes through, layer by layer, until it reaches at the outputs. It 

acts as a classifier during normal operation, and there is no 

feedback amongst layers hence the reason for it being called 

FFNN. 

In fig 3 below, a 2-layered network with, from top to bottom: 

an output layer (OL) with 5 units, a HL with 4 units, and has 3 

input units respectively. 

 

Fig 3 A 2-layered FFNN 

The 3 inputs are shown as circles and these do not belong to 

any layer of the network (although the inputs sometimes are 

considered as a virtual layer by layer numeral 0). Any layer 

other than an OL is a HL. The above network thus has 1 OL 

and 1 HL. It further illustrates all the links among the units in 

various layers and a layer only links to the prior layer. 

There are many ways that FFNNs can be constructed. Thus, 

the user need to decide on the number of neurons that will be 

inside the input and OLs, and also how many HLs it is going 

to have, as well as the number of neurons that will be in each 

of these HLs. There are many techniques for choosing these 

constraints. There are some of the universal "rules of thumb" 

which could be used to assist making these decisions. In 

nearly all cases some experimentation will be required to 

govern the optimum structure for the FNN. 

 

Fig 4 Conduit structure of FFNN 

The input layer (IL) to the NN (as seen in fig 4 above) is the 

channel over which the external environment introduces an 

outline to the NN. So long as this outline is introduced to the 

IL of the NN, the OL will intend produce another pattern 
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which in essence detains the overall performance of the NN. 

The condition by which the NN is trained is made known by 

the IL. Each input neuron is represented by some autonomous 

variable that has an impact over the output of the NN. The 

outline for the external environment is introduced by the OL 

of the NN. Whatever outline is offered by the OL can be 

unswervingly sketched back to the IL. The number of output 

neurons should directly relate to the type of work that the NN 

is to perform. To decide on the number of neurons to utilize in 

OL one needs to study the intended use of the NN. If items are 

to be categorized into groupings using the NN, then preferably 

one output neurons for each grouping that the item is to be 

allocated to is often utilized. However, if the NN is designed 

to carry out noise reduction on a signal then there is the 

possibility that the number of input neurons will tie up with 

the number of output neurons.  

There are two choices that one considers with respect to the 

hidden layers are firstly the number of HLs to consider in 

your NN and secondly the number of neurons that will be in 

each of these layers? NN having two HLs can signify 

functions with any kind of form. There is presently no 

hypothetical reason to use NNs with any more than two HLs. 

More so, there's no need to use more than one HL for many 

real-world issues and problems that require two HLs are 

seldom bump into. Differences between the numbers of HLs 

are summarized in table 1 below: [7] 

Table 1 Number of Neurons allowed in the Hidden Layers  

Number of Hidden 

Layers 

 Result    

   

    

None Only capable of representing linear 

separable functions or decisions. 

1 Can approximate arbitrarily while any 

functions which contains a continuous 

mapping from one finite space to 

another. 

2 Represent an arbitrary decision 

boundary to arbitrary accuracy with 

rational activation functions and can 

approximate any smooth mapping to 

any accuracy.   

Again, deciding on the number of hidden neurons in layers is 

a very critical part in determining the overall neural network 

architecture. Although they do not directly relate with the 

external environment these layers have an incredible impact 

on the ultimate output. The problem of underfitting could 

occur when there exist too little neurons in the HLs to 

effectively sense the signals in a complicated data set when 

both the number of HLs and number of neurons in each of 

these HLs is not considered and could also result in the 

problems of overfitting and training period which are caused 

by using too many neurons in the HLs. Overfitting ensues 

when the neural network has a lot of information processing 

capacity that the limited amount of information confined in 

the training set is not sufficient to train all of the neurons in 

the HLs and that of the training period could occur even when 

there is sufficient training data. An extremely huge number of 

neurons in the HLs can upsurge the period it takes to train the 

network. The amount of training time can upsurge enough so 

that it is awful to sufficiently train the neural network. 

Apparently, some concession must be reached among too 

many and too little looked neurons in the HLs and there are a 

lot of rule-of-thumb approaches for realizing the actual 

number of neurons to use in the HLs, some of which are 

summarized as follows.  

1. The number of hidden neurons should be in the array 

between the size of the IL and the size of the OL in 

number. 

2. The number of hidden neurons should be two- thirds of 

the IL size, in addition to the size of the OL. 

3. The number of hidden neurons should be less than twice 

the IL size. 

The three rules stated above are only preliminary points to 

consider. Ultimately choosing the architecture of the NN will 

be based on trial and error because no one will like to start 

throwing numbers and layers of neurons at the network 

randomly. To do so would be very time-consuming. There 

exist two methods by which the trial and error search 

approaches could be organized for an optimal network 

architecture in realizing the number of hidden neurons. These 

two approaches are the forward and backward selection 

methods. 

The forward selection method commences by selecting a 

small figure of hidden neurons. This approach normally 

commences with just two hidden neurons after which the NN 

is trained and tested, the number of hidden neurons increased 

and the procedure repeated so far as the overall outcomes of 

the training and testing improved. The "forward selection 

method" is summarized in fig 5.  

 

Fig 5 A flowchat of a forward selection method 

The backward selection method begins by using a huge 

number of hidden neurons. Then the NN is trained and tested. 

The procedure lasts until about the performance perfection of 

the NN is no longer significant.  
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One supplementary technique that can be used to lessen the 

number of hidden neurons is known as pruning, this 

encompasses assessing the weighted links among the layers. If 

the network contains any hidden neurons which holds only 

zero weighted links, they can be aloof which makes pruning a 

very important concept NNs. [21] 

2.2 Operation of FFNN 
The operation of FFNN could be categorized into two phases: 

the learning phase, and the classification phases.  

In the learning phase, FFNN utilizes a supervised learning 

algorithm. Furthermore, the NN   needs to know the groupings 

with which the pattern should be referenced aside the input 

design, and the learning proceeds as follows: a pattern is 

offered at the inputs and is transformed in its passage over the 

layers of the network till it gets to the OL. The outputs of the 

network (with units all belonging to a different category) are 

then sampled with the outputs as they would preferably have 

been if this pattern were correctly classified. In the latter case 

the unit with the right category would have had the biggest 

output reading and the output readings of the other output 

units would have been very small [14]. In view of the above 

analysis, all the connection weights are altered a bit to pledge 

that, the next time this or a similar pattern is placed before the 

inputs, the value of the output unit that corresponds with the 

precise categorization is slightly higher than it is now and 

that, at the same time, the output values of all the other 

inappropriate outputs are a bit lesser than they are now [15].  

The variances that exists between the real outputs and the 

ideal outputs are propagated backwards from the top layer to 

lower layers to be utilized at these layers to amend connection 

weights and NNs of these sorts are often described by the 

term backpropagation network. The period for learning phase 

is heavily dependent on the size of the NN, the number of 

epochs, the number of patterns to be learned, the tolerance of 

the minimizer and the speed of your computer will tell how 

much computing time the learning phase may take. 

Backpropagation is the utmost implemented training 

technique commonly used for FFNNs. Its principal objective 

is to offer a machinery for apprising connected neurons 

grounded upon minimization of error. To accomplish this, 

gradient descent is generally used to establish the steepest 

path toward the minimum of  

𝐸 𝑤    = 
1

2
 (𝑡𝑑 − 𝑂𝑑 )2

𝑑∈𝐷           (1) 

where a training instance in D is d, td is the target value, Od is 

the output value, and  is the weight vector. 

Backpropagation entails determining an error by foremost 

feedforwarding (FF) inputs into the network and deducting the 

outcome from some target output. This variance is then 

bourgeoned by the derivative of the neuron's activation 

function and as in the case of sigmoid, as shown in equation 

(2) below, and stored for reference by the update at the prior 

layer.  

  𝑓 ′ 𝑛𝑒𝑡 = 𝑂(1 − 0)       (2) 

Advancement is further made to calculate the errors layer by 

layer, traversing backwards through the network and 

performing the neuron’s error computation, which is the 

derivative of the neuron stimulation function bourgeoned by 

the sum of every output weight’s multiplication with the 

forward neuron’s error term. Thereafter every error term is 

calculated, we update the weights by the multiplication of 

each branch’s output with the forward node’s error and the 

learning rate. 

In the classification phase, the hefts of the network are fixed. 

A pattern, is transformed from one layer to the other till it gets 

to the OL when presented at the input layer. The classification 

can result by choosing the grouping related with the output 

unit that has the largest output value. In contrast to the 

learning phase classification is very fast.  

2.3 Single - Layer Perceptrons 
The modest kind of NN is a single-layer perceptron network, 

which comprises of a single layer of output nodes; the inputs 

are nourished directly to the outputs through a sequence of 

weights and maybe regarded as the simplest kind of FFNN. 

The summation of the products of the weights and the inputs 

is determined in each node, and in case the outcome is above 

some threshold (typically 0) the neuron fires and takes the 

activated value (typically 1); otherwise it takes the deactivated 

value (typically -1). Neurons exhibiting this kind of activation 

function are also better known as linear threshold units or 

artificial neurons. In the literature the term perceptron often 

recognized as networks consisting of just one of these units 

and similarly described as neuron by Warren McCulloch and 

Walter Pitts in the 1940s [16, 17]. 

A perceptron could be formed by utilizing any of the activated 

and deactivated states values so long as the threshold value 

lies between the two states. Most perceptrons have outputs of 

1 or -1 with a threshold of 0 and there is some evidence that 

such networks can be trained more quickly than networks 

formed from nodes with different deactivation and activation 

values. Perceptrons can be trained by   simply learning and 

implementing the delta rule algorithm that is capable of 

determining the errors between sample output data and, 

calculated output and uses this to create a modification to the 

weights, hence employing a form of gradient descent [18]. 

Single-unit perceptrons only have the capability of learning 

linearly separable patterns demonstrated in the well-known 

monograph entitled Perceptrons, by Papert and   Minsky to 

indicates that it was impossible for a single-layer perceptron 

network to learn an XOR function and further proposed that a 

similar result would hold for a multi-layer perceptron network 

[19]. However, this is not true, as both Minsky and Papert   

recognized that multi-layer perceptrons were capable of 

producing an XOR Function as shown in fig 6 below [20]. 

 

Fig 6: A three-layer Perceptron net capable of calculating 

XOR. 

The computational power of the network is quite not 

unlimited despite the fact that it relies on a single threshold 
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unit and it has been shown that any continuous function could 

be approximated by networks of parallel threshold units from 

a compacted interval of real numbers into the interval [-1,1] 

[21]. A continuous output could be gotten out of a multi-layer 

NN other than a step function which is seen in the logistic 

function: 

𝑦 =
1

1+𝑒−𝑥
    (3) 

The f(X) which normally replaces x, where f(X) is an 

analytical function in terms of x. in view of this. the single-

layer network is comparable to the logistic regression model, 

extensively utilized in statistical models. The logistic function 

of which is also referred to as sigmoid function which has an 

unremitting derivative, and makes it suitable for 

backpropagation [22]. It is preferred ideally because its 

derivative is easily determined according to the chain rule 

[23]: 

𝑦′ = 𝑦(1 − 𝑦)
𝑑𝑓

𝑑𝑋
    (4)                 

2.4 Multi- Layer Perceptrons  
This class of networks which comprises of multiple layers of 

solvable units, generally inter-connected like a FFNN. Every 

neuron in a layer has directed links to the neurons of the 

succeeding layer. In numerous implementations, a sigmoid 

function is utilized by the units of these networks as an 

activation function [24].  

The universal approximation deduction for NNs states that 

every unremitting function that joins intervals of real numbers 

to some output interval of real numbers can subjectively be 

approximated carefully by a multi-layer perceptron with just a 

HL. This outcome embraces for an extensive range of 

activation functions, such as the sigmoidal functions [25]. 

Multi-layer networks adopt a diversity of learning procedures, 

the most common one being back-propagation, in which the 

output results are likened with the correct answer to determine 

the result of some predefined error function. More so, the 

error inputted back into the network through numerous 

techniques, and the weight of every link is adjusted with the 

algorithm using the information of the network, which in 

effect reduces the value of the error function by some minute 

amount. The network will typically converge to some state 

where the error of the computation is small, after the afore 

process is repeated for a satisfactorily huge number of training 

sets which could be seen as the network learning a particular 

target function. To adjust weights properly, one applies a 

gradient descent, a general method for non-linear 

optimization, and the derivative of the error function is 

determined with respect to the weights of the network. 

However, they are changed to augment decreases in the error 

(accordingly going effortless on the outward of the error 

function). For this reason, backpropagation can only be useful 

on networks with differentiable activation functions. 

The problem of teaching networks to perform well,  in 

particular on samples that were generally not used as training 

samples; this is usually a daunting task  that requires extra 

techniques, especially for cases where limited number of 

training samples are presented [26, 27].  The risk associated 

with it is that, the training data is usually over fitted by the 

network and it fails to record the actual statistical method 

engendering the data[28]. Computational learning concept is 

interested with training classifiers on an inadequate amount of 

data. In the context of NNs a modest exploratory, called early 

stopping, usually guarantees that the network will take a broad 

view on examples that are not part of  the training set [29]. 

Other distinctive issues with the backpropagation procedure 

are the convergence speed and the likelihood of culminating 

up in a local minimum of the error function. Today there are 

real-world approaches that make backpropagation in multi-

layer perceptrons the instrument of interest for many machine 

learning tasks. 

The contributions of the paper include a proposed novel 

training principle for FFNNs centered on Margin-Based 

Principle (MBP) for FFNNs and that of the Double Parallel 

Feedforward Neural Networks (DPFNN) to further improve 

the convergence rate and the generalization capabilities of 

FFNNs in addition to an algorithm to deal with the issues 

concerned with optimization and subsequent improvement in 

the performance of learned policy as well as make it less 

computationally expensive. 

The rest of the paper is structured as follows; we review 

related methods of FFNN in   section III.  Section IV 

discusses our general framework to FFNN, we look at 

applications of our proposed technique in section V, and 

section VI presents summary and future direction. 

3. RELATED WORK 
According to [30] FFNN is a traditional classifier which is 

very popular at present just like deep architecture of neural 

network (DNN) in terms of application and theory as 

extensively reviewed by [31]. However, the training algorithm 

of FFNN, no matter the shadow or the deep, is based on the 

Widrow-Hoff Principle (WHP) that minimizes the squared 

error with some weight regulation items [32]. This kind of 

learning algorithms need lots of labelled samples and tend to 

be overfitting. The general capability of these NNs is limited 

by the least square error optimization procession and, WHP so 

[30] employed the MBP which could handle some few 

labelled samples and would be seen as a sparse learning 

structure instead of WHP to acquire a better generalization 

ability, which motivated their novel model. The perceptron 

that could be treated as linear classifier, shares the 

disadvantages of NNs, since it also needs lots of labelled data 

and is tend to be overfitting.  

When the Max-Margin Principle is applied to perceptron or 

linear classifier, it overcame the disadvantages of WHP, thus 

it tolerates less labelled data and gained better generalization 

ability. The afore-mentioned observations inspired the 

researchers to, apply the MBP to the NN training process that 

could achieve better accuracy with less labelled data and a 

novel learning model was proposed and could abandon part 

defects of traditional FFNNs. In order to address the issue, 

FFNN was treated as a two-step process. The process of IL to 

hidden layers was treated as feature abstraction and the 

process of hidden layers to OL was treated as classification.  

The FFNN makes use of linear regression learners to abstract 

the samples to a new feature space, thus by applying the Min-

Margin Principle to the feature abstraction process to 

minimize the error of regression or error of abstraction to 

improve the ability of feature abstraction. While in the 

classification process, FFNN makes use of linear classifiers to 

discriminate, Max-Margin Principle was used to minimize the 

structural risk. The two processes were combined to an 

optimization problem which was used as a model.  

In the quest to improve on the convergence rate and the 

generalization capabilities of FFNNs, [33] proposed a DPFNN 

which parallelly combines a connection of a multi-layer 

FFNN and a single layer FFNN as indicated in fig 7 below.   



International Journal of Computer Applications (0975 – 8887) 

Volume 163 – No 4, April 2017 

44 

As a result, some weak and strong convergence results are 

obtained, indicating that the gradient of the error function 

tends to zero and the weight sequence goes to a fixed point, 

respectively.  The figure below depicts DPFNN 

 

Figure 7. Topological Structure of DPFNN 

The most widely used learning method for DPFNN remains to 

be the gradient method [33-36]. It is shown by[37] that the 

training speed and accuracy are greatly improved for DPFNN 

compared with corresponding multi-layer feedforward neural 

networks [38-43]. A double parallel feedforward process 

neural network with similar structure and updating rule as 

DPFNN is proposed in[44]. In [45], an alternate learning 

iterative algorithm for DPFNN is presented. The truncation 

error caused by word length on the accuracy of DPFNN is 

analyzed in[46]. 

NN is one of the early AI models, and now becomes a large 

branch of learning algorithms. The paper’s focus was on the 

famous feed-forward back prorogation classification networks 

with non-linear mapping. It stated     the three kinds of ways 

to popularly promote FFNN; to add weight regularity item to 

the optimization target, to prune the surplus links and to go 

into deep architectures. The first way is to refine the weights 

of the NN and the other ways are to revise the structure of it. 

[47] had studied the effect of weight decay and states that it 

has two effects, suppressing any irrelevant of the weights and 

improving the generalization ability. [48] had studied the 

pruning of RBFFNN, which firstly introduces the concept of 

significance of the hidden neurons and then uses it in the 

learning algorithm to realize parsimonious networks. Recently 

such stated in [49] , going to deep catches many eyes, since 

not only just adding the hidden layers could gain an 

improvement in performance, but DNN can also automatically 

select features and amazingly complete the comprehension 

missions. [50] had applied deep network into natural 

languages, and many works such as [51, 52] had applied deep 

network into image processing, deep learning is one of the 

hottest topic in today’s AI. Before              [53] and [54] 

proposed the fast unsupervised or supervised methods, multi-

layer NNs are hard to train, this kind of difficulty is analyzed 

in [55] and [56], for the reason that the optimization process is 

often stuck into the local optima. The work stated above is a 

contribution independent from deep learning, or a principle, 

which could both work for shadow or deep architecture of 

FFNNs. As to the difficult of multilayer training algorithms 

which is applied with the stated principle, it could also be 

solved by the same kind of deep learning tricks introduced. 

Deep learning is a kind of contribution to the architecture of 

NNs and this paper is a kind of contribution to the training 

principle. Deep architecture and our principle could be 

merged to generate a new powerful model that should be more 

competitive in terms of performance than these two methods 

in isolation. The famous Margin-Based model, which is a 

Support Vector Machine (SVM) was proposed by  [57]; SVM 

could have many advantages such as small sample learning 

and sparse learning structures. However, MBP could be 

applied to many models to achieve the similar benefits of 

SVM. [58] had applied the Max-Margin Principle into the 

Markov Networks, and[59] had applied the Max-Margin 

Principle into classification of data with absent features. Both 

of these two works belong to supervised learning. [60] Had 

applied MBP into feature selection and [61] had applied Max-

Margin Principle into Clustering. Both of these two works 

belong to unsupervised learning[62]. Recently, [63] had 

introduced this principle to on-line learning for Markov Logic 

Networks, and [64] had introduced it to early event detection. 

As above, MBP and DPFNN principles could be applied into 

FFNNs, thus a critical outlook and   contribution of this paper. 

This work could be applied into NNs together with weight 

decay, link pruning and deep architectures. 

The FFNN could be treated as two processes as in the case of 

current studies; the abstraction process and classification 

process. Take two-layer FFNN as an example, the process of 

IL to hidden layers corresponds to abstraction process. In this 

stage, each hidden neuron is treated as a linear regression 

learner to fit some parts of the data, and hidden neurons deal 

with the regression results with non-linear function to get its 

output. In this process, the features of the samples could be 

converted into new space, where the hidden neurons play a 

role as the basis. The process of hidden layers to OL 

corresponds to classification process. In this stage, each output 

neuron is treated as a linear classifier to discriminate different 

classes of data, and output neurons also deal with the 

classification result with non-linear functions to get its output.  

The IL to HLs is the abstraction process where we could 

apply the Min-Margin Principle, and the HLs to OL is the 

classification process where we could apply Max-Margin 

Principle. It means that all the HLs could be an abstraction 

process where Min-Margin Principle works and the last layer 

that corresponds to the output could be a classification process 

where Max-Margin Principle is applied. The FFNNs have 

HLs each of which has number of hidden neurons and a 

number of output neurons, with a number of labelled samples. 

So, we combine the two principles in one optimization 

problem, as maximizing. [65] Proposes a new MBP centered 

discriminative feature learning approach that specifically aims 

at learning a low dimensional feature representation to 

maximize the global margin of the data and samples from the 

same class as close as possible. [66] Also recently proposes a 

performance evaluation of loss functions for speech 

recognition to enhance the generality of acoustic model by 

implementing an MBP  

A more recent work also looked at training efficiency and 

computational cost, both in general-purpose and in embedded 

computing environments and a strategy to convert a network 

configuration between different activation functions without 

altering the network mapping capabilities in FFNN were also 

presented in [67]. These literatures serve as a stimulant   for 

this paper.  
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4. DISCUSSIONS OF THE 

THEORITICAL FRAMEWORK 
Gradient based systems normally are prone to (1) over-fitting, 

(2) Easy to convergence to local minima, (3) Converges 

slowly, and (4) difficult select learning rate despite numerous 

attempts by past studies to address these challenges we still 

have not arrived at an optimal solution. The aforementioned 

draw backs could be overcome by reducing the network 

complexity and also by increasing the problem complexity of 

the network. Despite the merits and popularity of 

backpropagation learning there are some fundamental 

problems which deserve further attention. First, supervised 

learning using a backpropagation or a backpropagation-like 

gradient-based learning rule can be stuck in a local minimum 

of the error function in the sense of local minima due to the 

gradient descent nature of gradient-based learning rules. 

Because local minimum errors are still potential pitfalls 

undermining or plaguing supervised learning, further 

investigations are deemed necessary. Backpropagation-like 

procedures require a large number of computations per 

iteration so that the algorithm runs slowly unless implemented 

in expensive custom hardware. Moreover, the procedures 

need much iteration to converge and, thus, are inappropriate 

for on-line real time, rather than off-line learning. 

Feed forward architecture with a single layer [68] and 

multiple layer[40, 43, 69-71] can be used as universal 

approximator given mild assumptions on hidden layer but the 

rule excludes backward connections as could be seen in 

recurrent networks[72-76]. More so, in FFNN no memory or 

delay is allowed, which makes the network only useful to 

represent static, models[77]. The two most important issues 

realized which needs to be addressed are training efficiency 

and computational cost. The FFNN suffers from slow learning 

speed due to its backpropagation strategy which is as a result 

of its rule for the computation for weights correction matrix, 

calculated using the derivative of the activation function for 

the neurons. The universal approximation theorem[68] states 

that one of the conditions for the FFNN to be a universal 

approximator is for the activation function to be bounded. For 

these reasons, most of the activation functions show a high 

derivative near the origin and a progressive flattening moving 

towards infinity. We believed that problems enumerated 

above could be solved by the use of activation functions 

which will helps reduce the computation cost; the margin-

based principle could also be combined with the DPFNN 

algorithm to further deal with the problem of over-fitting, 

slow to convergence rate as well as convergence to local 

minimal problems thereby increasing the problem complexity 

of the network. The problem of slow convergence rate could 

be addressed by a combination of FFNN with fuzzy logic (FL) 

to create fast convergence [78]. 

The abstraction process which is the process of ILs to hidden 

layers, makes use of linear regression learners to predict/fit 

different characteristics of samples which is optimized by the 

least square errors as stated below; 

min   Z = (< 𝑤   , 𝑥 >  −𝑣)2 

But the margin-Based Principle minimizes the margin instead 

of the distance; hence Min-Margin Principles takes the 

minimum distance from the samples to optimize the target as 

follows; 

min 𝑍 =  
(< 𝑤   , 𝑥 >)𝑣

|𝑤   |
 

From the equation y is the label of the sample for some linear 

abstraction learners. The principle stated above is geometric 

invariant and more essential as one of the reasons for the 

promotion of the abstraction process. 

The classification phase which is the process from the hidden 

layers to the output could make use of linear classifiers to 

discriminate the different classes. Traditionally, this could be 

stopped at any suitable position in a linear hyper – plane and 

could result in overfitting problem. This structural risk is 

effectively addressed by the Max-Margin Principle and thus 

improves the generalization ability for the optimization 

problem as follows; 

max 𝑍 =  
(< 𝑤   , 𝑥 >)𝑣

|𝑤   |
 

The FFNN with H hidden layers each of which has Hh hidden 

neurons and N output neurons, the number of labelled samples 

is L. So, the two principles are combine in one optimization 

problem, as maximizing and is formulated as the objective 

function below; 

𝑍 =

 { 
<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣𝐻+1>𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑁
𝑖=1

𝐿
𝑡=1 − ⋌    

<𝑤𝑗
⟶𝑚 ,   𝑣⟶𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
⟶𝑚 | 

𝐻ℎ

𝑗 =1
𝐻
𝑚=1 } 

       (5) 

Where 𝑤𝑖
→𝑜𝑢𝑡  is the weight vector from last hidden layer to 

the i-th neuron in OL, and the 𝑤𝑗
⟶𝑚  is the weight vector from 

(m − 1)-th hidden layer to the i-th neuron in m-th hidden 

layer. ti is the output of i-th neuron in OL, and 𝑣𝑗
𝑚  is the 

output of j-th neuron in m-th HL. 𝑥 𝑡  is the input vector, 

and v𝑚     is the output vector of (m − 1)-th HL. v𝑚      is 

composed by 𝑣𝑗
𝑚  . λ is an hyper-parameter in the training 

algorithm. The first term of the above formular represents 

Max-Magin Principle and the second term represent Min-

Margin principle. However, since the output of a nonlinear 

function must be symmetric for both maximum positive and 

minimum negative values as in equation (6) and (7), the 

training algorithm adopts the gradient ascent for the 

optimization target as seen below; 

𝜎 𝑥 =  
1

1+exp (−𝑥)
− 0.5   (6) 

𝜎 ′ (𝑥) =  0.5 + 𝜎 𝑥  (0.5 −  𝜎(𝑥))   (7) 

𝑍𝑡 =

 
<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣𝐻+1>𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑁
𝑖=1 − ⋌

   
<𝑤𝑗

⟶𝑚 ,   𝑣⟶𝑚 >𝑣𝑗
𝑚 +1

|𝑤𝑗
⟶𝑚 | 

𝐻ℎ

𝑗 =1
𝐻
𝑚=1                 (8) 

We could work out the partial derivative of the target to 

express this formula in a brief way, by introducing a δ 

function and it works out iteratively to result in equation (9) 

below; 

𝛿𝑗 ,𝑚−1
𝑚 =   𝛿𝑠,𝑚

𝑚𝐻ℎ
𝑠=1  𝑤𝑠

→𝑚 𝑗 𝛿 ′ (< 𝑤−𝑚−1, 𝑣→𝑚−1) (9) 

Then, we define a γ function. 

𝛾𝑗
𝑚 =

 
𝑣𝑗

𝑚 +1

𝑤𝑗
→𝑚  𝑣→𝑚 −  

<𝑤𝑗
→𝑚 ,𝑣→𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
→𝑚 |3

𝑤𝑗
→𝑚 +

 
<𝑤𝑗

→𝑚 ,𝑣→𝑚 > 𝜎 ′  <𝑤𝑗
→𝑚 ,𝑣→𝑚 > 

|𝑤𝑗
→𝑚 |

 𝑣→𝑚                  (10) 



International Journal of Computer Applications (0975 – 8887) 

Volume 163 – No 4, April 2017 

46 

With the form of δ function, we could reduce the 

computational complexity and express the gradient, very 

briefly. 

𝜕𝑍𝑡

𝜕𝑡
→𝑜𝑢𝑡 =  

𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑣→𝐻+1 −  
𝑡𝑖<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣→𝐻+1>

|𝑤𝑖
→𝑜𝑢𝑡 |3

𝑤𝑖
→𝑜𝑢𝑡           (11)                                      

𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑚 = 𝛿𝑖 ,𝑚

𝑜𝑢𝑡 𝑣→𝑚 − ⋋  𝛿𝑖,𝑚
𝑠𝐻

𝑠=𝑚+1 𝑣→𝑚 − ⋋ 𝛾𝑗
𝑚             (12) 

In above formula, σ′ is the derivative of the non-linear 

function. With the derivative of the target, we can obtain the 

updating equation as below. 

𝑤𝑖
→𝑜𝑢𝑡 =  𝑤𝑖

→𝑜𝑢𝑡 +  𝛼 ∗
𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑜𝑢𝑡             (13) 

𝑤𝑗
→𝑚 =  𝑤𝑗

→𝑚 +  𝛼 ∗
𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑚              (14) 

α is the learning rate. So, the training algorithm is achieved. 

This method in some special case may be stuck into local 

optima and is a common problem for neural networks. 

The gradient decent method could be further enhanced by 

introducing the Double Parallel procedure with P input nodes 

with 1 output nodes into the structure of the FFNN. The 

weight vector connecting the HL and the OL is denoted by  

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑚 )𝑇  ∈ 𝑅𝑚  and the weight matrix 

connecting the IL and the HL by 𝑉 =  𝑣𝑖,𝑗  𝑚𝑥𝑝  where 

 𝑣𝑖 = (𝑣1, 1, … , 𝑣𝑖 ,𝑝)𝑇  ∈ 𝑅𝑝  is the weight vector connecting 

the IL, and i-th node of the HL. Similarly, we denote the 

weight vector connecting the ILand the OLby 𝑈 =
(𝑢1, 𝑢2, … , 𝑢𝑝)𝑇  ∈ 𝑅𝑝  

All the weight vectors are incorporated into one weight vector 

as 

𝑊 = (𝑢𝑇 , 𝑣1
𝑇 , … , 𝑣𝑚

𝑇 , 𝑣𝑤
𝑇)𝑇𝜖 𝑅𝑝+𝑚𝑝 +𝑚   

For a giving set of training samples supplied to the neural 

network, the error function is defined as  

𝐸  𝑊 =  
1

2
  (𝑣𝑗 − 𝑂𝑗 )2𝑍

𝑗 =1    (15) 

Where v is the actual output of the neural system, O is the 

highest sample and the purpose of the network learning is to 

find W* such that  

E (W*) = min E (W)   (16) 

The batch learning approach was followed by this paper to get 

the partial derivative of the error function E (W) for the 

respective weight vectors. After which they are refined by an 

iteration process and the learning rate, 𝜂 at each stage of the 

iteration must be greater than zero. We then substitute this 

into equation (15) above. This weight vector we introduced at 

every stage of our first module. Hence equations (8), (9), (10), 

and (12) are updated as (17), (18), (19), and (20) respectively; 

𝑍𝑡 =  
<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣𝐻+1>𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑁
𝑖=1 − ⋌    

<𝑤𝑗
⟶𝑚 ,   𝑣⟶𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
⟶𝑚 | 

𝐻ℎ

𝑗 =1
𝐻
𝑚=1 +

𝜂  (𝑣𝑗 − 𝑂𝑗 )2𝑇
𝑗 =1        (17) 

𝛿𝑗 ,𝑚−1
𝑚 =   𝛿𝑠,𝑚

𝑚𝐻ℎ
𝑠=1  𝑤𝑠

→𝑚 𝑗 𝛿 ′ (< 𝑤−𝑚−1, 𝑣→𝑚−1 >

 +𝜂  (𝑣𝑗 − 𝑂𝑗 )2𝑇
𝑗 =1      (18) 

𝛾𝑗
𝑚 =

 
𝑣𝑗

𝑚 +1

𝑤𝑗
→𝑚  𝑣→𝑚 −  

<𝑤𝑗
→𝑚 ,𝑣→𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
→𝑚 |3

𝑤𝑗
→𝑚 +

 
<𝑤𝑗

→𝑚 ,𝑣→𝑚 > 𝜎 ′  <𝑤𝑗
→𝑚 ,𝑣→𝑚 > 

 𝑤𝑗
→𝑚  

 𝑣→𝑚 +  𝜂  (𝑣𝑗 − 𝑂𝑗 )2𝑇
𝑗 =1    (19) 

𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑚 = 𝛿𝑖 ,𝑚

𝑜𝑢𝑡 𝑣→𝑚 − ⋋  𝛿𝑖,𝑚
𝑠𝐻

𝑠=𝑚+1 𝑣→𝑚 − ⋋ 𝛾𝑗
𝑚 +

 𝜂  (𝑣𝑗 − 𝑂𝑗 )2𝑇
𝑗 =1    (20) 

Where 𝜂 is assumed to be 0.5 in this case. 

4.1 Fast Computation Using Activation 

Functions 
There are two costs associated with the computational cost. 

The first one is a linear cost, emanating from the operations 

needed to perform the sum of the weighted inputs of each 

neuron. The second one related to the computation of the 

activation function is nonlinear. In a computational 

environment, those operations are carried out considering a 

particular precision format for the numbers. Fixed-point and 

floating-point arithmetic are the most commonly used to 

compute the FFNN elementary operations. The linear part of 

the FFNN is straightforward; operations of products and 

sums.   

Three branches of these approaches can be found in literature; 

PWL (piecewise linear) interpolation, used to carry out in 

embedded environment since, for every segment, the 

approximated value can be computed by one multiplication 

and one addition. In [79] an implementation of a NN on two 

FPGA devices by the Virtex-5 Xilinx, and the Spartan 3 was 

proposed. LUT (Lookup-Table) inter-polation is the modest 

method that can be castoff to lessen the cost of the 

computational of the complex function. The idea is to 

stockpile inside the memory (a table) samples from a 

subdomain of the function and access those instead of 

calculating the function, and higher order/hybrid techniques 

which combines both LUT and PWL approximations to 

acquire a result that produces a concession between the speed 

of the LUT and the accuracy of the PWL approximation. 

5. APPLICATIONS 
FFNN, a surrogate of ANN, has a comprehensive applicability 

to real world business issues. In fact, they have already been 

positively applied in many industries. Since the network is 

best at recognizing trends in data, it is well suitable for 

forecasting needs including: industrial process control, sales 

forecasting, data validation, customer research, risk 

management, and target marketing.  

It is also utilized for the following explicit paradigms: 

interpretation of multi-meaning Chinese words; analysis of 

hepatitis; recognition of orators in conversations; salvage of 

telecommunications from defective software; undersea mine 

detection; texture scrutiny; three-dimensional object 

recognition; hand-written word recognition; and facial 

recognition.  

It is a popular research area in the field of medicine and is 

believed to receive a widespread application to biomedical 

systems in the coming years. This is due to the fact that it is 

perfect in identifying ailments using scans, since there is no 

need to offer a precise algorithm on how to detect the disease. 

It applies a learning approach that mimics established 

examples thereby shielding details   of illness. What is desired 

is a set of examples that are illustrative of the various facets of 

the disease. Note that, the quantity of examples is not 

important. The examples ought to be carefully chosen if the 

system is to perform efficiently and reliably [80]. 
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6. CONCLUSIONS 
In this paper, we have presented a comprehensive review on 

FFNNs, we looked at the MBP into the training algorithms of 

FFNNs, and also various models capable of handling sparser 

labelled datasets and   high-dimension datasets with high 

accuracy, while modification from old ANN method to our 

proposed method is efficient and easy to work with. It was 

also observed that DPFNN has a faster convergence speed and 

better generalization capability than standard FFNN. 

However, our work outperformed prior state-of-the-art works 

with regards to high convergence rate, and also has an 

additional   capability of handling more datasets which are 

computationally less expensive. Naturally the FFNN would 

have had a saturation problem with the sigmoid function, and 

for this reason, the training is hardly possible in high-

dimension dataset. However, the technique implemented in 

this solves this problem, since our model does not involve the 

derivative of sigmoid function. The model could solve high-

dimensional problems directly and naturally while prior 

techniques must use other methods. This is one of the major 

advantages of our proposed model. However, investigations 

into using diaphone-level acoustic models, sparse 

representations and deep learning is of interest as this would 

allow state-sized representations of speech to be used instead, 

which may further enhance performance. 
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