
International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

39

Taxonomy and a Theoretical Model for Feedforward

Neural Networks

Benuwa Ben-Bright
Sch. of Comp. Sci. &

Telecomm. Eng.
Jiangsu University, Xuefu

Road 301
Jingkou District Zhenjiang

212013, China

Yongzhao Zhan
Sch. of Comp. Sci. &

Telecomm. Eng.
Jiangsu University, Xuefu

Road 301
Jingkou District Zhenjiang

212013, China

Benjamin Ghansah
Sch. of Comp. Sci.
Data Link Institute

P. O Box 2481 Tema

Richard Amankwah
Sch. of Comp. Sci. &

Telecomm. Eng.
Jiangsu University, Xuefu

Road 301
Jingkou District Zhenjiang

212013, China

Dickson Keddy Wornyo
Sch. of Comp. Sci. &

Telecomm. Eng.
Jiangsu University, Xuefu

Road 301
Jingkou District Zhenjiang

212013, China

Ernest Ansah
Sch. of Comp. Sci.
Data Link Institute

P. O Box 2481 Tema

ABSTRACT

Feedforward Neural Network (FFNN) is a surrogate of

Artificial Neural Network (ANN) in which links amongst the

units do not form a directed cycle. ANNs, akin to the

vast network of neurons in the brain (human central nervous

system) are usually presented as systems of interweaving

connected "neurons" which exchange messages between each

other. These connections have numeric hefts that can be

adjusted and grounded on experience, enforcing adaptively on

neural networks to inputs and learning capabilities. This paper

presents a comprehensive review of FFNN with emphasis on

implantation issues, which have been addressed by previous

approaches. We also propose a theoretical model that exhibits

potential superior performances in terms of convergence

speed, efficient and effective computation and generality than

state of the art models.

Keywords

Feedforward neural networks, Margin-Based principle, Multi-

layer perceptron, Single-layer perceptron, Double Parallel

Feedforward neural networks, Natural networks

1. INTRODUCTION
A FFNN is an ANN where associations amongst the nodes do

not form a directed cycle. Note that this is not the same as

Recurrent Neural Networks (RNNs). Further, ANNs do not

have a unique single recognized definition, however, a group

of statistical models may generally be christened neural if it

exhibits traits as described as follows: a) Encompasses groups

of adaptive numerical weights tuned by a learning algorithm,

and b) Ability to approximate inputs of nonlinear functions.

The adaptive weights which are the association strength

amongst neurons are stimulated during prediction and

training. Neural networks (NNs) are comparable to biological

NNs in the performance of their roles communally and is

analogous to the nodes, instead of there being a clear

demarcation of sub-jobs to which respective units are allotted

[1, 2]. NNs functions by creating relationships amongst

processing elements instead of digital models that massages

0’s and 1’s during its computation. NNs are predominantly

effective for forecasting events for large data array of

networks based on the findings of prior studies. Stringently, a

NN indicates an analogue computer, but NNs can be

replicated on digital computers. In addition, the weights and

the structure of these associations determines the output of the

network.

In contemporary times, we have seen the application of NNs

in medical imaging, industrial robotics, voice recognition

systems, image recognition systems, data mining and

aerospace applications. This was pioneered by Bernard

Widrow of Stanford University in the 1950s [3].The modest

definition of a NN, more appropriately conferred to as an

ANN, is provided by Robert Hecht-Nielsen, the inventor of

one of the first neurocomputers, and he explains an NN as a

computing system consisting of a number of unpretentious

and extremely interconnected processing elements, which

execute information by their active state response to inputs

externally [4, 5].

NN representations are usually recognized as an ANNs in the

field of AI and are mathematically modelled by way of

function definition as 𝑓: 𝑋 → 𝑌or a dispersal over 𝑋 or both 𝑋

and 𝑌, which are coherently linked sometimes with particular

learning rulebooks or algorithm. Furthermore, in situations

where the class are gotten by erratic parameters, specifics of

the architecture such as the number of neurons or their

connectivity and connection weights, then such instances are

phrased commonly as an ANN model. The maiden and the

simplest sort of type of ANN invented was FFNN, in which

the flow of information is in one direction through the hidden

nodes (if any) of the network to the output from the input

nodes and has no loops or circles as depicted by fig. 1 below;

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

40

Fig 1. Structure of a FFNN

The term, "feed foreword" describes how this neural network

processes the pattern and recalls patterns. neurons are

normally coupled foreword when implementing FFNN and

every layer of the NN holds connections to the next node. For

instance, from the input to the hidden layer (HL), but

however, there are no links backwards as could be seen in fig

1 above.

2. TAXONOMY OF FNN
FFNN is an inter-connection of perceptrons in which data and

computations flow in a single direction, from the input data to

the outputs. The number of layers of perceptrons is made up

of the number of layers in a NN. FFNNs could be used to map

any function from input to output and they are known as

gradient based learning algorithms (Steepest Decent Method)

which is the supreme algorithm used in FFNNs [6-10].

However, since FFNNs model is based on human thought

processes, it is essential to appreciate how the human brain

functions on a basic level [11, 12]. The brain is largely made

up of cells called neurons and the human brain has about 10
11

of these cells which are inter-connected in a very complex

network, with every neuron being connected to about 10
4

others [13]. These neurons can switch in about 10
-3 seconds,

which is much longer than a switch in a computer system.

Despite this, the human brain can identify a face easily; seen

as a very complex computational issue in a split of a second.

The ability to address complex issues in spite of neurons

exhibiting comparatively sluggish switching period usually

comes from the soaring degree of inter-connectedness of the

neurons and an appreciable degree of parallel processing. The

concerns raised above is what FFNN is seeking to model [6].

Fg 2. An ANN with interconnected groups of nodes

Fig 2. Above shows an interconnected collection of nodes,

analogous to the huge network of neurons in a brain where

every circular node denotes an artificial neuron and an arrow

indicates a link from the output of a neuron to the input of

another.

2.1 The Structure of FFNN
The building of a FFNN comprises of a (conceivably large)

array of unpretentious neuron-like processing units,

systematized into layers. Each unit (often called nodes) in a

layer is linked with all the units in the preceding layer. These

links are not all equivalent: each link may have a dissimilar

forte or heft. The hefts on these links encrypt the knowledge

of a network. Data enters the network through the inputs and

passes through, layer by layer, until it reaches at the outputs. It

acts as a classifier during normal operation, and there is no

feedback amongst layers hence the reason for it being called

FFNN.

In fig 3 below, a 2-layered network with, from top to bottom:

an output layer (OL) with 5 units, a HL with 4 units, and has 3

input units respectively.

Fig 3 A 2-layered FFNN

The 3 inputs are shown as circles and these do not belong to

any layer of the network (although the inputs sometimes are

considered as a virtual layer by layer numeral 0). Any layer

other than an OL is a HL. The above network thus has 1 OL

and 1 HL. It further illustrates all the links among the units in

various layers and a layer only links to the prior layer.

There are many ways that FFNNs can be constructed. Thus,

the user need to decide on the number of neurons that will be

inside the input and OLs, and also how many HLs it is going

to have, as well as the number of neurons that will be in each

of these HLs. There are many techniques for choosing these

constraints. There are some of the universal "rules of thumb"

which could be used to assist making these decisions. In

nearly all cases some experimentation will be required to

govern the optimum structure for the FNN.

Fig 4 Conduit structure of FFNN

The input layer (IL) to the NN (as seen in fig 4 above) is the

channel over which the external environment introduces an

outline to the NN. So long as this outline is introduced to the

IL of the NN, the OL will intend produce another pattern

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

41

which in essence detains the overall performance of the NN.

The condition by which the NN is trained is made known by

the IL. Each input neuron is represented by some autonomous

variable that has an impact over the output of the NN. The

outline for the external environment is introduced by the OL

of the NN. Whatever outline is offered by the OL can be

unswervingly sketched back to the IL. The number of output

neurons should directly relate to the type of work that the NN

is to perform. To decide on the number of neurons to utilize in

OL one needs to study the intended use of the NN. If items are

to be categorized into groupings using the NN, then preferably

one output neurons for each grouping that the item is to be

allocated to is often utilized. However, if the NN is designed

to carry out noise reduction on a signal then there is the

possibility that the number of input neurons will tie up with

the number of output neurons.

There are two choices that one considers with respect to the

hidden layers are firstly the number of HLs to consider in

your NN and secondly the number of neurons that will be in

each of these layers? NN having two HLs can signify

functions with any kind of form. There is presently no

hypothetical reason to use NNs with any more than two HLs.

More so, there's no need to use more than one HL for many

real-world issues and problems that require two HLs are

seldom bump into. Differences between the numbers of HLs

are summarized in table 1 below: [7]

Table 1 Number of Neurons allowed in the Hidden Layers

Number of Hidden

Layers

 Result

None Only capable of representing linear

separable functions or decisions.

1 Can approximate arbitrarily while any

functions which contains a continuous

mapping from one finite space to

another.

2 Represent an arbitrary decision

boundary to arbitrary accuracy with

rational activation functions and can

approximate any smooth mapping to

any accuracy.

Again, deciding on the number of hidden neurons in layers is

a very critical part in determining the overall neural network

architecture. Although they do not directly relate with the

external environment these layers have an incredible impact

on the ultimate output. The problem of underfitting could

occur when there exist too little neurons in the HLs to

effectively sense the signals in a complicated data set when

both the number of HLs and number of neurons in each of

these HLs is not considered and could also result in the

problems of overfitting and training period which are caused

by using too many neurons in the HLs. Overfitting ensues

when the neural network has a lot of information processing

capacity that the limited amount of information confined in

the training set is not sufficient to train all of the neurons in

the HLs and that of the training period could occur even when

there is sufficient training data. An extremely huge number of

neurons in the HLs can upsurge the period it takes to train the

network. The amount of training time can upsurge enough so

that it is awful to sufficiently train the neural network.

Apparently, some concession must be reached among too

many and too little looked neurons in the HLs and there are a

lot of rule-of-thumb approaches for realizing the actual

number of neurons to use in the HLs, some of which are

summarized as follows.

1. The number of hidden neurons should be in the array

between the size of the IL and the size of the OL in

number.

2. The number of hidden neurons should be two- thirds of

the IL size, in addition to the size of the OL.

3. The number of hidden neurons should be less than twice

the IL size.

The three rules stated above are only preliminary points to

consider. Ultimately choosing the architecture of the NN will

be based on trial and error because no one will like to start

throwing numbers and layers of neurons at the network

randomly. To do so would be very time-consuming. There

exist two methods by which the trial and error search

approaches could be organized for an optimal network

architecture in realizing the number of hidden neurons. These

two approaches are the forward and backward selection

methods.

The forward selection method commences by selecting a

small figure of hidden neurons. This approach normally

commences with just two hidden neurons after which the NN

is trained and tested, the number of hidden neurons increased

and the procedure repeated so far as the overall outcomes of

the training and testing improved. The "forward selection

method" is summarized in fig 5.

Fig 5 A flowchat of a forward selection method

The backward selection method begins by using a huge

number of hidden neurons. Then the NN is trained and tested.

The procedure lasts until about the performance perfection of

the NN is no longer significant.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

42

One supplementary technique that can be used to lessen the

number of hidden neurons is known as pruning, this

encompasses assessing the weighted links among the layers. If

the network contains any hidden neurons which holds only

zero weighted links, they can be aloof which makes pruning a

very important concept NNs. [21]

2.2 Operation of FFNN
The operation of FFNN could be categorized into two phases:

the learning phase, and the classification phases.

In the learning phase, FFNN utilizes a supervised learning

algorithm. Furthermore, the NN needs to know the groupings

with which the pattern should be referenced aside the input

design, and the learning proceeds as follows: a pattern is

offered at the inputs and is transformed in its passage over the

layers of the network till it gets to the OL. The outputs of the

network (with units all belonging to a different category) are

then sampled with the outputs as they would preferably have

been if this pattern were correctly classified. In the latter case

the unit with the right category would have had the biggest

output reading and the output readings of the other output

units would have been very small [14]. In view of the above

analysis, all the connection weights are altered a bit to pledge

that, the next time this or a similar pattern is placed before the

inputs, the value of the output unit that corresponds with the

precise categorization is slightly higher than it is now and

that, at the same time, the output values of all the other

inappropriate outputs are a bit lesser than they are now [15].

The variances that exists between the real outputs and the

ideal outputs are propagated backwards from the top layer to

lower layers to be utilized at these layers to amend connection

weights and NNs of these sorts are often described by the

term backpropagation network. The period for learning phase

is heavily dependent on the size of the NN, the number of

epochs, the number of patterns to be learned, the tolerance of

the minimizer and the speed of your computer will tell how

much computing time the learning phase may take.

Backpropagation is the utmost implemented training

technique commonly used for FFNNs. Its principal objective

is to offer a machinery for apprising connected neurons

grounded upon minimization of error. To accomplish this,

gradient descent is generally used to establish the steepest

path toward the minimum of

𝐸 𝑤 =
1

2
 (𝑡𝑑 − 𝑂𝑑)2

𝑑∈𝐷 (1)

where a training instance in D is d, td is the target value, Od is

the output value, and is the weight vector.

Backpropagation entails determining an error by foremost

feedforwarding (FF) inputs into the network and deducting the

outcome from some target output. This variance is then

bourgeoned by the derivative of the neuron's activation

function and as in the case of sigmoid, as shown in equation

(2) below, and stored for reference by the update at the prior

layer.

 𝑓 ′ 𝑛𝑒𝑡 = 𝑂(1 − 0) (2)

Advancement is further made to calculate the errors layer by

layer, traversing backwards through the network and

performing the neuron’s error computation, which is the

derivative of the neuron stimulation function bourgeoned by

the sum of every output weight’s multiplication with the

forward neuron’s error term. Thereafter every error term is

calculated, we update the weights by the multiplication of

each branch’s output with the forward node’s error and the

learning rate.

In the classification phase, the hefts of the network are fixed.

A pattern, is transformed from one layer to the other till it gets

to the OL when presented at the input layer. The classification

can result by choosing the grouping related with the output

unit that has the largest output value. In contrast to the

learning phase classification is very fast.

2.3 Single - Layer Perceptrons
The modest kind of NN is a single-layer perceptron network,

which comprises of a single layer of output nodes; the inputs

are nourished directly to the outputs through a sequence of

weights and maybe regarded as the simplest kind of FFNN.

The summation of the products of the weights and the inputs

is determined in each node, and in case the outcome is above

some threshold (typically 0) the neuron fires and takes the

activated value (typically 1); otherwise it takes the deactivated

value (typically -1). Neurons exhibiting this kind of activation

function are also better known as linear threshold units or

artificial neurons. In the literature the term perceptron often

recognized as networks consisting of just one of these units

and similarly described as neuron by Warren McCulloch and

Walter Pitts in the 1940s [16, 17].

A perceptron could be formed by utilizing any of the activated

and deactivated states values so long as the threshold value

lies between the two states. Most perceptrons have outputs of

1 or -1 with a threshold of 0 and there is some evidence that

such networks can be trained more quickly than networks

formed from nodes with different deactivation and activation

values. Perceptrons can be trained by simply learning and

implementing the delta rule algorithm that is capable of

determining the errors between sample output data and,

calculated output and uses this to create a modification to the

weights, hence employing a form of gradient descent [18].

Single-unit perceptrons only have the capability of learning

linearly separable patterns demonstrated in the well-known

monograph entitled Perceptrons, by Papert and Minsky to

indicates that it was impossible for a single-layer perceptron

network to learn an XOR function and further proposed that a

similar result would hold for a multi-layer perceptron network

[19]. However, this is not true, as both Minsky and Papert

recognized that multi-layer perceptrons were capable of

producing an XOR Function as shown in fig 6 below [20].

Fig 6: A three-layer Perceptron net capable of calculating

XOR.

The computational power of the network is quite not

unlimited despite the fact that it relies on a single threshold

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

43

unit and it has been shown that any continuous function could

be approximated by networks of parallel threshold units from

a compacted interval of real numbers into the interval [-1,1]

[21]. A continuous output could be gotten out of a multi-layer

NN other than a step function which is seen in the logistic

function:

𝑦 =
1

1+𝑒−𝑥
 (3)

The f(X) which normally replaces x, where f(X) is an

analytical function in terms of x. in view of this. the single-

layer network is comparable to the logistic regression model,

extensively utilized in statistical models. The logistic function

of which is also referred to as sigmoid function which has an

unremitting derivative, and makes it suitable for

backpropagation [22]. It is preferred ideally because its

derivative is easily determined according to the chain rule

[23]:

𝑦′ = 𝑦(1 − 𝑦)
𝑑𝑓

𝑑𝑋
 (4)

2.4 Multi- Layer Perceptrons
This class of networks which comprises of multiple layers of

solvable units, generally inter-connected like a FFNN. Every

neuron in a layer has directed links to the neurons of the

succeeding layer. In numerous implementations, a sigmoid

function is utilized by the units of these networks as an

activation function [24].

The universal approximation deduction for NNs states that

every unremitting function that joins intervals of real numbers

to some output interval of real numbers can subjectively be

approximated carefully by a multi-layer perceptron with just a

HL. This outcome embraces for an extensive range of

activation functions, such as the sigmoidal functions [25].

Multi-layer networks adopt a diversity of learning procedures,

the most common one being back-propagation, in which the

output results are likened with the correct answer to determine

the result of some predefined error function. More so, the

error inputted back into the network through numerous

techniques, and the weight of every link is adjusted with the

algorithm using the information of the network, which in

effect reduces the value of the error function by some minute

amount. The network will typically converge to some state

where the error of the computation is small, after the afore

process is repeated for a satisfactorily huge number of training

sets which could be seen as the network learning a particular

target function. To adjust weights properly, one applies a

gradient descent, a general method for non-linear

optimization, and the derivative of the error function is

determined with respect to the weights of the network.

However, they are changed to augment decreases in the error

(accordingly going effortless on the outward of the error

function). For this reason, backpropagation can only be useful

on networks with differentiable activation functions.

The problem of teaching networks to perform well, in

particular on samples that were generally not used as training

samples; this is usually a daunting task that requires extra

techniques, especially for cases where limited number of

training samples are presented [26, 27]. The risk associated

with it is that, the training data is usually over fitted by the

network and it fails to record the actual statistical method

engendering the data[28]. Computational learning concept is

interested with training classifiers on an inadequate amount of

data. In the context of NNs a modest exploratory, called early

stopping, usually guarantees that the network will take a broad

view on examples that are not part of the training set [29].

Other distinctive issues with the backpropagation procedure

are the convergence speed and the likelihood of culminating

up in a local minimum of the error function. Today there are

real-world approaches that make backpropagation in multi-

layer perceptrons the instrument of interest for many machine

learning tasks.

The contributions of the paper include a proposed novel

training principle for FFNNs centered on Margin-Based

Principle (MBP) for FFNNs and that of the Double Parallel

Feedforward Neural Networks (DPFNN) to further improve

the convergence rate and the generalization capabilities of

FFNNs in addition to an algorithm to deal with the issues

concerned with optimization and subsequent improvement in

the performance of learned policy as well as make it less

computationally expensive.

The rest of the paper is structured as follows; we review

related methods of FFNN in section III. Section IV

discusses our general framework to FFNN, we look at

applications of our proposed technique in section V, and

section VI presents summary and future direction.

3. RELATED WORK
According to [30] FFNN is a traditional classifier which is

very popular at present just like deep architecture of neural

network (DNN) in terms of application and theory as

extensively reviewed by [31]. However, the training algorithm

of FFNN, no matter the shadow or the deep, is based on the

Widrow-Hoff Principle (WHP) that minimizes the squared

error with some weight regulation items [32]. This kind of

learning algorithms need lots of labelled samples and tend to

be overfitting. The general capability of these NNs is limited

by the least square error optimization procession and, WHP so

[30] employed the MBP which could handle some few

labelled samples and would be seen as a sparse learning

structure instead of WHP to acquire a better generalization

ability, which motivated their novel model. The perceptron

that could be treated as linear classifier, shares the

disadvantages of NNs, since it also needs lots of labelled data

and is tend to be overfitting.

When the Max-Margin Principle is applied to perceptron or

linear classifier, it overcame the disadvantages of WHP, thus

it tolerates less labelled data and gained better generalization

ability. The afore-mentioned observations inspired the

researchers to, apply the MBP to the NN training process that

could achieve better accuracy with less labelled data and a

novel learning model was proposed and could abandon part

defects of traditional FFNNs. In order to address the issue,

FFNN was treated as a two-step process. The process of IL to

hidden layers was treated as feature abstraction and the

process of hidden layers to OL was treated as classification.

The FFNN makes use of linear regression learners to abstract

the samples to a new feature space, thus by applying the Min-

Margin Principle to the feature abstraction process to

minimize the error of regression or error of abstraction to

improve the ability of feature abstraction. While in the

classification process, FFNN makes use of linear classifiers to

discriminate, Max-Margin Principle was used to minimize the

structural risk. The two processes were combined to an

optimization problem which was used as a model.

In the quest to improve on the convergence rate and the

generalization capabilities of FFNNs, [33] proposed a DPFNN

which parallelly combines a connection of a multi-layer

FFNN and a single layer FFNN as indicated in fig 7 below.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

44

As a result, some weak and strong convergence results are

obtained, indicating that the gradient of the error function

tends to zero and the weight sequence goes to a fixed point,

respectively. The figure below depicts DPFNN

Figure 7. Topological Structure of DPFNN

The most widely used learning method for DPFNN remains to

be the gradient method [33-36]. It is shown by[37] that the

training speed and accuracy are greatly improved for DPFNN

compared with corresponding multi-layer feedforward neural

networks [38-43]. A double parallel feedforward process

neural network with similar structure and updating rule as

DPFNN is proposed in[44]. In [45], an alternate learning

iterative algorithm for DPFNN is presented. The truncation

error caused by word length on the accuracy of DPFNN is

analyzed in[46].

NN is one of the early AI models, and now becomes a large

branch of learning algorithms. The paper’s focus was on the

famous feed-forward back prorogation classification networks

with non-linear mapping. It stated the three kinds of ways

to popularly promote FFNN; to add weight regularity item to

the optimization target, to prune the surplus links and to go

into deep architectures. The first way is to refine the weights

of the NN and the other ways are to revise the structure of it.

[47] had studied the effect of weight decay and states that it

has two effects, suppressing any irrelevant of the weights and

improving the generalization ability. [48] had studied the

pruning of RBFFNN, which firstly introduces the concept of

significance of the hidden neurons and then uses it in the

learning algorithm to realize parsimonious networks. Recently

such stated in [49] , going to deep catches many eyes, since

not only just adding the hidden layers could gain an

improvement in performance, but DNN can also automatically

select features and amazingly complete the comprehension

missions. [50] had applied deep network into natural

languages, and many works such as [51, 52] had applied deep

network into image processing, deep learning is one of the

hottest topic in today’s AI. Before [53] and [54]

proposed the fast unsupervised or supervised methods, multi-

layer NNs are hard to train, this kind of difficulty is analyzed

in [55] and [56], for the reason that the optimization process is

often stuck into the local optima. The work stated above is a

contribution independent from deep learning, or a principle,

which could both work for shadow or deep architecture of

FFNNs. As to the difficult of multilayer training algorithms

which is applied with the stated principle, it could also be

solved by the same kind of deep learning tricks introduced.

Deep learning is a kind of contribution to the architecture of

NNs and this paper is a kind of contribution to the training

principle. Deep architecture and our principle could be

merged to generate a new powerful model that should be more

competitive in terms of performance than these two methods

in isolation. The famous Margin-Based model, which is a

Support Vector Machine (SVM) was proposed by [57]; SVM

could have many advantages such as small sample learning

and sparse learning structures. However, MBP could be

applied to many models to achieve the similar benefits of

SVM. [58] had applied the Max-Margin Principle into the

Markov Networks, and[59] had applied the Max-Margin

Principle into classification of data with absent features. Both

of these two works belong to supervised learning. [60] Had

applied MBP into feature selection and [61] had applied Max-

Margin Principle into Clustering. Both of these two works

belong to unsupervised learning[62]. Recently, [63] had

introduced this principle to on-line learning for Markov Logic

Networks, and [64] had introduced it to early event detection.

As above, MBP and DPFNN principles could be applied into

FFNNs, thus a critical outlook and contribution of this paper.

This work could be applied into NNs together with weight

decay, link pruning and deep architectures.

The FFNN could be treated as two processes as in the case of

current studies; the abstraction process and classification

process. Take two-layer FFNN as an example, the process of

IL to hidden layers corresponds to abstraction process. In this

stage, each hidden neuron is treated as a linear regression

learner to fit some parts of the data, and hidden neurons deal

with the regression results with non-linear function to get its

output. In this process, the features of the samples could be

converted into new space, where the hidden neurons play a

role as the basis. The process of hidden layers to OL

corresponds to classification process. In this stage, each output

neuron is treated as a linear classifier to discriminate different

classes of data, and output neurons also deal with the

classification result with non-linear functions to get its output.

The IL to HLs is the abstraction process where we could

apply the Min-Margin Principle, and the HLs to OL is the

classification process where we could apply Max-Margin

Principle. It means that all the HLs could be an abstraction

process where Min-Margin Principle works and the last layer

that corresponds to the output could be a classification process

where Max-Margin Principle is applied. The FFNNs have

HLs each of which has number of hidden neurons and a

number of output neurons, with a number of labelled samples.

So, we combine the two principles in one optimization

problem, as maximizing. [65] Proposes a new MBP centered

discriminative feature learning approach that specifically aims

at learning a low dimensional feature representation to

maximize the global margin of the data and samples from the

same class as close as possible. [66] Also recently proposes a

performance evaluation of loss functions for speech

recognition to enhance the generality of acoustic model by

implementing an MBP

A more recent work also looked at training efficiency and

computational cost, both in general-purpose and in embedded

computing environments and a strategy to convert a network

configuration between different activation functions without

altering the network mapping capabilities in FFNN were also

presented in [67]. These literatures serve as a stimulant for

this paper.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

45

4. DISCUSSIONS OF THE

THEORITICAL FRAMEWORK
Gradient based systems normally are prone to (1) over-fitting,

(2) Easy to convergence to local minima, (3) Converges

slowly, and (4) difficult select learning rate despite numerous

attempts by past studies to address these challenges we still

have not arrived at an optimal solution. The aforementioned

draw backs could be overcome by reducing the network

complexity and also by increasing the problem complexity of

the network. Despite the merits and popularity of

backpropagation learning there are some fundamental

problems which deserve further attention. First, supervised

learning using a backpropagation or a backpropagation-like

gradient-based learning rule can be stuck in a local minimum

of the error function in the sense of local minima due to the

gradient descent nature of gradient-based learning rules.

Because local minimum errors are still potential pitfalls

undermining or plaguing supervised learning, further

investigations are deemed necessary. Backpropagation-like

procedures require a large number of computations per

iteration so that the algorithm runs slowly unless implemented

in expensive custom hardware. Moreover, the procedures

need much iteration to converge and, thus, are inappropriate

for on-line real time, rather than off-line learning.

Feed forward architecture with a single layer [68] and

multiple layer[40, 43, 69-71] can be used as universal

approximator given mild assumptions on hidden layer but the

rule excludes backward connections as could be seen in

recurrent networks[72-76]. More so, in FFNN no memory or

delay is allowed, which makes the network only useful to

represent static, models[77]. The two most important issues

realized which needs to be addressed are training efficiency

and computational cost. The FFNN suffers from slow learning

speed due to its backpropagation strategy which is as a result

of its rule for the computation for weights correction matrix,

calculated using the derivative of the activation function for

the neurons. The universal approximation theorem[68] states

that one of the conditions for the FFNN to be a universal

approximator is for the activation function to be bounded. For

these reasons, most of the activation functions show a high

derivative near the origin and a progressive flattening moving

towards infinity. We believed that problems enumerated

above could be solved by the use of activation functions

which will helps reduce the computation cost; the margin-

based principle could also be combined with the DPFNN

algorithm to further deal with the problem of over-fitting,

slow to convergence rate as well as convergence to local

minimal problems thereby increasing the problem complexity

of the network. The problem of slow convergence rate could

be addressed by a combination of FFNN with fuzzy logic (FL)

to create fast convergence [78].

The abstraction process which is the process of ILs to hidden

layers, makes use of linear regression learners to predict/fit

different characteristics of samples which is optimized by the

least square errors as stated below;

min Z = (< 𝑤 , 𝑥 > −𝑣)2

But the margin-Based Principle minimizes the margin instead

of the distance; hence Min-Margin Principles takes the

minimum distance from the samples to optimize the target as

follows;

min 𝑍 =
(< 𝑤 , 𝑥 >)𝑣

|𝑤 |

From the equation y is the label of the sample for some linear

abstraction learners. The principle stated above is geometric

invariant and more essential as one of the reasons for the

promotion of the abstraction process.

The classification phase which is the process from the hidden

layers to the output could make use of linear classifiers to

discriminate the different classes. Traditionally, this could be

stopped at any suitable position in a linear hyper – plane and

could result in overfitting problem. This structural risk is

effectively addressed by the Max-Margin Principle and thus

improves the generalization ability for the optimization

problem as follows;

max 𝑍 =
(< 𝑤 , 𝑥 >)𝑣

|𝑤 |

The FFNN with H hidden layers each of which has Hh hidden

neurons and N output neurons, the number of labelled samples

is L. So, the two principles are combine in one optimization

problem, as maximizing and is formulated as the objective

function below;

𝑍 =

 {
<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣𝐻+1>𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑁
𝑖=1

𝐿
𝑡=1 − ⋌

<𝑤𝑗
⟶𝑚 , 𝑣⟶𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
⟶𝑚 |

𝐻ℎ

𝑗 =1
𝐻
𝑚=1 }

 (5)

Where 𝑤𝑖
→𝑜𝑢𝑡 is the weight vector from last hidden layer to

the i-th neuron in OL, and the 𝑤𝑗
⟶𝑚 is the weight vector from

(m − 1)-th hidden layer to the i-th neuron in m-th hidden

layer. ti is the output of i-th neuron in OL, and 𝑣𝑗
𝑚 is the

output of j-th neuron in m-th HL. 𝑥 𝑡 is the input vector,

and v𝑚 is the output vector of (m − 1)-th HL. v𝑚 is

composed by 𝑣𝑗
𝑚 . λ is an hyper-parameter in the training

algorithm. The first term of the above formular represents

Max-Magin Principle and the second term represent Min-

Margin principle. However, since the output of a nonlinear

function must be symmetric for both maximum positive and

minimum negative values as in equation (6) and (7), the

training algorithm adopts the gradient ascent for the

optimization target as seen below;

𝜎 𝑥 =
1

1+exp (−𝑥)
− 0.5 (6)

𝜎 ′ (𝑥) = 0.5 + 𝜎 𝑥 (0.5 − 𝜎(𝑥)) (7)

𝑍𝑡 =

<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣𝐻+1>𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑁
𝑖=1 − ⋌

<𝑤𝑗

⟶𝑚 , 𝑣⟶𝑚 >𝑣𝑗
𝑚 +1

|𝑤𝑗
⟶𝑚 |

𝐻ℎ

𝑗 =1
𝐻
𝑚=1 (8)

We could work out the partial derivative of the target to

express this formula in a brief way, by introducing a δ

function and it works out iteratively to result in equation (9)

below;

𝛿𝑗 ,𝑚−1
𝑚 = 𝛿𝑠,𝑚

𝑚𝐻ℎ
𝑠=1 𝑤𝑠

→𝑚 𝑗 𝛿 ′ (< 𝑤−𝑚−1, 𝑣→𝑚−1) (9)

Then, we define a γ function.

𝛾𝑗
𝑚 =

𝑣𝑗

𝑚 +1

𝑤𝑗
→𝑚 𝑣→𝑚 −

<𝑤𝑗
→𝑚 ,𝑣→𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
→𝑚 |3

𝑤𝑗
→𝑚 +

<𝑤𝑗

→𝑚 ,𝑣→𝑚 > 𝜎 ′ <𝑤𝑗
→𝑚 ,𝑣→𝑚 >

|𝑤𝑗
→𝑚 |

 𝑣→𝑚 (10)

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

46

With the form of δ function, we could reduce the

computational complexity and express the gradient, very

briefly.

𝜕𝑍𝑡

𝜕𝑡
→𝑜𝑢𝑡 =

𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑣→𝐻+1 −
𝑡𝑖<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣→𝐻+1>

|𝑤𝑖
→𝑜𝑢𝑡 |3

𝑤𝑖
→𝑜𝑢𝑡 (11)

𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑚 = 𝛿𝑖 ,𝑚

𝑜𝑢𝑡 𝑣→𝑚 − ⋋ 𝛿𝑖,𝑚
𝑠𝐻

𝑠=𝑚+1 𝑣→𝑚 − ⋋ 𝛾𝑗
𝑚 (12)

In above formula, σ′ is the derivative of the non-linear

function. With the derivative of the target, we can obtain the

updating equation as below.

𝑤𝑖
→𝑜𝑢𝑡 = 𝑤𝑖

→𝑜𝑢𝑡 + 𝛼 ∗
𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑜𝑢𝑡 (13)

𝑤𝑗
→𝑚 = 𝑤𝑗

→𝑚 + 𝛼 ∗
𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑚 (14)

α is the learning rate. So, the training algorithm is achieved.

This method in some special case may be stuck into local

optima and is a common problem for neural networks.

The gradient decent method could be further enhanced by

introducing the Double Parallel procedure with P input nodes

with 1 output nodes into the structure of the FFNN. The

weight vector connecting the HL and the OL is denoted by

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑚)𝑇 ∈ 𝑅𝑚 and the weight matrix

connecting the IL and the HL by 𝑉 = 𝑣𝑖,𝑗 𝑚𝑥𝑝 where

 𝑣𝑖 = (𝑣1, 1, … , 𝑣𝑖 ,𝑝)𝑇 ∈ 𝑅𝑝 is the weight vector connecting

the IL, and i-th node of the HL. Similarly, we denote the

weight vector connecting the ILand the OLby 𝑈 =
(𝑢1, 𝑢2, … , 𝑢𝑝)𝑇 ∈ 𝑅𝑝

All the weight vectors are incorporated into one weight vector

as

𝑊 = (𝑢𝑇 , 𝑣1
𝑇 , … , 𝑣𝑚

𝑇 , 𝑣𝑤
𝑇)𝑇𝜖 𝑅𝑝+𝑚𝑝 +𝑚

For a giving set of training samples supplied to the neural

network, the error function is defined as

𝐸 𝑊 =
1

2
 (𝑣𝑗 − 𝑂𝑗)2𝑍

𝑗 =1 (15)

Where v is the actual output of the neural system, O is the

highest sample and the purpose of the network learning is to

find W* such that

E (W*) = min E (W) (16)

The batch learning approach was followed by this paper to get

the partial derivative of the error function E (W) for the

respective weight vectors. After which they are refined by an

iteration process and the learning rate, 𝜂 at each stage of the

iteration must be greater than zero. We then substitute this

into equation (15) above. This weight vector we introduced at

every stage of our first module. Hence equations (8), (9), (10),

and (12) are updated as (17), (18), (19), and (20) respectively;

𝑍𝑡 =
<𝑤𝑖

→𝑜𝑢𝑡 ,𝑣𝐻+1>𝑡𝑖

|𝑤𝑖
→𝑜𝑢𝑡 |

𝑁
𝑖=1 − ⋌

<𝑤𝑗
⟶𝑚 , 𝑣⟶𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
⟶𝑚 |

𝐻ℎ

𝑗 =1
𝐻
𝑚=1 +

𝜂 (𝑣𝑗 − 𝑂𝑗)2𝑇
𝑗 =1 (17)

𝛿𝑗 ,𝑚−1
𝑚 = 𝛿𝑠,𝑚

𝑚𝐻ℎ
𝑠=1 𝑤𝑠

→𝑚 𝑗 𝛿 ′ (< 𝑤−𝑚−1, 𝑣→𝑚−1 >

 +𝜂 (𝑣𝑗 − 𝑂𝑗)2𝑇
𝑗 =1 (18)

𝛾𝑗
𝑚 =

𝑣𝑗

𝑚 +1

𝑤𝑗
→𝑚 𝑣→𝑚 −

<𝑤𝑗
→𝑚 ,𝑣→𝑚 >𝑣𝑗

𝑚 +1

|𝑤𝑗
→𝑚 |3

𝑤𝑗
→𝑚 +

<𝑤𝑗

→𝑚 ,𝑣→𝑚 > 𝜎 ′ <𝑤𝑗
→𝑚 ,𝑣→𝑚 >

 𝑤𝑗
→𝑚

 𝑣→𝑚 + 𝜂 (𝑣𝑗 − 𝑂𝑗)2𝑇
𝑗 =1 (19)

𝜕𝑍𝑡

𝜕𝑤 𝑡
→𝑚 = 𝛿𝑖 ,𝑚

𝑜𝑢𝑡 𝑣→𝑚 − ⋋ 𝛿𝑖,𝑚
𝑠𝐻

𝑠=𝑚+1 𝑣→𝑚 − ⋋ 𝛾𝑗
𝑚 +

 𝜂 (𝑣𝑗 − 𝑂𝑗)2𝑇
𝑗 =1 (20)

Where 𝜂 is assumed to be 0.5 in this case.

4.1 Fast Computation Using Activation

Functions
There are two costs associated with the computational cost.

The first one is a linear cost, emanating from the operations

needed to perform the sum of the weighted inputs of each

neuron. The second one related to the computation of the

activation function is nonlinear. In a computational

environment, those operations are carried out considering a

particular precision format for the numbers. Fixed-point and

floating-point arithmetic are the most commonly used to

compute the FFNN elementary operations. The linear part of

the FFNN is straightforward; operations of products and

sums.

Three branches of these approaches can be found in literature;

PWL (piecewise linear) interpolation, used to carry out in

embedded environment since, for every segment, the

approximated value can be computed by one multiplication

and one addition. In [79] an implementation of a NN on two

FPGA devices by the Virtex-5 Xilinx, and the Spartan 3 was

proposed. LUT (Lookup-Table) inter-polation is the modest

method that can be castoff to lessen the cost of the

computational of the complex function. The idea is to

stockpile inside the memory (a table) samples from a

subdomain of the function and access those instead of

calculating the function, and higher order/hybrid techniques

which combines both LUT and PWL approximations to

acquire a result that produces a concession between the speed

of the LUT and the accuracy of the PWL approximation.

5. APPLICATIONS
FFNN, a surrogate of ANN, has a comprehensive applicability

to real world business issues. In fact, they have already been

positively applied in many industries. Since the network is

best at recognizing trends in data, it is well suitable for

forecasting needs including: industrial process control, sales

forecasting, data validation, customer research, risk

management, and target marketing.

It is also utilized for the following explicit paradigms:

interpretation of multi-meaning Chinese words; analysis of

hepatitis; recognition of orators in conversations; salvage of

telecommunications from defective software; undersea mine

detection; texture scrutiny; three-dimensional object

recognition; hand-written word recognition; and facial

recognition.

It is a popular research area in the field of medicine and is

believed to receive a widespread application to biomedical

systems in the coming years. This is due to the fact that it is

perfect in identifying ailments using scans, since there is no

need to offer a precise algorithm on how to detect the disease.

It applies a learning approach that mimics established

examples thereby shielding details of illness. What is desired

is a set of examples that are illustrative of the various facets of

the disease. Note that, the quantity of examples is not

important. The examples ought to be carefully chosen if the

system is to perform efficiently and reliably [80].

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

47

6. CONCLUSIONS
In this paper, we have presented a comprehensive review on

FFNNs, we looked at the MBP into the training algorithms of

FFNNs, and also various models capable of handling sparser

labelled datasets and high-dimension datasets with high

accuracy, while modification from old ANN method to our

proposed method is efficient and easy to work with. It was

also observed that DPFNN has a faster convergence speed and

better generalization capability than standard FFNN.

However, our work outperformed prior state-of-the-art works

with regards to high convergence rate, and also has an

additional capability of handling more datasets which are

computationally less expensive. Naturally the FFNN would

have had a saturation problem with the sigmoid function, and

for this reason, the training is hardly possible in high-

dimension dataset. However, the technique implemented in

this solves this problem, since our model does not involve the

derivative of sigmoid function. The model could solve high-

dimensional problems directly and naturally while prior

techniques must use other methods. This is one of the major

advantages of our proposed model. However, investigations

into using diaphone-level acoustic models, sparse

representations and deep learning is of interest as this would

allow state-sized representations of speech to be used instead,

which may further enhance performance.

7. REFERENCES
[1] A. Kumar and F. Shaik, "Image Processing Methods

Utilized," in Image Processing in Diabetic Related

Causes, ed: Springer, 2016, pp. 9-18.

[2] D. J. Larimer, "Processes and Systems for Automated

Collective Intelligence," ed: Google Patents, 2007.

[3] R. Cutler and A. Kapoor, "System and method for

audio/video speaker detection," ed: Google Patents,

2008.

[4] M. Caudill, "Neural nets primer, part VI," AI Expert, vol.

4, pp. 61-67, 1989.

[5] R. Hecht-Nielsen, "Neural network primer: part i," AI

Expert, pp. 4-51, 1989.

[6] W. Wu, G. Feng, and X. Li, "Training multilayer

perceptrons via minimization of sum of ridge functions,"

Advances in Computational Mathematics, vol. 17, pp.

331-347, 2002.

[7] W. Wu, G. Feng, Z. Li, and Y. Xu, "Deterministic

convergence of an online gradient method for BP neural

networks," IEEE Transactions on Neural Networks, vol.

16, pp. 533-540, 2005.

[8] W. Wu, N. Zhang, Z. Li, L. Li, and Y. Liu, "Convergence

of gradient method with momentum for back-

propagation neural networks," JOURNAL OF

COMPUTATIONAL MATHEMATICS-INTERNATIONAL

EDITION-, vol. 26, p. 613, 2008.

[9] W. Sun and Y.-X. Yuan, Optimization theory and

methods: nonlinear programming vol. 1: Springer

Science & Business Media, 2006.

[10] Z. Li, W. Wu, and Y. Tian, "Convergence of an online

gradient method for feedforward neural networks with

stochastic inputs," Journal of Computational and Applied

Mathematics, vol. 163, pp. 165-176, 2004.

[11] R. C. O'Reilly and Y. Munakata, Computational

explorations in cognitive neuroscience: Understanding

the mind by simulating the brain: MIT press, 2000.

[12] D. Fagan, "JMuTeaches its last course," chance, vol. 63,

p. 41.

[13] O. Sporns, Networks of the Brain: MIT press, 2010.

[14] S. Samarasinghe, Neural networks for applied sciences

and engineering: from fundamentals to complex pattern

recognition: CRC Press, 2016.

[15] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and

Y.-L. He, "Fuzziness based semi-supervised learning

approach for intrusion detection system," Information

Sciences, vol. 378, pp. 484-497, 2017.

[16] S. Goyal and G. K. Goyal, "Heuristic machine learning

feedforward algorithm for predicting shelf life of

processed cheese," International Journal of Basic and

Applied Sciences, vol. 1, pp. 458-467, 2012.

[17] S. Goyal and G. K. Goyal, "Soft computing single hidden

layer models for shelf life prediction of burfi," Russian

Journal of Agricultural and Socio-Economic Sciences,

vol. 5, 2012.

[18] G.-z. Quan, Z.-y. Zhan, T. Wang, and Y.-f. Xia,

"Modeling the Hot Tensile Flow Behaviors at Ultra-

High-Strength Steel and Construction of Three-

Dimensional Continuous Interaction Space for Forming

Parameters," High Temperature Materials and Processes,

vol. 36, pp. 29-43, 2017.

[19] C. MacLeod, "The synthesis of artificial neural networks

using single string evolutionary techniques," 1999.

[20] J. Nagi and M. S. K. AHMED, "Pattern Recognition Of

Simple Shapes In A Matlab/Simulink Environment:

Design And Development Of An Efficient High-Speed

Face Recognition System," A Thesis Electrical And

Electronics Engineering. University Tenaga Nasional,

2007.

[21] P. Auer, H. Burgsteiner, and W. Maass, "A learning rule

for very simple universal approximators consisting of a

single layer of perceptrons," Neural Networks, vol. 21,

pp. 786-795, 2008.

[22] Y.-C. Hu, "Tolerance rough sets for pattern classification

using multiple grey single-layer perceptrons,"

Neurocomputing, vol. 179, pp. 144-151, 2016.

[23] Q. V. Le, "A Tutorial on Deep Learning Part 1: Nonlinear

Classifiers and The Backpropagation Algorithm," ed,

2015.

[24] B. Choubin, S. Khalighi-Sigaroodi, A. Malekian, and Ö.

Kişi, "Multiple linear regression, multi-layer perceptron

network and adaptive neuro-fuzzy inference system for

forecasting precipitation based on large-scale climate

signals," Hydrological Sciences Journal, vol. 61, pp.

1001-1009, 2016.

[25] S. P. Fard and Z. Zainuddin, "The universal

approximation capabilities of double 2\ pi-periodic

approximate identity neural networks," Soft Computing,

vol. 19, pp. 2883-2890, 2015.

[26] H. H. Bhadeshia, "Neural networks in materials science,"

ISIJ international, vol. 39, pp. 966-979, 1999.

[27] H. Schütze, D. A. Hull, and J. O. Pedersen, "A

comparison of classifiers and document representations

for the routing problem," in Proceedings of the 18th

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

48

annual international ACM SIGIR conference on

Research and development in information retrieval,

1995, pp. 229-237.

[28] M. M. Saggaf, M. N. Toksöz, and H. M. Mustafa,

"Estimation of reservoir properties from seismic data by

smooth neural networks," Geophysics, vol. 68, pp. 1969-

1983, 2003.

[29] P. L. Bartlett, "The sample complexity of pattern

classification with neural networks: the size of the

weights is more important than the size of the network,"

Information Theory, IEEE Transactions on, vol. 44, pp.

525-536, 1998.

[30] H. Xiao and X. Zhu, "Margin-Based Feed-Forward

Neural Network Classifiers," arXiv preprint

arXiv:1506.03626, 2015.

[31] B. B. Benuwa, Y. Z. Zhan, B. Ghansah, D. K. Wornyo,

and F. Banaseka Kataka, "A Review of Deep Machine

Learning," in International Journal of Engineering

Research in Africa, 2016, pp. 124-136.

[32] P. Vishwanath and V. Viswanatha, "FACE

CLASSIFICATION USING WIDROW-HOFF

LEARNING PARALLEL LINEAR COLLABORATIVE

DISCRIMINANT REGRESSION (WH-PLCDRC),"

Journal of Theoretical and Applied Information

Technology, vol. 89, p. 362, 2016.

[33] J. Wang, W. Wu, Z. Li, and L. Li, "Convergence of

gradient method for double parallel feedforward neural

network," Int J Numer Anal Model, vol. 8, pp. 484-495,

2011.

[34] L. S. D. G. Z. Shisheng, "Aeroengine Lubricating Oil

Metal Elements Concentration Prediction Based on

Double Parallel Process Neural Network [J],"

Lubrication Engineering, vol. 5, p. 010, 2006.

[35] X. MENG, G.-b. DING, and L. TANG, "Calculation for

the Exhaust Enthalpy of a Steam Turbine Based on

Parallel Connection Feed-forward Network," Turbine

Technology, vol. 1, p. 004, 2006.

[36] G. Huang and R. He, "Analyzing water diversion

demand for irrigation areas at lower reach of yellow river

with BP neural network techniques," J. Irriga. Drain,

vol. 19, pp. 20-23, 2000.

[37] M. He, "Double Parallel Feedforward Neural Networks

with Application to Simulation Study of Flight Fault

Inspection," Acta. Aerona. ET. Astrona. Sinica, vol. 15,

pp. 877-881, 1994.

[38] S. Haykin and R. Lippmann, "Neural Networks, A

Comprehensive Foundation," International Journal of

Neural Systems, vol. 5, pp. 363-364, 1994.

[39] C. G. Looney, Pattern recognition using neural

networks: theory and algorithms for engineers and

scientists: Oxford University Press, Inc., 1997.

[40] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken,

"Multilayer feedforward networks with a nonpolynomial

activation function can approximate any function,"

Neural networks, vol. 6, pp. 861-867, 1993.

[41] Y. Liang, D. Feng, H. P. Lee, S. P. Lim, and K. Lee,

"Successive approximation training algorithm for

feedforward neural networks," Neurocomputing, vol. 42,

pp. 311-322, 2002.

[42] Y. Liang, W. Lin, H. Lee, S. Lim, K. Lee, and H. Sun,

"Proper orthogonal decomposition and its applications–

part II: Model reduction for MEMS dynamical analysis,"

Journal of Sound and Vibration, vol. 256, pp. 515-532,

2002.

[43] K. Hornik, "Approximation capabilities of multilayer

feedforward networks," Neural networks, vol. 4, pp. 251-

257, 1991.

[44] S.-s. Zhong and G. Ding, "Research on double parallel

feedforward process neural networks and its application,"

Control and Decision, vol. 20, p. 764, 2005.

[45] D. Wei, "Alternate Iterative Algorithm of Double Parallel

Artifical Neural Network and Its Application,"

MINIMICRO SYSTEMS-SHENYANG-, vol. 17, pp. 65-

68, 1996.

[46] M. He, "Error Analysis of Double Parallel Feedforward

Neural Networks," JOURNAL-NORTHWESTERN

POLYTECHNICAL UNIVERSITY, vol. 15, pp. 125-130,

1997.

[47] J. Moody, S. Hanson, A. Krogh, and J. A. Hertz, "A

simple weight decay can improve generalization,"

Advances in neural information processing systems, vol.

4, pp. 950-957, 1995.

[48] G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A

generalized growing and pruning RBF (GGAP-RBF)

neural network for function approximation," Neural

Networks, IEEE Transactions on, vol. 16, pp. 57-67,

2005.

[49] Y. Bengio, "Learning deep architectures for AI,"

Foundations and trends® in Machine Learning, vol. 2,

pp. 1-127, 2009.

[50] R. Collobert and J. Weston, "A unified architecture for

natural language processing: Deep neural networks with

multitask learning," in Proceedings of the 25th

international conference on Machine learning, 2008, pp.

160-167.

[51] D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-

column deep neural networks for image classification,"

in Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on, 2012, pp. 3642-3649.

[52] D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-

column Deep Neural Networks for Image Classification

Supplementary Online Material."

[53] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast

learning algorithm for deep belief nets," Neural

computation, vol. 18, pp. 1527-1554, 2006.

[54] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,

"Greedy layer-wise training of deep networks," Advances

in neural information processing systems, vol. 19, p. 153,

2007.

[55] X. Glorot and Y. Bengio, "Understanding the difficulty of

training deep feedforward neural networks," in

International conference on artificial intelligence and

statistics, 2010, pp. 249-256.

[56] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin,

"Exploring strategies for training deep neural networks,"

The Journal of Machine Learning Research, vol. 10, pp.

1-40, 2009.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 4, April 2017

49

[57] J. Weston, R. Collobert, F. Sinz, L. Bottou, and V.

Vapnik, "Inference with the universum," in Proceedings

of the 23rd international conference on Machine

learning, 2006, pp. 1009-1016.

[58] B. T. C. G. D. Roller, "Max-margin Markov networks,"

Advances in neural information processing systems, vol.

16, p. 25, 2004.

[59] G. Chechik, G. Heitz, G. Elidan, P. Abbeel, and D.

Koller, "Max-margin classification of data with absent

features," The Journal of Machine Learning Research,

vol. 9, pp. 1-21, 2008.

[60] R. Gilad-Bachrach, A. Navot, and N. Tishby, "Margin

based feature selection-theory and algorithms," in

Proceedings of the twenty-first international conference

on Machine learning, 2004, p. 43.

[61] B. Li, M. Chi, J. Fan, and X. Xue, "Support cluster

machine," in Proceedings of the 24th international

conference on Machine learning, 2007, pp. 505-512.

[62] B. Ghansah, S. Wu, and N. Ghansah, "Rankboost-Based

Result Merging," in Computer and Information

Technology; Ubiquitous Computing and

Communications; Dependable, Autonomic and Secure

Computing; Pervasive Intelligence and Computing

(CIT/IUCC/DASC/PICOM), 2015 IEEE International

Conference on, 2015, pp. 907-914.

[63] T. N. Huynh and R. J. Mooney, "Online Max-Margin

Weight Learning for Markov Logic Networks," in SDM,

2011, pp. 642-651.

[64] M. Hoai and F. De la Torre, "Max-margin early event

detectors," International Journal of Computer Vision,

vol. 107, pp. 191-202, 2014.

[65] C. Li, Q. Liu, W. Dong, F. Wei, X. Zhang, and L. Yang,

"Max-Margin-Based Discriminative Feature Learning,"

IEEE transactions on neural networks and learning

systems, vol. 27, pp. 2768-2775, 2016.

[66] S. A. Ali, M. Andleeb, and R. Asif, "Performance

Evaluation of Loss Functions for Margin Based Robust

Speech Recognition," Performance Evaluation, vol. 7,

2016.

[67] A. Laudani, G. M. Lozito, F. R. Fulginei, and A. Salvini,

"On training efficiency and computational costs of a feed

forward neural network: a review," Computational

intelligence and neuroscience, vol. 2015, p. 83, 2015.

[68] G. Cybenko, "Approximation by superpositions of a

sigmoidal function," Mathematics of control, signals and

systems, vol. 2, pp. 303-314, 1989.

[69] K. Hornik, M. Stinchcombe, and H. White, "Multilayer

feedforward networks are universal approximators,"

Neural networks, vol. 2, pp. 359-366, 1989.

[70] K.-I. Funahashi, "On the approximate realization of

continuous mappings by neural networks," Neural

networks, vol. 2, pp. 183-192, 1989.

[71] J. L. Castro, C. J. Mantas, and J. Benıtez, "Neural

networks with a continuous squashing function in the

output are universal approximators," Neural Networks,

vol. 13, pp. 561-563, 2000.

[72] H. Jaeger, Tutorial on training recurrent neural

networks, covering BPPT, RTRL, EKF and the" echo

state network" approach: GMD-Forschungszentrum

Informationstechnik, 2002.

[73] H. Jaeger, "Echo state network. Scholarpedia 2 (9):

2330," ed, 2007.

[74] T. Lin, B. G. Horne, P. Tiňo, and C. L. Giles, "Learning

long-term dependencies in NARX recurrent neural

networks," Neural Networks, IEEE Transactions on, vol.

7, pp. 1329-1338, 1996.

[75] A. Rodan and P. Tiňo, "Minimum complexity echo state

network," Neural Networks, IEEE Transactions on, vol.

22, pp. 131-144, 2011.

[76] D. Li, M. Han, and J. Wang, "Chaotic time series

prediction based on a novel robust echo state network,"

Neural Networks and Learning Systems, IEEE

Transactions on, vol. 23, pp. 787-799, 2012.

[77] K. Hornik, M. Stinchcombe, and H. White, "Universal

approximation of an unknown mapping and its

derivatives using multilayer feedforward networks,"

Neural networks, vol. 3, pp. 551-560, 1990.

[78] E. Soria-Olivas, J. D. Martín-Guerrero, G. Camps-Valls,

A. J. Serrano-López, J. Calpe-Maravilla, and L. Gómez-

Chova, "A low-complexity fuzzy activation function for

artificial neural networks," IEEE Transactions on Neural

Networks, vol. 14, pp. 1576-1579, 2003.

[79] A. L. Braga, C. H. Llanos, D. Göhringer, J. Obie, J.

Becker, and M. Hübner, "Performance, accuracy, power

consumption and resource utilization analysis for

hardware/software realized Artificial Neural Networks,"

in Bio-Inspired Computing: Theories and Applications

(BIC-TA), 2010 IEEE Fifth International Conference on,

2010, pp. 1629-1636.

[80] G. Bebis and M. Georgiopoulos, "Feed-forward neural

networks," Potentials, IEEE, vol. 13, pp. 27-31, 1994.

IJCATM : www.ijcaonline.org

